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The unified multivariate counting process (UMCP), previously studied by the same
authors, enables one to describe most of the existing counting processes in terms of its
components, thereby providing a comprehensive view for such processes often defined sep-
arately and differently. The purpose of this paper is to study a multivariate reward process
defined on the UMCP. By examining the probabilistic flow in its state space, various trans-
form results are obtained. The asymptotic behavior, as t → ∞, of the expected univariate
reward process in a form of a product of components of the multivariate reward process is
studied. As an application, a manufacturing system is considered, where the cumulative
profit given a preventive maintenance policy is described as a univariate reward process
defined on the UMCP. The optimal preventive maintenance policy is derived numerically
by maximizing the cumulative profit over the time interval [0, T ].

1. INTRODUCTION

The history of counting processes can be traced back to 1950s stemmed from intro-
duction of Poisson processes, see for example, Feller [4]. Since then, many different
counting processes have been introduced in response to many different application needs,
including non-homogeneous Poisson processes, renewal processes (see, e.g., Ross [23]),
Markov-modulated Poisson processes (Heffes and Lucantoni [6]), Markov renewal processes
(Pyke [20,21], Keilson [8,9], Keilson and Wishart [10,11]), Markovian arrival processes
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(Lucantoni, Meier-Hellstern, and Neuts [13], Lucantoni [12]), and other age-dependent
counting processes (Masuda and Sumita [16], Sumita and Shanthikumar [28]), to name
a few. Such counting processes have been introduced separately with different motivations.
Accordingly, they seem to be quite different on the surface.

In order to provide a comprehensive view over such different counting processes, a
unified multivariate counting process (UMCP) is introduced in Sumita and Huang [26],
where the UMCP enables one to describe most of the existing counting processes in terms of
its components. More specifically, a stochastic system is considered, where a semi-Markov
process J(t) defined on J = {0, 1, . . . , J} constitutes the core process with the counting
process Nij(t) denoting the number of entries of J(t) from state i ∈ J to state j ∈ J . Also
incorporated is the counting process Mi(t) recording the number of arrivals in state i ∈ J ,
where such arrivals are generated by the non-homogeneous Poisson process governed by the
intensity function λi(x) depending on the current dwell time x of the semi-Markov process
in state J(t) = i ∈ J at time t.

As an application of the UMCP, a manufacturing system with certain optimal preventive
maintenance policy is considered in [26], where the system degrades through multiple stages
described by the state of the semi-Markov process J(t) on J = {0, . . . , J}. Here, state
0 is the perfect state, and the system degrades gradually from 0 to J − 1 with default
rate increasing along this direction. State J corresponds to the overhaul for the preventive
maintenance, where the system is completely stopped but would be brought back to the
perfect state upon completion. The overhaul time would become stochastically longer as J
increases, that is, as the preventive maintenance is deferred. The total cost associated with
the preventive maintenance policy J is then given by the counting process NJ−1,J(t) with
ψm ×NJ−1,J(t) representing the overhaul cost and Mi(t) with ψd ×Mi(t) generating the
scrap cost. However, the model cannot cope with a more sophisticated revenue and cost
structure, where revenues and costs may be generated in continuous time depending on the
state of J(t), as well as at the times of jumps of Nij(t) and Mi(t) with random increments.

In order to overcome this difficulty and expand the applicability of the UMCP, this
paper introduces a multivariate reward process Z(t) defined on the UMCP. By examining
the probabilistic flow in the state space of Z(t), various transform results are obtained. The
asymptotic behavior, as t→ ∞, of the expected univariate reward process in a form of a
product of components of the multivariate reward process is studied. As an application,
the manufacturing system considered above is revisited, where the cumulative profit given
a preventive maintenance policy is described as a univariate reward process defined on
the UMCP with random jumps. The optimal preventive maintenance policy is derived
numerically by maximizing the cumulative profit over the time interval [0, T ].

The study of reward processes can be traced back to the 1950s represented by the
original paper by Smith [24]. Subsequently, many papers have been published, including
Jewell [7], McLean and Neuts [18], and Pyke and Schaufele [22], to name only a few. The
reader is referred to two excellent survey papers by Çınlar [2,3]. Of particular interest
to this paper are the reward processes defined on a semi-Markov process and the associ-
ated counting processes studied by Sumita and Masuda [27], Masuda and Sumita [17], and
Masuda [15]. More recently, Stefanov [25] provides some interesting transform results, link-
ing reward functions accumulated in a deterministic time interval with those accumulated
within first passage times of the underlying Markov chain or the semi-Markov process.

The optimal preventive maintenance problem has been an important branch of research
in both stochastic modeling and reliability theory. An early approach, represented by Bar-
low and Hunte [1], Flehinger [5], and Malik [14] among others, was based on renewal theory
where the optimal policy would be determined so as to minimize the cost or the downtime
due to repair. Since then, the problem has been analyzed from various angles. For capturing
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the overview of such developments, the reader is referred to three excellent survey papers by
Pierskalla and Voelker [19], Valdez-Flores and Feldman [29], and Wang [30]. The unique fea-
ture of the optimal preventive maintenance problem discussed in this paper can be found
in that the optimal maintenance policy is to maximize the expected profit over a plan-
ning period, where the expected profit consists of three parts: continuous earnings during
uptimes, continuous costs during downtimes, and a random fixed cost incurred whenever
a maintenance activity takes place. In addition, two performance measures are considered
and compared so as to demonstrate that the optimal policy for maximizing the mean time
between failures could be different from that for maximizing the system availability.

In what follows, we succinctly summarize Sumita and Masuda [27], Masuda and
Sumita [17], and Masuda [15]. Let Z(t) be a reward process associated with a semi-Markov
process J(t) on J = {0, . . . , J}, where Z(t) is characterized by a state-dependent reward
rate function ρ : J → R. Formally, Z(t) can be written as

Z(t) =
∫ t

0

ρ
(
J(τ)

)
dτ . (1.1)

Let X(t) be the age process of J(t) describing the elapsed time up to time t since the
last transition into the current state. By analyzing the trivariate process [J(t),X(t), Z(t)],
various transform results have been obtained in [27], yielding the asymptotic expansions of
the first two moments of Z(t) as t→ ∞. Also analyzed are the reward accumulated during
a first passage time of J(t) and the first passage time of Z(t) itself. Masuda and Sumita [17]
extend the model in [27] to a multivariate setting. More specifically, a multivariate reward
process Z(t) = [Z1(t), Z2(t), . . . , ZK(T )]� is considered, where

Z(t) =
∫ t

0

ρ
(
J(τ)

)
dτ , (1.2)

possibly with Zk(t), k = 1, 2, . . . ,K, depending on each other. In Masuda [15], this process
is further extended by incorporating random jumps at transition epochs of the underlying
semi-Markov process J(t).

