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Original Article

A study of overall contact behavior of an
elastic perfectly plastic hemisphere and a
rigid plane

He Peng, Zhansheng Liu and Guanghui Zhang

Abstract

The overall contact behavior of an elastic perfectly plastic hemisphere against a rigid plane is presented. Based on volume

conservation, the upper limit of overall contact area is derived. A finite element model for the overall contact behavior of

a hemisphere and a rigid plane is studied. The material of the hemisphere is assumed to be elastic perfectly plastic. A

series of materials with different yield stress to elasticity modulus ratios are studied in finite element analysis. The axial

movement of the deformed hemisphere base is prevented. The radial deformable and radial rigid boundary conditions of

the hemisphere bottom base are considered. Results show that the overall contact area gradually deviates from Hertz

solution, and approaches the upper limit with the increase of interference. Material yield stress to elasticity modulus

ratio mainly influences contact behaviors in the early contact stage, while the boundary condition of hemisphere bottom

base affects the contact behaviors significantly for large contact interferences. By incorporating some existing models and

fitting finite element results, a model for overall contact of a hemisphere against a rigid plane is obtained. This study

covers the overall contact, which ranges from initial contact to the collapse of hemisphere. Comparisons of this study

with several existing models and experimental data indicate that this study can predict the contact behaviors well in

overall contact range.
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Introduction

The contact behavior of a hemisphere and a rigid flat
is one of the fundamental problems in contact mech-
anics. It can be applied to analyze the contact of aspe-
rities on rough surfaces1–5 in micro-scales and predict
the contact of structures with spherical shapes in
macro-scales. This study intends to study the overall
contact behavior between an elastic perfectly plastic
hemisphere and a rigid flat, which ranges from initial
contact to the collapse of hemisphere.

Many works on the elastic–plastic contact of a
hemisphere against a rigid plane have been published,
while the existing models are only valid in part of the
overall contact range. The classic Hertz solution6 pre-
dicts the elastic contact behaviors well, and its valid
interference range is 04!4!c, where !c is the critical
interference which indicates the onset of plastic
deformation in hemisphere. The model proposed by
Abbott and Firestone7 (AF) aims at fully plastic con-
tact behaviors of a hemisphere and a rigid plane.
However, it cannot predict the mean contact pressure
of fully plastic contact well.8,9 Chaudhri and Yoffe10

and Chaudhri et al.11 investigated the elastic and plas-
tic contact of a sphere against rigid flats experimen-
tally. Some models4,12 bridge Hertz solution and AF
model analytically by introducing some assumptions.
With finite element analysis, Kogut and Etsion13 (KE)
investigated the evaluation of plastic deformation in
the hemisphere in detail and proposed an empirical
dimensionless formulation on the elastic–plastic con-
tact behaviors. KE model is valid in the range
04!4110!c, which is a small portion of the overall
contact. Jackson and Green8 (JG) proposed an elas-
tic–plastic contact model for a wider range of inter-
ferences based on finite element study. Quicksall
et al.14 compared KE and JG models for various
material properties and validated that JG model had

School of Energy Science and Engineering, Harbin Institute of

Technology, Harbin, People’s Republic of China

Corresponding author:

He Peng, School of Energy Science and Engineering, Harbin Institute of

Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001,

People’s Republic of China.

Email: hepeyfly@foxmail.com

Proc IMechE Part J:

J Engineering Tribology

0(0) 1–16

! IMechE 2012

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/1350650112460799

pij.sagepub.com

 at UNIVERSITE LAVAL on June 13, 2014pij.sagepub.comDownloaded from 

http://pij.sagepub.com/


XML Template (2012) [9.10.2012–9:55am] [1–16]
K:/PIJ/PIJ 460799.3d (PIJ) [PREPRINTER stage]

better accuracy for large interferences. Etsion and
other researchers15–17 derived a formulation of the
critical interference !c analytically and studied the
spherical contact behaviors experimentally. Based on
experimental study of the fully plastic contact of a
sphere against a rigid flat, Jamari and Schipper9

revealed that the mean contact pressure was constant
with load and the contact area was a truncation of the
sphere. Shankar and Mayuram18 proposed an empir-
ical expression on the elastic–plastic contact between
a hemisphere and a rigid flat for a larger valid inter-
ference range 04!4450!c. In order to model the
heavily loaded contact behavior of a hemisphere and
a rigid plane, Wadwalkar et al.19 extended JG model
with volume conservation assumption. The existing
models on the elastic–plastic contact of a hemisphere
and a rigid flat are only valid in part of the overall
contact range, none of them covers the contact behav-
iors of the collapsed hemisphere. This study is moti-
vated to study the overall contact behavior of a
hemisphere against a rigid flat. The contact surfaces
are assumed to be smooth in this study, and the
roughness of the hemisphere20–22 or of the flat23 will
not be considered.

The material properties have influence on the con-
tact behavior of a hemisphere against a rigid flat,
especially on elastic–plastic and fully plastic contact.
The yield stress Y to elasticity modulus E ratio ey has
significant influence on the elastic–plastic contact
behavior. For early elastic–plastic contact, the critical
contact behaviors depend on ey, but the dimensionless
models13,18 are independent of material properties
ratio ey. For heavily elastic–plastic contact and fully
plastic contact, the influence of material properties
ratio ey is obvious. Jackson and Green8 investigated
the variation of fully plastic contact pressure with
material properties ratio ey and considered it in the
JG model. By comparing the dimensionless models on
the contact between a hemisphere and a rigid flat,
Quicksall et al.14 verified that JG model was more
accurate for large interferences. Recently, Shankar
and Mayuram18 studied the influence of material
properties ratio ey on the transition behavior of elas-
tic–plastic contact. In the work of Wadwalkar et al.,19

the influence of material properties ratio ey on heavily
deformed spherical contact was considered as well.
From the literature survey, it can be seen that the
material yield stress to elasticity modulus ratio ey
has influence on the contact behavior for large inter-
ferences. In the study of overall contact behavior of a
hemisphere and a rigid plane, the influence of material
properties ratio ey will be considered. The material
Poisson’s ratio has significant influence on the early
evolution of plastic deformation in the hemisphere,
while it has little influence on contact area and contact
load.15 Note that the hemisphere material is assumed
to be elastic perfectly plastic in this study, the influ-
ence of material strain hardening effect24 will not be
considered. Moreover, the elastic perfectly plastic

contact behavior studied in this study is different
from the hyper elastic contact of a sphere and a
rigid, which has been investigated by Raja and
Malayalamurthi25 and Long et al.26

According to Saint Venant’s principle, the bound-
ary condition of the hemisphere base has little influ-
ence on elastic and early stage of elastic–plastic
contact.4,6,8,13 But for heavily deformed contact, the
boundary conditions of the hemisphere bottom base
have great effect on contact behaviors. In studying the
contact behavior of heavily deformed hemisphere,
Wadwalkar et al.19 considered the cases of radial
deformable and radial rigid bases. The contact behav-
iors of the two cases are quite different for large inter-
ferences. In the study of elastic–plastic contact of
rough surfaces, Zhao and Chang27 considered the
axial deformation of substrate and proposed a
model considering the interactions of asperities.
Sahoo and Banerjee28 and Sahoo29 used this model
to study the adhesive contact and friction between
rough surfaces. Ciavarella et al.30 improved
Greenwood and Williamson model1 by considering
the deformation of substrate. Yeo et al.31,32 improved
Hertz solution by considering the axial deformation
of substrate, and used it to consider the interactions of
asperities on rough surface. The radial and axial
deformations of hemisphere base both can affect the
contact behavior. In this study, the cases of radial
deformable and radial rigid boundary conditions of
hemisphere base will be studied, while the axial
deformation of substrate will not be considered.

Note that this study focuses on the contact between
a deformable hemisphere and a rigid flat. It is different
from the contact between a rigid sphere and a deform-
able base, which has been investigated in many
works.33–35 The difference between the two cases
was reported by Jackson and Kogut.36

This study intends to study the overall contact
behavior of an elastic perfectly plastic hemisphere
against a rigid plane. The initial elastic contact, elas-
tic–plastic contact, and the collapse of hemisphere are
all covered in this study. The upper limit of contact
area is derived based on volume conservation. A finite
element model for the overall contact behavior of an
elastic perfectly plastic hemisphere and a rigid plane is
studied. The influences of material yield stress to elas-
ticity modulus ratio and boundary conditions of the
hemisphere bottom base are considered. The JG
model8 is adopted for early stage contact, and empir-
ical expressions for other stages are obtained by fitting
finite element results. By comparing with some exist-
ing models and experimental results, this study can
predict the overall contact behavior of an elastic per-
fectly plastic hemisphere against a rigid plane well.