The purpose of this paper is to introduce a multivariate reward process Z(t) =
[Z1(t), Z2(t), . . . , ZK(T )]� defined on the UMCP, possibly with random jumps at the times
of the transitions of the UMCP. Since the UMCP unifies various counting processes, this
multivariate reward process enables one to treat all of the above reward processes as special
cases. Furthermore, some new reward processes can also be introduced. As an application,
the optimal preventive maintenance policy problem discussed in Sumita and Huang [26] will
be revisited, where the multivariate reward process allows one to introduce revenues and
costs generated in continuous time as well as random increments of the cost at jump epochs
of the UMCP. By applying the asymptotic expansion of E

[∏K
k=1 Zk(t)

]
, numerical exam-

ples are provided for demonstrating how the optimal maintenance policy could be obtained
in this new context.

Throughout the paper, vectors and matrices are underlined and double underlined
respectively, for example, u and v. The vector of having all components equal to 1 is denoted
by 1. Furthermore, 1i is the vector having all components equal to 0 except that the ith
component is 1. Similarly, 1

ij
is the matrix having all components equal to 0 except that the

(i, j) component is 1. The indicator function δ{Statement} takes the value of 1 if Statement
holds true and 0 otherwise. The limit to 0 from above is denoted by 0+.

The structure of this paper is as follows. In Section 2, the UMCP is formally intro-
duced and the multivariate reward process Z(t) defined on the UMCP is described in detail.
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Dynamic analysis of the multivariate stochastic system involving the UMCP and Z(t) is
provided in Section 3, and various transform results are obtained. Based on these trans-
form results, Section 4 analyzes the asymptotic behavior of E

[∏K
k=1 Zk(t)

]
as t→ ∞. The

optimal preventive maintenance policy problem is discussed in Section 5, and numerical
examples are presented in Section 6.

2. MODEL DESCRIPTION

Let {J(t) : t ≥ 0} be a semi-Markov process on J = {0, . . . , J}, and define the age process
X(t) as the elapsed time until time t since the last transition of J(t) into the current
state. Two types of multivariate counting processes are considered, where a matrix counting
process N(t) = [Nij(t)] describes the number of transitions of J(t) from i ∈ J to j ∈ J in
[0, t], and a vector counting process M(t) = [M0(t), . . . ,MJ (t)]� represents the number of
arrivals of certain items in state i ∈ J in [0, t]. Given that J(t) = i and X(t) = x at time
t, it is assumed that the counting process Mi(t) is a non-homogeneous Poisson process
governed by the intensity function λi(x). The multivariate stochastic process [M(t), N(t)]
enables one to describe a variety of counting processes in a unified manner, for example,
Ni(t)

def=
∑

�∈J N�i(t) denotes the number of entries of J(t) into state i by time t, and∑
i∈AMi(t) with A ⊂ J may describe the number of defects generated in states A. Indeed,

it has been shown in Sumita and Huang [26] that many known counting processes can
be expressed in terms of [M(t), N(t)]. Because of this, [M(t), N(t)] is called the unified
multivariate counting process (UMCP) and is analyzed extensively in [26]. In this section,
we formally introduce a multivariate reward process associated with J(t) and [M(t), N(t)],
which would further strengthen the applicability of the UMCP as we will see.

In order to facilitate our analysis, we assume that the semi-Markov process J(t) is
governed by a matrix cumulative distribution function (c.d.f.) A(x) = [Aij(x)], which is
assumed to be absolutely continuous with the matrix probability density function (p.d.f.)
a(x) = [aij(x)] = (d/dx)A(x). It should be noted that, if we define Ai(x) and Āi(x) by

Ai(x) =
∑
j∈J

Aij(x) ; Āi(x) = 1 −Ai(x) ,

then Ai(x) is the c.d.f. and Āi(x) is the corresponding survival function of the dwell time
of J(t) in state i. The hazard rate functions associated with the semi-Markov process are
then defined as ηij(x) = [aij/(x)]Āi(x) , i, j ∈ J . The hazard rate function ηij(x) can be
interpreted probabilistically as follows. Suppose that the semi-Markov process has been
in state i for the duration of x since the last transition into state i at time t. Then, for
sufficiently small Δ > 0, the probability that the semi-Markov process makes a transition
to state j in the interval (t, t+ Δ) can be written as ηij(x)Δ + o(Δ), which is independent of
t. In other words, ηij(x)Δ provides a linear approximation of this probability for sufficiently
small Δ > 0, which depends only on the current dwell time x in state i.

The Laplace transform of a(x) is denoted by α(w) =
∫∞
0
e−wxa(x)dx.

For notational convenience, the transition epochs of the semi-Markov process are
denoted by τn, n ≥ 0, with τ0 = 0. The age process X(t) associated with the semi-Markov
process is then defined as X(t) = t− max{τn : 0 ≤ τn ≤ t}. For the cumulative arrival inten-
sity function Li(x) in state i, one has Li(x) =

∫ x

0
λi(y)dy. The probability of observing k

arrivals within the current dwell time of x in state i can then be obtained as

gi(x, k) = e−Li(x)Li(x)k

k!
, k = 0, 1, 2, . . . , i ∈ J .
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Figure 1. Typical sample path of the univariate reward process Zk(t).

Let Z(t) = [Z1(t), Z2(t), . . . , ZK(t)]� be a multivariate stochastic process defined on
R

K given by

Z(t) =
∫ t

0

ρ
(
J(τ)

)
dτ +

∑
i∈J

Mi(t)∑
d=1

Y M :i:d +
∑
i∈J

∑
j∈J

Nij(t)∑
d=1

Y N :ij:d , (2.1)

where ρ(i) denotes the multivariate reward rate function while the underlying semi-Markov
process J(t) is in state i ∈ J . Y M :i:d and Y N :ij:d represent the vector-valued random jumps
associated with the dth arrival of Mi(t) in state i and the dth jump of Nij(t) describ-
ing transitions of J(t) from state i to state j, respectively. Throughout this paper, we
assume that Y M :i:d are i.i.d. with respect to d, and so are Y N :ij:d. We note that Zk(t),
k = 1, 2, . . . ,K are not independent. A typical sample path of the marginal reward process
Zk(t), k = 1, 2, . . . ,K, is depicted in Figure 1.