Theory background

Since this problem is axisymmetric, the hemisphere
could be modeled as a quarter of a circle and the

2 Proc IMechE Part J: J Engineering Tribology 0(0)
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rigid flat could be modeled as a rigid line, as shown in
Figure 1. The radial movement of the symmetry axis
is restrained in this model. The axial deformation of
hemisphere base is not considered in this study. Since
the radial movement of hemisphere base has signifi-
cant influences on heavily deformed contact behav-
iors, the radial deformable and radial rigid bases are
considered in this study. As shown in Figure 1(a), the
hemisphere base could deformable freely in radial dir-
ection. The radial rigid base case is illustrated in
Figure 1(b). For radial rigid base case, the deformed
hemisphere would pass through the base plane of
hemisphere, which is rarely happened practically.
Therefore, a rigid plane is added at hemisphere
bottom base. Note that the axial deformation of
hemisphere base is prevented in this study. For the
contact behavior of asperities on rough surfaces, the
axial deformation of substrate could be considered
using the existing models.27,30,31

Two limits of contact area

At initial stage of contact, the hemisphere deforms
elastically. Contact area and contact load can be
obtained by Hertz solution6

Ae ¼ �R! ð1Þ

Fe ¼
4

3
E 0R

1
2!

3
2 ð2Þ

where ! is the contact interference, R the radius of
hemisphere, E 0 the equivalent elasticity modulus of
material E= 1� �2

� �
, E the elasticity modulus, and �

the Poisson’s ratio.
With the increase of interference, plastic deform-

ation occurs and expands in the hemisphere. Plastic
deformation results in larger contact area than the
elastic Hertz solution. Therefore, equation (1) is the
lower limit of overall contact area.

The upper limit of contact area can be derived
based on volume conservation. The volume of the
hemisphere before contact is

V1 ¼
2

3
�R3 ð3Þ

When the interference is close to hemisphere radius,
the whole hemisphere deforms plastically. And the
hemisphere, either with deformable base or with
rigid base, is collapsed, as shown in Figure 2. Since
the top contact area is close to the base area, it is
reasonable to assume the collapsed hemisphere to be
a cylinder with height R� ! and base area Au. The
volume of the cylinder is

V2 ¼ Au R� !ð Þ ð4Þ

Based on volume conservation, the contact area of the
collapsed hemisphere is

Au ¼
2�R3

3 R� !ð Þ
ð5Þ

As the collapsed hemisphere can never be a cylin-
der unless the interference reaches hemisphere radius,
the contact area with cylinder hypothesis is the upper
limit of overall contact area.

The overall contact area of a hemisphere and a
rigid plane is bounded by the two limits. At initial
contact stage, contact area varies according to Hertz
solution. In elastic–plastic contact, the contact area
gradually deviates from Hertz solution, and
approaches the upper limit for fully plastic contact.

Elastic–plastic contact

Elastic–plastic contact is an important stage in overall
contact. The critical interference, which indicates the

Figure 1. Two cases of the contact of a hemisphere against a rigid flat: (a) deformable base case and (b) rigid base case with

additional bottom rigid plane.
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onset of plastic deformation in hemisphere, has been
formulated in many works.4,8,16 The critical interfer-
ences predicted by these formulations are very close.
The analytical formulation derived by Brizmer et al.16

will be applied in this study

!c ¼
�C�Y

2E0

� �2

R ð6Þ

where C� is the coefficient depends on Poisson’s ratio
C� ¼ 1:234þ 1:256�.

In modeling the contact between a hemisphere and
a rigid plane, the interference is generally standar-
dized by the critical interference !c. As the critical
interference depends on material properties ratio ey,
it is not convenient to compare the contact behaviors
of different material properties ratios. In order to
study the influence of material properties ratio ey on
contact behavior directly, the dimensionless contact
interference is defined as

!� ¼
!

R
ð7Þ

The contact area and contract load are normalized as

A� ¼
A

�R2
ð8Þ

F� ¼
F

�YR2
ð9Þ

The model proposed by Jackson and Green8 pre-
dicts the early stage elastic–plastic contact behavior
well. According to JG model, Hertz solution is still
valid at the initial stage of elastic–plastic contact, and
the elastic–plastic formulation begins at the interfer-
ence 1:9!c. The dimensionless elastic–plastic contact
area of JG model is

A� ¼ 1:9�Cey!�
!�

!�c

� �Cey

ð10Þ

Also, the dimensionless contact load of JG model is

F� ¼
4 !�c
� �2

3

3�ey 1� �2ð Þ

!�

!�c

� �3
2
exp �

1

4

!�

!�c

� � 5
12

0
@

1
A

8<
:

þ
4HG

C�Y
1� exp �

1

25

� �
!�

!�c

� �5
9

2
4

3
5 !�

!�c

� �9=
; ð11Þ

Cey and C� depend on material properties,
Cey ¼ 0:14 exp 23ey

� �
and C� ¼ 1:295 exp 0:736�ð Þ.