The multivariate reward model proposed in this paper may find a variety of applica-
tions in different fields. In financial engineering, for example, the underlying semi-Markov
process may describe a macro-economic condition. Corporations under consideration may
be classified into several classes based on their financial strengths. It is then natural to
assume that such classes have different default rates characterized by non-homogeneous
Poisson processes governed by λi(x) for class i, where x is the elapsed time since the last
transition into the current macro-economic state. The reward process Zi(t) then describes
the cumulative debt of defaulted corporations in class i up to time t. Clearly, Zi(t) and
Zj(t) are correlated and it is of interest to analyze the joint vector reward process Z(t).
The underlying parameter structure in this example, however, is difficult to estimate. In
this paper, we restrict ourselves to one dimensional problem in manufacturing, where the
optimal preventive maintenance policy is explored for a system degrading gradually. This
model is still new in that the expected profit to be maximized consists of three parts: con-
tinuous earnings during uptimes, continuous costs during downtimes, and a random fixed
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cost incurred whenever a maintenance activity takes place. In addition, two performance
measures are considered and compared so as to demonstrate that the optimal policy for
maximizing the mean time between failures could be different from that for maximizing the
system availability.

3. DYNAMIC ANALYSIS

The purpose of this section is to derive the transform results of the multivariate
reward process Z(t) through dynamic analysis. The method of supplementary vari-
ables is employed together with the Laplace transform-generating function approach.
More specifically, since Z(t) is not Markov, we consider the multivariate stochastic
process

[
J(t),X(t),M(t), N(t), Z(t)

]
defined on the state space S = J × R+ × Z

J+1
+ ×

Z
(J+1)×(J+1)
+ × R

K , which is now Markov. Let Fij(x,m, n, z, t) be the conditional joint
distribution function defined by

Fij(x,m, n, z, t) = P
[
J(t) = j,X(t) ≤ x,M(t) = m,N(t) = n,Z(t) ≤ z

∣∣∣
J(0) = i,M(0) = 0, N(0) = 0

]
. (3.1)

The following notation would be employed concerning the distributions of YM :i:d and Y N :ij:d

for all d = 1, 2, . . ..

ΥM :i(z) = P
[
Y M :i:d ≤ z

]
; ΥN :ij(z) = P

[
Y N :ij:d ≤ z

]
(3.2)

YM :i(z) =
∂K

∂z
ΥM :i(z) ; YN :ij(z) =

∂K

∂z
ΥN :ij(z) (3.3)

θM :i(r) =
∫

RK

e−r�z YM :i(z)dz ; θN :ij(r) =
∫

RK

e−r�z YN :ij(z)dz (3.4)

Here, ∂K/∂z means that ∂K/∂z = (∂/∂zK)(∂/∂zK−1) · · · (∂/∂z1) and
∫

RK

f(z)dz =∫
R

· · ·
∫

R

f(z)

dz1 · · · dzK .
It is natural to assume that both the age and the rewards are zero at time 0, that is,

X(0) = 0 and Z(0) = 0 with probability 1. A random variable and a random vector of this
type have a p.d.f and a vector p.d.f. expressed as a Dirac delta function and a multivariate
Dirac delta function, respectively. In this case, the differentiability of Fij(x,m, n, z, t) with
respect to x and z is not present. In order to overcome this difficulty, as in Sumita and
Masuda [27] and Sumita and Shanthikumar [28], we first assume that X(0) and Z(0) have
an absolutely continuous c.d.f. HX(x) and an absolutely continuous vector c.d.f. HZ(z) with
corresponding p.d.f.s hX(x) and hZ(z), respectively. As we will see, the results for the case
of X(0) = 0 and Z(0) = 0 can then be obtained by considering a sequence of absolutely
continuous random variables Xj and a sequence of absolutely continuous random vectors
Zj with Xj → 0 and Zj → 0 in distribution as j → ∞. More formally, we define

HX(x) = P[X(0) ≤ x] ; hX(x) =
d

dx
HX(x) ,

HZ(z) = P[Z(0) ≤ z] ; hZ(z) =
∂K

∂z
HZ(z) .
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The joint probability density function fij(x,m, n, z, t) can then be defined by

fij(x,m, n, z, t) =
∂(K+1)

∂x ∂z
Fij(x,m, n, z, t) . (3.5)

By examining the probabilistic flow of the multivariate process
[
J(t),X(t),M(t), N(t),

Z(t)
]

in its state space, one can establish the following equations:

fij(x,m, n, z, 0) = δ{i=j}δ{m=0}δ{n=0}hX(x)hZ(z) , (3.6)

fij(x,m, n, z, t) = δ{i=j}δ{m=mi1i}δ{n=0}hX(x− t) · A(t) · Āi(x)
Āi(x− t)

gi(t,mi)

+
(
1 − δ{n=0}

) mj∑
k=0

{
Bk(x, t) · Āj(x)gj(x, k)

}
, (3.7)

fij(0+,m, n, z, t) =
(
1 − δ{n=0}

)∑
�∈J

C�(x, t) , (3.8)

where

A(t) =
∫

RK

· · ·
∫

RK︸ ︷︷ ︸
mi

hZ

(
z − ρ(i)t−

mi∑
d=1

zM :i:d

) mi∏
d=1

YM :i(zM :i:d) dzM :i:1 · · · dzM :i:mi︸ ︷︷ ︸
mi

,

(3.9)

Bk(x, t) =
∫

RK

· · ·
∫

RK︸ ︷︷ ︸
k

fij

(
0+,m− k1j , n, z − ρ(j)x−

mj∑
d=mj−k+1

zM :j:d, t− x
)

×
mj∏

d=mj−k+1

YM :j(zM :j:d) dzM :j:mj−k+1 · · · dzM :j:mj︸ ︷︷ ︸
k

, (3.10)

C�(x, t) =
∫

RK

∫ ∞

0

fi�

(
x,m, n− 1

�j
, z − zN :�j:n�j

, t
)
YN :�j(zN :�j:n�j

)η�j(x) dx dzN :�j:n�j
.