Here, ey is material yield stress, Y, to Young’s modu-
lus, E, ratio Y=E. According to JG model, HG/Y is the
limit of mean contact pressure to yield stress ratio,
which depends on material properties

HG

Y
¼ 2:84 1� exp �0:82

�Cey
2

!�

!�c

� �1
2

0
@

0
@

2
4

�
!�

1:9!�c

� �Cey
2

!�0:71A
3
5 ð12Þ

Finite element model

The contact was modeled and analyzed in the com-
mercial ABAQUS package. The top contact rigid flat
and added bottom rigid plane were modeled as ana-
lytical rigid plane in ABAQUS. The geometric and
material properties of the hemisphere were listed in
Table 1. As the dimensionless contact behaviors

Figure 2. Schematic of the collapse of hemisphere: (a) deformable base case and (b) rigid base case.

Table 1. Geometric and material properties of the

hemisphere in finite element study.

Property Value

Radius (mm) 1

Elasticity modulus (GPa) 200

Poisson’s ratio 0.2

Yield stress (MPa) 200, 600, 800, 1000,

1600, 2000

4 Proc IMechE Part J: J Engineering Tribology 0(0)
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were independent of hemisphere radius,13 the radius of
hemisphere was set as 1mm in finite element analysis.
The material of hemisphere was assumed to be elastic
perfect plastic. In order to study the influence of mater-
ial properties ratio on elastic–plastic and plastic con-
tact behaviors, a series of yield stresses ranging from
200 to 2000MPa were analyzed. As elasticity modulus
is kept constant as 200GPa, the yield stress to elasticity
modulus ratio ey ranged from 0.001 to 0.01. Poisson’s
ratio had significant influence on early evolution of
plastic deformation, while it had little influence on
the dimensionless contact area and contact load.15 A
series of Poisson’s values ranging from 0.2 to 0.4 were
checked in finite element analysis. When the interfer-
ence is less than 0:1R, the dimensionless contact area
and contact load only increased about 8% as Poisson’s
ratio changing from 0.2 to 0.4. For larger interferences,
the Poisson’s ratio almost has no effect on contact area
and contact load. Therefore, Poisson’s ratio was set as
0.2 in finite element study.

The finite element models established in ABAQUS
are shown in Figure 3. The nodes on the symmetry
axis of hemisphere were constrained in radial

direction. The axial movement of the nodes on hemi-
sphere bottom base was restrained, while the radial
movement was not constrained in deformable base
case, as illustrated in Figure 3(a). In rigid base
case, both axial and radial movements of hemisphere
bottom base were restrained. As shown in Figure 3(b),
a rigid plane was added at the bottom base. The con-
tact was modeled by surface-to-surface contact in
ABAQUS, and the node to surface discretization
method was applied. The tangential behavior of the
contact was assumed frictionless. In finite element
analysis, the displacement was applied at top rigid
plane and contact behavior could be obtained from
finite element results.

The hemisphere was meshed with 6887 elements,
as shown in Figure 3. The four-node linear axisym-
metric element CAX4R and three-node linear axisym-
metric element CAX3 in ABAQUS were applied. To
validate the finite element model, the results were
compared with Hertz solution for elastic contact.
The finite element model with yield stress 2000MPa
differed from Hertz solution by 3.234% for contact
area and 0.5887% for contact load. To validate the

Figure 4. Comparisons of finite element results of different mesh densities under deformable base condition with material

ey¼ 0.005: (a) the comparison of contact areas and (b) the comparison of contact loads.

Figure 3. Finite element models for the contact of a hemisphere against a rigid plane: (a) deformable base case and (b) rigid base

with additional bottom rigid plane.

Peng et al. 5

 at UNIVERSITE LAVAL on June 13, 2014pij.sagepub.comDownloaded from 

http://pij.sagepub.com/


XML Template (2012) [9.10.2012–9:55am] [1–16]
K:/PIJ/PIJ 460799.3d (PIJ) [PREPRINTER stage]

mesh density, this model was compared with a double
meshed model, which consisted of 14,010 elements.
For deformable base case, contact areas and contact
loads of different mesh densities were compared in
Figure 4(a) and (b), respectively. For rigid base case,
the comparisons were given in Figure 5(a) and (b).