(3.11)

Eq. (3.6) describes the initial condition at time t = 0 with M(0) = 0, N(0) = 0 and
i = j. The first term on the right-hand side of Eq. (3.7) represents the following scenario.
During the time interval (0, t], the underlying semi-Markov process J(t) has not left its
initial state i, and there has been mi arrivals of Mi(·). Furthermore, the current age in
state i at time t is x with the cumulative reward in the interval (0, t] described by A(t).
For the second term on the right-hand side of Eq. (3.7), we focus on the probabilistic
flow of the multivariate process

[
J(t),X(t),M(t), N(t), Z(t)

]
. For this process to be in

state [m,n, z, x, t] at time t having at least one transition of the semi-Markov process
occurred in (0, t] with J(t) = j, the semi-Markov process must have entered state j ∈ J
at time t− x with [0+,m− k1j , n, z − ρ(j)x−∑mj

d=mj−k+1 zM :j:d, t− x], no transition of
the semi-Markov process has occurred in (t− x, t] with this probability being Āj(x), there
have been k arrivals of Mj(·) in (t− x, t] with probability gj(x, k) for k = 0, 1, . . . ,mj , and
the reward of ρ(j)x+

∑mj

d=mj−k+1 zM :j:d has been accumulated with probability Bk(x, t),
for k = 0, 1, . . . ,mj .
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Eq. (3.8) describes the boundary condition forX(t) at x = 0+. Namely, the multivariate
process

[
J(t),X(t),M(t), N(t), Z(t)

]
can enter the state [0+,m, n, z, t] at time t with J(t) =

j from [x,m, n− 1
�j
, z − zN :�j:n�j

, t] with the state of the semi-Markov process being � ∈ J ,
only when the current age expires with the hazard rate η�j(x) and the reward associated
with this jump of the semi-Markov process from � to j is zN :�j:n�j

which happens with the
p.d.f. YN :�j(zN :�j:n�j

).
In order to solve the functional equations in (3.6) through (3.11), we introduce the

following Laplace transform generating functions:

β(w,m) =
[
βij(w,m)

]
; βij(w,m) =

∫ ∞

0

e−wxaij(x)gi(x,m)dx ,

β̂(w, u) =
[
β̂ij(wi, ui)

]
; β̂ij(wi, ui) =

∞∑
mi=0

βij(wi,mi)umi
i , (3.12)

β∗
D

(w,m) =
[
δ{i=j}β∗

i (w,m)
]

; β∗
i (w,m) =

∫ ∞

0

e−wxĀi(x)gi(x,m)dx ,

β̂
∗
D

(w, u) =
[
δ{i=j}β̂∗

i (wi, ui)
]

; β̂∗
i (wi, ui) =

∞∑
mi=0

β∗
i (wi,mi)umi

i , (3.13)

ρ∗(s,m) =
[
ρ∗ij(s,m)

]
;

ρ∗ij(s,m) =
∫ ∞

0

e−stgi(t,m)
∫ ∞

0

hX(x− t)
aij(x)

Āi(x− t)
dxdt ,

ρ̂∗(s, u) =
[
ρ̂∗ij(si, ui)

]
; ρ̂∗ij(si, ui) =

∞∑
mi=0

ρ∗ij(si,mi)umi
i ,

KZ(r) =
∫

RK

e−r�zhZ(z) dz ,

θM (r) =
[
θM :i(r)

]
; θM :i(r) =

∫
RK

e−r�zM YM :i(zM )dzM ,

θ
N

(r) =
[
θN :ij(r)

]
; θN :ij(r) =

∫
RK

e−r�zN YN :ij(zN )dzN ,

ξ(m,n, r, s) =
[
ξij(m,n, r, s)

]
;

ξij(m,n, r, s) =
∫ ∞

0

e−st

∫
RK

e−r�z fij(0+,m, n, z, t) dz dt ,

ξ̂(u, v, r, s) =
[
ξ̂ij(u, v, r, s)

]
;

ξ̂ij(u, v, r, s) =
∑

n∈Z
(J+1)2
+ \{0}

∑
m∈Z

J+1
+

ξij(m,n, r, s)umvn ,

ϕ(w,m, n, r, s) =
[
ϕij(w,m, n, r, s)

]
;

ϕij(w,m, n, r, s) =
∫ ∞

0

e−wx

∫ ∞

0

e−st

∫
RK

e−r�z fij(x,m, n, z, t) dz dt dx ,
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ϕ̂(w, u, v, r, s) =
[
ϕ̂ij(w, u, v, r, s)

]
;

ϕ̂ij(w, u, v, r, s) =
∑

n∈Z
(J+1)2
+

∑
m∈Z

J+1
+

ϕij(w,m, n, r, s)umvn ,

where um =
∏
i∈J

umi
i and vn =

∏
{i,j}∈J 2\{(0,0)}

v
nij

ij . It should be noted that these functionals

are introduced in order to facilitate our analysis, given the exogenous inputs aij(x), Āi(x),
and gi(x,m) in Eqs (3.12) and (3.13).

We are now in a position to establish the main theorem of this section. For nota-
tional convenience, the operator ⊗ is defined as the component-wise multiplication between
two vectors or two matrices of the same size, that is, for a = [a1, . . . , ai, . . . an] and
b = [b1, . . . , bi, . . . bn], we define a⊗ b = [a1 × b1, . . . , ai × bi, . . . , an × bn]. Similarly, for two
matrices A = [aij ] and B = [bij ], we write A⊗B = [aij × bij ]. It is worth noting that, for
γ = [γ0, . . . , γJ ]� with γi = r�ρ(i), the inverse matrix{

I − v ⊗ θ
N

(r) ⊗ β̂
(
γ + s1, u⊗ θM (r)

)}−1

always exists for r on the unit sphere in the K dimensional complex space, v = [vij ] with
|vij | ≤ 1, u = [ui] with |ui| ≤ 1 and Re(s) > 0. This can be seen by observing that, with

ω = v ⊗ θ
N

(r) ⊗ β̂
(
γ + s1, u⊗ θM (r)

)
,

ωij = vij × θN :ij(r) × β̂ij

(
γi + s, ui × θM :i(r)

)
,

where, from (3.12),

β̂ij

(
γi + s, ui × θM :i(r)

)
=

∞∑
mi=0

(∫ ∞

0

e−(γi+s)xaij(x)gi(x,mi)dx
)
×
(
ui × θM :i(r)

)mi

.

For r, v, u and s in the range specified above, one sees that |ωij | <
∫∞
0
aij(x)dx. Conse-

quently, ω is strictly dominated by the stochastic matrix
[ ∫∞

0
aij(x)dx

]
, and therefore the

spectral radius of ω is strictly less than 1. This in turn implies that
[
I − ω

]−1 exists. We
now state the main theorem.

Theorem 3.1: Let X(0) = 0 and Z(0) = 0 with probability one. Then,

ξ̂(u, v, r, s) =
{
v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}
×
{
I − v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}−1

;

ϕ̂(w, u, v, r, s) =
{
I − v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}−1

× β̂
∗
D

(
γ + (w + s)1, u⊗ θM (r)

)
,

where γ = [γ0, . . . , γJ ]� with γi = r�ρ(i).
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Proof: We first assume that X(0) and Z(0) have p.d.f.s hX(x) and hZ(z), respectively.
Substituting Eqs (3.6) and (3.7) into (3.8), one sees that

fij(0+,m, n, z, t)

=
(
1 − δ{n=0}

){
δ{m=mi1i}δ{n=1

ij
}

∫
RK

∫
RK

· · ·
∫

RK︸ ︷︷ ︸
mi

× hZ

(
z − ρ(i)t−

mi∑
d=1

zM :i:d − zN :ij:nij

)

×
mi∏
d=1

YM :i(zM :i:d)YN :ij(zN :ij:nij
) dzM :i:1 · · · dzM :i:mi︸ ︷︷ ︸

mi

dzN :ij:nij

× gi(t,mi)
∫ ∞

0

hX(x− t)
aij(x)

Āi(x− t)
dx

}

+
(
1 − δ{n=0}

)∑
�∈J

(
1 − δ{n=1

ij
}
) m�∑

k=0

{∫ ∞

0

∫
RK

∫
RK

· · ·
∫

RK︸ ︷︷ ︸
k

× fi�

(
0+,m− r1�, n− 1

�j
, z − ρ(�)x−

mj∑
d=mj−k+1

zM :j:d − zN :�j:n�j
, t− x

)

×
mj∏

d=mj−k+1

YM :j(zM :j:d)YN :�j(zN :�j:n�j
) dzM :j:mj−k+1 · · · dzM :i:mj︸ ︷︷ ︸

k

dzN :�j:n�j

× a�j(x)g�(x, k) dx

}
.

By taking the Laplace transform of both sides of the above equation with respect to z and
t, it follows that

ξij(m,n, r, s)

=
(
1 − δ{n=0}

){
δ{m=mi1i}δ{n=1

ij
}KZ(r) θM :i(r)mi θN :ij(r) ρ∗ij

(
r�ρ(i) + s,mi

)

+
∑
�∈J

(
1 − δ{n−1

�j
}
) m�∑

k=0

[
ξi�(m− r1

�
, n− 1

�j
, r, s) θM :�(r)k θN :�j(v)

× β�j

(
r�ρ(�) + s, k

)]}
.

Multiplying um and vn to both sides and summing over m ≥ 0 and n ≥ 0, this equation
then leads to

ξ̂(u, v, r, s) = KZ(r) · v ⊗ θ
N

(r) ⊗ ρ̂∗
(
γ + s1, u⊗ θM (r)

)
+ ξ̂(u, v, r, s)

{
v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}
,
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which can be solved for ξ̂(u, v, r, s), yielding

ξ̂(u, v, r, s) = KZ(r)

{
v ⊗ θ

N
(r) ⊗ ρ̂∗

(
γ + s1, u⊗ θM (r)

)}

×
{
I − v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}−1

. (3.14)

Let

εi(w, s,m) =
∫ ∞

0

e−wx

∫ ∞

0

e−sthX(x− t)
Āi(x)

Āi(x− t)
gi(t,m) dt dx , (3.15)

and define the diagonal matrix

ε̂
D

(w, s, u) =
[
δ{i=j}ε̂i(w, si, ui)

]
; ε̂i(w, si, ui) =

∞∑
mi=0

εi(w, si,mi)umi
i . (3.16)

Through similar Laplace transform operations applied to (3.7), one finds that

ϕij(w,m, n, r, s)

= δ{i=j}δ{m=mi1i}δ{n=0}KZ(r) θM :i(r)mi εi

(
w, r�ρ(i) + s,mi

)
+

(
1 − δ{n=0}

) mj∑
k=0

θM :j(r)k ξij(m− r1j , n, r, s)β
∗
j

(
r�ρ(j) + w + s, k

)
.

Taking the generating functions with respect to m and n as before, the following matrix
equation can be obtained:

ϕ̂(w, u, v, r, s) = KZ(r) ε̂
D

(
w, γ + s1, u⊗ θM ((v))

)
+ ξ̂(u, v, r, s) β̂

∗
D

(
γ + (w + s)1, u⊗ θM (r)

)
(3.17)

As in Sumita and Masuda [27] and Sumita and Shanthikumar [28], we now consider a
sequence of random variables X(0) converging to 0 in distribution, as well as a sequence
of random vectors Z(0) with convergence to 0 in distribution. In other words, we let
HX(x) → U(x) and HZ(z) → U(z), where U(x) and U(z) denotes the univariate and the
multivariate Heaviside step functions, respectively, that is, U(x) = 1 for x ≥ 0 and U(x) = 0
otherwise. Similarly, U(z) = 1 for z ≥ 0 and U(z) = 0 otherwise. It then follows that
KZ(r) → 1, ρ∗ij(s,m) → βij(s,m), and εi(w, s,m) → β∗

i (w + s,m) from their definitions.
Substituting these into Eqs (3.14) and (3.17), one sees that

ξ̂(u, v, r, s) =
{
v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}
×

{
I − v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}−1

; (3.18)

ϕ̂(w, u, v, r, s) =
{
I − v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}−1

× β̂
∗
D

(
γ + (w + s)1, u⊗ θM (r)

)
, (3.19)

completing the proof. �
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Theorem 3.1 is very informative because it contains all the knowledge about the joint
distribution of the multivariate process

[
J(t),X(t),M(t), N(t), Z(t)

]
. One can use this

theorem, for example, to derive the asymptotic behaviors as t→ ∞ of the expectations
of various processes expressed by Z(t), for example, E

[∏K
k=1 Zk(t)

]
, as we will see.