As shown in Figures 4 and 5, the contact areas and
contact loads of the models with different mesh densi-
ties were difficult to discriminate. Therefore, the hemi-
sphere was mashed with 6887 elements in this study.

Results and discussion

With the increase of contact interference, the hemi-
sphere would gradually deform elastically, elastic–
plastically, and finally plastically. The evolution of
stresses has been investigated in the literatures,8,13

and it will not be analyzed here. This study focus on
contact area, mean contact pressure, and contact load
of the overall contact between a hemisphere and a
rigid flat.

Overall contact behavior

The overall contact areas of finite element model with
yield stress 1000MPa are plotted in Figure 6.

The cases of deformable and rigid bases are given in
Figure 6(a) and (b), respectively. The contact area
coincides with Hertz solution for small contact inter-
ferences. With the increase of interference, contact
area increases faster than Hertz solution. The differ-
ence between contact area and Hertz solution grows
with the increase of interference. When the interfer-
ence is close to the radius of hemisphere, contact area
gradually approaches the upper limit. The overall
contact area varies between Hertz solution and the
upper limit. The dimensionless contact area reaches
1 when the interference is about 0.5. This coincides
with AF model,7 while contact area does not vary
linearly, especially for deformable base case. For dif-
ferent base conditions, the variations of contact areas
are different, especially for large interferences. The
differences of the two cases will be discussed later.

The overall mean contact pressure can be derived
from contact area and contact load. The overall mean
contact pressures of deformable and rigid base cases
are given in Figure 7(a) and (b). It can be seen that the
mean contact pressure increases rapidly for small
interferences. The mean contact pressure reaches
maximum value for certain interference and decreases
gradually with the increase of interference. For the
material with yield stress 1000MPa, the maximum

Figure 5. Comparisons of finite element results of different mesh densities under rigid base condition with material ey¼ 0.005:

(a) the comparison of contact areas and (b) the comparison of contact loads.

Figure 6. The overall contact areas of finite element results: (a) deformable base case and (b) rigid base case.

6 Proc IMechE Part J: J Engineering Tribology 0(0)
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dimensionless mean contact pressure is about 2.5 and
happens when the dimensionless interference is about
0.02. The maximum mean contact pressure and the
corresponding interference relate to material proper-
ties ratio. After passing maximum value, the mean
contact pressure gradually decreases to a constant
value when the interference approaches the hemi-
sphere radius.

Figure 8 shows the overall contact loads of the
finite model with yield stress 1000MPa. The contact
loads of deformable and rigid bases are plotted in
Figure 8(a) and (b), respectively. The contact load
increases rapidly when the interference is less than
0.1. The increase slows down when the interference
is greater than 0.1, while contact load increases
more and more rapidly with the increase of interfer-
ence. The variation of contact load relates to the vari-
ations of contact area and mean contact pressure. For
interferences less than 0.1, although mean contact
pressure reaches its maximum and then decreases to
some degree, contact area keeps increasing. As a
result, contact load increases rapidly. For interfer-
ences larger than 0.1, mean contact pressure keeps
decreasing, and the increase of contact area slows
down. Therefore, it is obvious that the increase of

contact load slows down. When the interference is
greater than 0.5, mean contact pressure gradually
decreases to a constant value, therefore, the variation
of contact load is similar to contact area.

Influence of material properties ratio

A series of material yield stress Y are studied to inves-
tigate the influence of material properties ratio ey. The
contact areas, mean contact pressures, and contact
loads of finite element models with yield stresses
200, 1000, and 2000MPa are compared. As elasticity
modulus is held constant as 200GPa in this study, the
material properties ratios of the finite element models
are 0.001, 0.05, and 0.01, respectively.

For deformable base case, the contact areas with
different material properties ratios are compared in
Figure 9. For elastic contact, material properties
ratio ey has no influence on contact area according
to Hertz solution. As shown in Figure 9(a), with the
increase of interference, the contact areas gradually
deviate from Hertz solution. Since the critical
interference of smaller material properties ratio is
smaller, plastic deformation occurs earlier in the
hemisphere and the contact area deviates from

Figure 8. The overall contact loads of finite element model with ey¼ 0.005: (a) contact load of deformable base case and (b) contact

load of rigid base case.

Figure 7. The overall mean contact pressures of the finite element results with ey¼ 0.005: (a) the mean contact pressure of

deformable base and (b) the mean contact pressure of rigid base.