Remark 3.2: We note that, when YM :i:d = 0 and YN :ij:d = 0, one has

Z(t) =
∫ t

0

ρ
(
J(τ)

)
dτ ,

so that ϕ̂(w, 1, 1, r, s) of Theorem 3.1 is reduced to Theorem 2.1 of Masuda and Sumita [17].
With random increments of the reward at the times of jumps ofNij(t), by setting YM :i:d = 0,
it can be seen that

Z(t) =
∫ t

0

ρ
(
J(τ)

)
dτ +

∑
i∈J

∑
j∈J

Nij(t)∑
d=1

Y N :ij:d ,

and ϕ̂(0+, 1, v, r, s) is also reduced to Eq. (3.2) of Masuda [15], demonstrating that Theorem
3.1 generalizes the results of Masuda and Sumita [17] and Masuda [15].

4. ASYMPTOTIC BEHAVIOR OF E
[∏K

K=1 ZK(T )
]

AS T → ∞

In this section, we discuss the asymptotic behavior of E
[∏K

k=1 Zk(t)
]

as t→ ∞. For
notational convenience, let A

d
=
∫∞
0
xda(x)dx, d = 0, 1, 2, . . ., with ‖A

d
‖ <∞ for 0 ≤ d ≤

K + 2, whereK is the dimension of vector Z(t). We assume that the Markov chain in discrete
time governed by the stochastic matrix A

0
is irreducible, where e� is the eigenvector of A

0

with eigenvalue 1 so that e�A
0

= e� and e�1 = 1. We also define A∗
D:d

=
∫∞
0
xdĀ

D
(x)dx,

d = 0, 1, 2, . . . with ‖A∗
D:d

‖ <∞ for 0 ≤ d ≤ K + 2.
It has been seen in Theorem 3.1 that

ϕ̂(w, u, v, r, s) =
{
I − v ⊗ θ

N
(r) ⊗ β̂

(
γ + s1, u⊗ θM (r)

)}−1

× β̂
∗
D

(
γ + (w + s)1, u⊗ θM (r)

)
,

where γ = [γ0, . . . , γJ ]� with γi = r�ρ(i). Let p(0) be an initial probability vector of J(0).
It then follows that

L
{

E
[
e−r�Z(t)

]}
= p�(0) × ϕ̂(0+, 1, 1, r, s) × 1

= p�(0) ×
{
I − θ

N
(r) ⊗ β̂

(
γ + s1, θM (r)

)}−1

× β̂
∗
D

(
γ + s1, θM (r)

)
× 1 . (4.1)

From Eqs (3.4), (3.12), and (3.13), one has

θM :i(r) =
∫

RK

e−r�z YM :i(z)dz ; θN :ij(r) =
∫

RK

e−r�z YN :ij(z)dz ,

β̂ij

(
r�ρ(i) + s, θM :i(r)

)
=
∫ ∞

0

e−
{

r�ρ(i)+s
}

t e−Li(t)
{

1−θM:i(r)
}
aij(t) dt ,
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and

β̂∗
i

(
r�ρ(i) + s, θM :i(r)

)
=
∫ ∞

0

e−
{

r�ρ(i)+s
}

t e−Li(t)
{

1−θM:i(r)
}
Āi(t) dt .

The first-order partial derivatives of θM :i(r) and θN :ij(r) at r = 0 are then given by

ΘM :i
def=

∂K

∂r
θM :i(r)

∣∣∣∣∣
r=0

= (−1)K

∫
RK

K∏
k=1

zk YM :i(z)dz ,

ΘN :ij
def=

∂K

∂r
θN :ij(r)

∣∣∣∣∣
r=0

= (−1)K

∫
RK

K∏
k=1

zk YN :ij(z)dz .

Furthermore, the first-order partial derivatives of β̂ij

(
r�ρ(i) + s, θM :i(r)

)
and β̂∗

i

(
r�ρ(i) +

s, θM :i(r)
)

at r = 0 are given as follows:

ξij(s) =
∂K

∂r
β̂ij

(
r�ρ(i) + s, θM :i(r)

)∣∣∣∣∣
r=0

= (−1)K
K∏

k=1

ρk(i)
∫ ∞

0

e−sttKaij(t)dt + ΘM :i

∫ ∞

0

e−stLi(t)aij(t)dt (4.2)

ξ∗i (s) =
∂K

∂r
β̂∗

i

(
r�ρ(i) + s, θM :i(r)

)∣∣∣∣∣
r=0

= (−1)K
K∏

k=1

ρk(i)
∫ ∞

0

e−sttKĀi(t)dt + ΘM :i

∫ ∞

0

e−stLi(t)Āi(t)dt (4.3)

Let κ(i) = (−1)K
∏K

k=1 ρk(i) and define κ
D

= diag{κ(i)}. Then Eqs (4.2) and (4.3) can be
rewritten in matrix form as

ξ(s) = κ
D

∫ ∞

0

e−sttKa(t)dt + Θ
M :D

∫ ∞

0

e−stL
D

(t)a(t)dt ,

ξ∗
D

(s) = κ
D

∫ ∞

0

e−sttKĀ
D

(t)dt + Θ
M :D

∫ ∞

0

e−stL
D

(t)Ā
D

(t)dt .

From Eq. (4.1), after a little algebra, one could see that

L
{

E
[ K∏

k=1

Zk(t)
]}

= (−1)K ∂K

∂r
L
{

E
[
e−r�Z(t)

]}∣∣∣∣∣
r=0

= (−1)Kp�(0)
{
I − α(s)

}−1{1
s

(
Θ

N
⊗ α(s) + ξ(s)

)
+ ξ∗

D
(s)
}

1 .

(4.4)

By taking the Taylor expansion of the Laplace transform α(s) as s→ 0+, one has

α(s) = A
0
− sA

1
+
s2

2
A

2
+ o(s2) . (4.5)
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Let Φ
d

=
∫∞
0
tdL

D
(t)a(t)dt and Φ∗

D:d
=
∫∞
0
tdL

D
(t)Ā

D
(t)dt, d = 0, 1, 2, . . .. By taking the

Taylor expansion of ξ(s) and ξ∗
D

(s), it can be seen that, as s→ 0+,

ξ(s) =
{
κ

D
A

K
+ Θ

M :D
Φ

0

}
− s

{
κ

D
A

K+1
+ Θ

M :D
Φ

1

}
+

s2

2

{
κ

D
A

K+2
+ Θ

M :D
Φ

2

}
+ o(s2) , (4.6)

ξ∗
D

(s) =
{
κ

D
A∗

D:K
+ Θ

M :D
Φ∗

D:0

}
− s

{
κ

D
A∗

D:K+1
+ Θ

M :D
Φ∗

D:1

}
+

s2

2

{
κ

D
A∗

D:K+2
+ Θ

M :D
Φ∗

D:2

}
+ o(s2) . (4.7)

Of interest is the theorem of Keilson [9] stated as follows.

Theorem 4.1: (Keilson [9]) As s→ 0+, one has

{
I − α(s)

}−1 =
1
s
H

1
+H

0
+ o(1) , (4.8)

where

H
1

=
1
m

1 e�, m = e�A
1
1 ,

H
0

= H
1

(
−A

1
+

1
2
A

2
H

1

)
+
(
Z

0
−H

1
A

1
Z

0

)(
A

0
−A

1
H

1

)
+ I , Z

0
=
(
I −A

0
+ 1 · e�

)−1

.

By applying this theorem to Eq. (4.4), and then substituting (4.5), (4.6), and (4.7) into
the result, the following theorem holds true.

Theorem 4.2: Let p(0) be an initial probability vector of the underlying semi-Markov
process J(t). As t→ ∞, one has

E
[ K∏

k=1

Zk(t)
]

= (−1)K
{
B

1
× t+ p�(0) ×B

0
× 1

}
+ o(1) ,

where

B
1

=
1

e�A
1
1
e�
(
Θ

N
⊗A

0
+ κ

D
A

K
+ Θ

M :D
Φ

0

)
1 ,

B
0

= H
0

(
Θ

N
⊗A

0
+ κ

D
A

K
+ Θ

M :D
Φ

0

)
− H

1

(
Θ

N
⊗A

1
+ κ

D

(
A

K+1
−A∗

D:K

)
+ Θ

M :D

(
Φ

1
− Φ∗

D:0

))
.

Theorem 4.2 is easy to be extended to the product form of any marginal process of Zk(t)
for k ∈ H where H is the arbitrary subset of {1, . . . ,K}. For notational convenience , the
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following functions are defined. Let κ
D:H = diag{κH(i)} with κH(i) = (−1)|H|∏

k∈H ρk(i).
By considering rH =

[
δ{k∈H}rk

]
k∈{1,...,K}, it is shown that

ΘM :i:H
def=

∂K

∂rH
θM :i(rH)

∣∣∣∣∣
rH=0

= (−1)|H|
∫

R|H|

∏
k∈H

zk YM :i(z)dz ,

ΘN :ij:H
def=

∂K

∂rH
θN :ij(rH)

∣∣∣∣∣
rH=0

= (−1)|H|
∫

R|H|

∏
k∈H

zk YN :ij(z)dz ,

and Θ
N :H =

[
ΘN :ij:H

]
i,j∈J , Θ

M :D:H = diag
{
ΘM :i:H

}
.

Corollary 4.3: Let H be an arbitrary subset of {1, . . . ,K} and ZH(t) be defined as

ZH(t) =
∏
k∈H

Zk(t) .

Let p(0) be an initial probability vector of the underlying semi-Markov process J(t). As
t→ ∞, one has

E
[
ZH(t)

]
= (−1)|H|

{
B

1:H × t+ p�(0) ×B
0:H × 1

}
+ o(1) ,

where

B
1:H =

1
e�A

1
1
e�
(
Θ

N :H ⊗A
0

+ κ
D:HA|H| + Θ

M :D:HΦ
0

)
1 ,

B
0:H =

(
Θ

N :H ⊗A
0

+ κ
D:HA|H| + Θ

M :D:HΦ
0

)
− H

1

(
Θ

N :H ⊗A
1

+ κ
D:H

(
A|H|+1

−A∗
D:|H|

)
+ Θ

M :D:H
(
Φ

1
− Φ∗

D:0

))
.

The proof of Corollary 4.3 is similar to that of Theorem 4.2 and is omitted here.
In the next section, Theorem 4.2 is applied to the optimal preventive maintenance

policy problem with state-dependent continuous revenues and costs, as well as random cost
increments at the times of jumps of Mi(t) and Nij(t).

5. OPTIMAL PREVENTIVE MAINTENANCE POLICY PROBLEM

We consider a manufacturing system with a certain maintenance policy, where the system
starts with the perfect state at time t = 0, and tends to degrade, generating product defects
more often, as time goes by. When the system reaches a certain state, the manufacturing
system would be overhauled completely and the system returns to the perfect state. More
specifically, let J(t) be a semi-Markov process on J = {0, 1, 2, . . . , J} governed by A(x),
where x denotes the dwell time of the process in the current state, that is, the elapsed time
since the last transition into the current state. Here, the semi-Markov process J(t) describes
the system state at time t where state 0 is the perfect state and state J is the maintenance
state. When the system is in state j, 1 ≤ j ≤ J − 1, product defects are generated according
to an non-homogeneous Poisson process (NHPP) with intensity λj(x). It is assumed that
the system deteriorates monotonically and accordingly λj(x) increases as a function of both
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Figure 2. State transitions of the manufacturing system.

x and j. When the system reaches state J , the manufacturing operation is stopped and the
system is overhauled completely. The maintenance time increases stochastically as a function
of J . In other words, the further the maintenance is delayed, the longer the maintenance
time would tend to be. Upon finishing the overhaul, the system is brought back to the
perfect state 0. The state transitions of this system are depicted in Figure 2. Of interest,
then, is to determine the optimal preventive maintenance policy concerning how to set J .

In order to determine the optimal preventive maintenance policy, it is necessary to
define the objective function precisely. In Sumita and Huang [26], a function capturing the
total cost generated by the system is employed. However, the cost structure is limited in
that all the costs are assumed to be constant and are incurred only at the times of jumps
of Mi(t) and Nij(t). Furthermore, the revenue side is totally ignored. In what follows, these
pitfalls are overcome by applying the multivariate reward process discussed in Section 3
to the optimal preventive maintenance policy problem, where the revenue-cost structure
in continuous time is now incorporated. More formally, let ρ : J → R be the revenue-cost
function defined by

ρ(i) =

{
ρrev > 0 for i = 0, . . . , J − 1
−ρcost < 0 for i = J

.