Peng et al. 7

 at UNIVERSITE LAVAL on June 13, 2014pij.sagepub.comDownloaded from 

http://pij.sagepub.com/


XML Template (2012) [9.10.2012–9:56am] [1–16]
K:/PIJ/PIJ 460799.3d (PIJ) [PREPRINTER stage]

Hertz solution earlier. As a result, the contact area of
smaller material properties ratio is larger. With the
interference increasing to 0.5, the differences of the
contact areas of different material properties ratios
gradually reduce, as illustrated in Figure 9(b). For con-
tact interferences larger than 0.5, the contact areas are
not affected by material properties ratio. This is
because for large interferences, all the contacts with
different material properties ratios become fully plas-
tic, which is independent of material properties ratio.
For rigid base case, the contact areas of different
material properties ratios are given in Figure 10. The
influence of material properties ratio on the contact
area of rigid base is similar to deformable base case.

It can be seen that material properties ratio has no
influence on elastic contact area. With interference
increasing to 0.5, the influence of material properties
ratio becomes more and more obvious at first and
then gradually fades. When the interference is larger
than 0.5, material properties ratio has no effect on
contact area.

As shown in Figure 11, the mean contact pressures
of different material properties ratios are compared.
Comparison of the mean contact pressures under
deformable base condition is shown in Figure 11(a).

It is obvious that the maximums of mean contact
pressure and the corresponding interferences vary
with material properties ratios. The smaller material
properties ratio will lead to larger maximum mean
contact pressure and smaller corresponding interfer-
ence. It is interesting that the maximum mean contact
pressure of material properties ratio ey ¼ 0:001 is
close to 2.8, which coincides with the results of
Jackson and Green.8 With the increase of interference,
the influence of material properties ratio gradually
fades. When the interference is greater than 0.5, the
mean contact pressures of different material proper-
ties ratios are very close. The comparison of mean
contact pressures of rigid base is similar to deformable
base case, as shown in Figure 11(b).

The contact loads of different material properties
ratios are shown in Figure 12. The cases of deform-
able and rigid bases are compared in Figure 12(a) and
(b), respectively. Similar to the influence on contact
area, contact load is not affected by material proper-
ties ratio for elastic contact. When the interference is
less than 0.5, the influence of material properties ratio
on contact load is obvious, especially for the interfer-
ences about 0.1. The contact load of smaller material
properties ratio is larger. When the interference

Figure 10. Comparison of contact areas with different material properties ratios for rigid base case: (a) the comparison in inter-

ference range 0<!*< 0.2 and (b) the comparison in interference range 0.2<!*< 0.7.

Figure 9. Comparison of contact areas with different material properties ratios for deformable base case: (a) the comparison in

interference range 0<!*< 0.2 and (b) the comparison in interference range 0.2<!*< 0.7.

8 Proc IMechE Part J: J Engineering Tribology 0(0)
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increases to 0.5, the influence gradually fades. For
interferences larger than 0.5, material properties
ratio has no influence on contact load. For rigid
base case, the influence of material properties ratio
on contact load is similar to deformable base case,
as shown in Figure 12(b).

From the comparisons of contact areas, mean con-
tact pressures, and contact loads of different material
properties ratios, it can be seen that material proper-
ties ratio has no influence on elastic contact, while it
affects elastic–plastic and plastic contact behaviors
much when the interference is less than 0.5, especially
for the interferences about 0.1. When the interference
is larger than 0.5, material properties ratio does not
affect the contact behaviors.

Influence of base boundary condition

In order to study the influence of radial movement of
hemisphere base on overall contact behavior, the con-
tact areas, mean contact pressures, and contact loads
of radial deformable and radial rigid base cases are
compared, respectively.

As shown in Figure 13, the overall contact areas of
deformable and rigid bases are plotted and compared.
According to Saint Venant’s principle, the influence of
base boundary condition can be neglected when the
interference is less than 0.1 and the contact areas of
deformable and rigid bases are very close. With the
increase of interference, the difference between the
contact areas of deformable and rigid bases is appar-
ent. For the interferences in the range 0:15!�5 0:5,
the contact area of rigid base is larger than deform-
able base case. When the interference is greater than
0.5, the contact area of deformable base case grad-
ually becomes larger than rigid base case. In this
stage, the contact area of deformable base case is
more close to the upper limit.

Comparison of the mean contact pressures of
deformable and rigid bases is given in Figure 14.
The mean contact pressures are almost the same for
interferences less than 0.1. For larger interferences,
the difference becomes apparent. The mean contact
pressure of deformable base decreases faster than
rigid base case. With the increase of interference, the
mean contact pressure gradually decreases to 1 for

Figure 12. Comparison of contact loads with ey¼ 0.001, ey¼ 0.005, and ey¼ 0.01: (a) comparison of contact loads for deformable

base case and (b) comparison of contact loads for rigid base case.

Figure 11. Comparison of mean contact pressures with ey¼ 0.001, ey¼ 0.005, and ey¼ 0.01: (a) comparison of mean contact

pressures for deformable base case and (b) comparison of mean contact pressures for rigid base case.
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deformable base case, while it decreases to the value
about 1.4 for rigid base case.

Comparison of the contact loads of deformable
and rigid base cases is shown in Figure 15.
According to Saint Venant’s principle, the base
boundary condition has little influence on contact
load when the interference is less than 0.1. With the
increase of interference, the contact load of rigid base
case becomes larger than deformable base case. The
difference between the contact loads increases when
the interference is in the range 0:15!�5 0:4 and
then gradually decrease with the increase of
interference.

Comparisons of contact areas, mean contact pres-
sures, and contact loads of the deformable and rigid
base cases show that, the base boundary condition has
little influence on the contact behaviors when interfer-
ence is less than 0.1. For larger interferences, contact
areas, mean contact pressures, and contact loads are
quite different for different base boundary conditions.
Therefore, the contact behaviors of deformable and
rigid bases should be modeled separately.

Empirical formulation of overall contact behavior

The overall contact behavior can be formulated by
empirical expressions. Contact area and contact
load, which are the main concerns of contact behav-
iors, will be formulated based on some existing
models and finite element results. The contact behav-
iors of deformable and rigid bases will be formulated
separately.

JG model coincides with finite element results well
for small interferences and it will be applied to model
the contact behaviors of early stage. Finite element
analysis show that JG model is valid when the inter-
ference is less than 0:6528!�c=ey. For interferences
larger than 0:6528!�c=ey, the contact behaviors will
be formulated by fitting finite element results.

Contact interference, contact area, and contact
load are normalized according to equations (7) to
(9), respectively. Therefore, the formulations of con-
tact area and contact load are general solutions for
the contact of a hemisphere against a rigid flat.

Deformable base case. For deformable base case, elastic
contact and early elastic–plastic contact can be mod-
eled by Hertz solution and JG model, respectively.
For interferences beyond the valid range of JG
model, the contact range can be divided into three
stages according to the influence of material proper-
ties ratio. For interferences in the stage
0:6528!�c=ey4!�5 0:118, the influence of material
properties ratio ey becomes more and more apparent.
For the stage 0:1184!�5 0:5, the influence of ey
gradually fades. Material properties ratio ey does
not affect the contact behaviors for the stage
0:54!�5 1. Contact areas and contact loads for
the three stages can be formulated by fitting finite
element results.

The overall contact area for deformable base case
is formulated as equation (13). The first two parts of

Figure 13. Comparison of contact areas of deformable and

rigid bases with ey¼ 0.005.

Figure 15. Comparison of contact loads of deformable and

rigid bases with ey¼ 0.005.

Figure 14. Comparison of mean contact pressures of

deformable and rigid bases with ey¼ 0.005.
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equation (13) are from Hertz solution and JG model,
respectively. While the last three parts of equation
(13) relate to the three stages beyond the valid range
of JG model. The influence of material properties
ratio ey is considered in the coefficients CAd1 � CAd8

The coefficients in equation (13) are

CAd1 ¼ �131:9;CAd2 ¼ 136:2e0:3171y � 7:911;

CAd3 ¼ �45:99e
0:5321
y þ 9:351;

CAd4 ¼ 295:1e2y � 4:818ey � 0:0003371;

CAd5 ¼ 16:43;CAd6 ¼ �8:6186;

CAd7 ¼ �0:07909e
�0:2287
y þ 6:249;

CAd8 ¼ �1:492e
0:4413
y þ 0:3261;

CAd9 ¼ 0:6665;CAd10 ¼ 0:3989

Figure 16 shows the comparison of equation (13),
finite element results, and some existing models. As
illustrated in Figure 16(a), all models are close to finite
element results for small interferences. With
the increase of interference, the difference between
the existing models and finite element results grad-
ually appears. JG model overestimates contact area,

while AF and Wadwalkar, Jackson, and Kogut
(WJK) models underestimate contact area.
As shown in Figure 16(b), for larger interferences,
the difference between JG model and finite element
results is apparent. The contact area of AF model is

greater than finite element results for the interferences
in the range 0:25!�5 0:5, while AF mode under-
estimates the contact area for interferences greater
than 0.5. The contact area of WJK model is close to
finite element results in the range 0:25!�5 0:5 and
then it becomes less than finite element results when
the interference is larger than 0.5. By adopting JG
model and fitting finite element results, equation
(13) fits finite element results well in overall contact
range and it could model the contact area of deform-
able base case more accurately.