Here, the manufacturing system generates the revenue ρrev per unit time whenever the
system is up, and the cost of ρcost per unit time is incurred when the system is under the
overhaul.

Let Z(t) be the cumulative profit up to time t, which is univariate. Mi(t) and NJ−1,J (t)
denote the total number of defects generated by time t, while J(t) = i and the number of
the maintenance operations occurred by time t respectively. One then sees that

Z(t) =
∫ t

0

ρ
(
J(t)

)
dt+

J−1∑
i=0

Mi(t)∑
d=1

YM :i:d +
NJ−1,J∑

d=1

YN :J−1,J:d ,

where YM :i:d represents the cost for each defect and is naturally assumed to be constant,
that is, YM :i:d = −ψd < 0 for i = 0, . . . , J − 1. YN :J−1,J:d describes the cost associated
with each occurrence of the overhaul and may not be constant. For example, the overhaul
may or may not require the presence of engineer(s) from the vender of the production
machines. Hence, we assume that YN :J−1,J:d constitute a sequence of i.i.d. random variables
with respect to d having the common expected value −ψm < 0. It is worth noting that the
subscripts in ψd and ψm stand for “defect” and “maintenance”, respectively.
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Table 1. Optimal Preventive Maintenance Policy J∗

T = 25 T = 50 T = 100 T = 1000

IFR 10 8 7 7
CFR 10 8 7 6
DFR 10 10 5 4

The problem now is to determine the optimal preventive maintenance policy J∗ so as
to maximize the expected profit, that is,

πJ∗(T ) = max
J∈N

πJ (T ) ; πJ(T ) = E[Z(T )] . (5.1)

When T is reasonably large, the asymptotic result of Theorem 4.2 can be employed so as
to solve the maximization problem of (5.1) approximately. Since the reward process in the
above application is univariate, one has K = 1 in Theorem 4.2 and the matrices involved
in the asymptotic expansion can be rewritten accordingly, for example, κ

D
= −diag{ρ(i)},

etc. In the next section, we provide numerical examples, demonstrating efficiency of the
proposed approach.

6. NUMERICAL RESULTS

In order to provide numerical examples for the optimal preventive maintenance policy prob-
lem introduced in the previous section, we consider the semi-Markov matrix A(x) of the
form

A(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 A1(x) 0 · · · 0

0 0 A2(x) 0
...

...
...

. . . . . . 0
0 0 · · · 0 AJ−1(x)

AJ (x) 0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

We recall that the manufacturing system deteriorates gradually from state 0 to state J − 1
and the overhaul activity takes place in state J . This point is reflected by setting the
expected dwell time in state i to be μi = i+ 1, i = 0, . . . , J . In order to specify Ai(x)
further, we employ gamma distributions given by

ai(x) =
βi

Γ(αi)
(βix)αi−1e−βix .

Two different cases are considered: the increasing failure rate (IFR) case and the decreasing
failure rate (DFR) case. For the former, we set αi = αIFR = 2, i = 0, . . . , J − 1, and αJ = 1,
while for the latter one has αi = αDFR = 0.2, i = 0, . . . , J − 1, and αJ = 1. βi’s are given
so as to have μi as the expectation, that is, βi = αi/μi, i = 0, . . . , J . The arrival intensity
function in state i is given by λi(x) = 2ix. Other parameters are set to be ρrev = 1500,
ρcost = 1000, ψd = 10, ψm = 2000 + 200

√
J and T = 1000.

In addition to the expected profit πJ(T ), two availability measures of interest are also
evaluated. For this purpose, we define

U(t) =
∫ t

0

ρu

(
J(t)

)
dt where ρu(i) =

{
1 i ∈ {0, . . . , J − 1}
0 i = J

.
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Figure 3. (Color online) πJ(T )/T as a function of J .
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Figure 4. (Color online) Log-scaled MTBF(T )/T as a function of J .
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Figure 5. (Color online) AVAIL(T ) as a function of J .



A MULTIVARIATE REWARD PROCESS DEFINED ON THE UMCP 207

Two traditional measures can now be described as

MTBFJ (t) =
E[U(t)]

E[NJ−1,J (t)]
; AVAILJ(t) =

E[U(t)]
t

.

Here, MTBF stands for the mean time between failures where a failure means an overhaul
in our model. AVAIL describes the average availability per unit time.

Figures 3 through 5 illustrate the asymptotic behaviors of πJ(T ), MTBFJ (T ), and
AVAILJ(T ) as a function of J respectively, where four different curves correspond to T =
25, 50, 100, and 1000. We first note that our model is reduced to an alternating renewal
process with J = 1. In this case, with ρrev = 1500 and ρcost = 1000, one may expect that
the cost for overhauling the system would overwhelm the revenue from the production. This
phenomenon can be observed in Figure 3 where π1(T ) < 0 for all T = 25, 50, 100, and 1000
for all of the IFR, CFR, and DFR cases. Furthermore, when J = 1, T = 25 is long enough
to reach the ergodicity and π1(T )’s are almost all equal for T = 25, 50, 100, and 1000. As J
increases, it takes more time to reach the ergodicity and the discrepancy among the values
of πJ(T ) for different values of T becomes larger. For each fixed J , πJ (T ) decreases as T
increases. When T = 25, πJ(T ) increases as J increases for all of the IFR, CFR and DFR
cases, having the optimal preventive maintenance policy J∗ = 10. As T increases, however,
the concavity sets in and the optimal preventive maintenance policy changes as depicted
in Table 1. For the IFR case, one sees that J∗ = 7 with T = 1000, while the corresponding
optimal preventive maintenance policy is J∗ = 6 for the CFR case and J∗ = 4 for the DFR
case. This demonstrates the potential danger of the exclusive reliance on ergodicity. In
Figures 4 and 5, we observe that both MTBFJ(T ) and AVAILJ (T ) increase as J increases,
and decrease as T increases. One sees that it could be misleading to design the optimal
preventive maintenance strategy based on the availability measures alone, highlighting the
importance to incorporate the reward process.
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