The contact load of deformable base is formulated
as equation (14). The first two parts of equation (14)
are from Hertz solution and JG model, respectively.
And the last three parts, which relate to the three
stages beyond the valid range of JG model, are
obtained by fitting finite element results. The influence
of material properties ratio is represented in the coef-
ficients CFd1 � CFd8

A�d ¼ !
� for 05!�41:9!�c

A�d ¼ 1:9�Cey!� !�=!�c
� �Cey for 1:9!�c 5!�40:6528!�c=ey

A�d ¼ CAd1!
�3 þ CAd2!

�2 þ CAd3!
� þ CAd4

� �
=� for 0:6528!�c=ey 5!�40:118

A�d ¼ CAd5!
�3þCAd6!

�2þCAd7!
� þ CAd8

� �
=� for 0:1185!�40:5

A�d ¼ 2R CAd9!
� þ CAd10ð Þ= 3 1� !�ð Þð Þ for 0:54!�5 0:75

ð13Þ
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for 1:9!�c4!�40:6528!�=ey

F�d ¼ CLd1!
�3 þ CLd2!

�2 þ CLd3!
� þ CLd4 for 0:6528!�c=ey4!�40:118

F�d ¼ CLd5!
�3 þ CLd6!

�2 þ CLd7!
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F�d ¼ CLd9!
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�2 þ CLd11!
� þ CLd12 for 0:54!�40:75

ð14Þ

Figure 16. Comparison of the contact areas for deformable base case: (a) comparison in interference range 0<!*< 0.1 and (b)

comparison in interference range 0.1<!*< 0.7.
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The coefficients in equation (14) are

CFd1 ¼ �1628e
0:666
y � 19:66;

CFd2 ¼ 503e0:5716y � 26:8

CFd3 ¼ �81:5e
0:7091
y þ 7:564;

CFd4 ¼ �2:128e
3
y þ 603:3e2y � 6:201ey þ 0:003508;

CFd5 ¼ 94:89ey þ 5:389;CFd6 ¼ �119:3ey � 2:821;

CFd7 ¼ 37:49e0:933y þ 1:758;

CFd8 ¼ �4:744e
0:8471
y þ 0:3585;

CFd9 ¼ 55:523;CFd10 ¼ �89:661;

CFd11 ¼ 51:807;CFd12 ¼ �9:2539

The contact loads of finite element results, JG
model, AF model, and equation (14) are compared in
Figure 17. The JG model coincides with finite element
results well at early stage of contact, while it gradually
overestimates contact load with the increase of inter-
ference. The AF model predicts larger contact load
than finite element model in the overall range. It is
obvious that equation (14) fits the finite element results
well in the overall range, and it can be used to model
the overall contact load for deformable base case.

Rigid base case. The contact area and contact load of
rigid base case can be formulated by the same way as
deformable base case. The elastic contact and early
elastic–plastic contact are modeled by Hertz solution
and JG model. For the interferences beyond the valid
range of JG model, the division of the stages is slightly
different from deformable base case. For the stage

0:6528!�c=ey4!�5 0:1, the influence of material
properties ratio becomes more and more obvious.
For interferences in the range 0:14!�5 0:5, the influ-
ence of material properties ratio gradually fades.
When the interference is in the range 0:54!�5 1,
contact behaviors are almost not affected by material
properties ratio ey, and contact areas and contact
loads can be formulated by fitting finite element
results.

The overall contact area of rigid base are formu-
lated in equation (15). The first two parts of
equation (15) are from Hertz solution and JG
model, respectively. While the last three parts of
equation (15) correspond to the stages beyond the
valid range of JG model. The influence of material
properties ratio ey is considered in the coefficients
CAr1 � CAr6

The coefficients in equation (15) are as follows

CAr1 ¼ �62:66; CAr2 ¼ 282:5e0:566y � 2:497;

CAr3 ¼ �104:2e
0:7489
y þ 8:807;

CAr4 ¼ 550:4e2y � 7:17ey þ 0:002895;

CAr5 ¼ 17:63ey þ 5:66;

CAr6 ¼ 357:7e2y � 20:39ey þ 0:2455;

CAr7 ¼ 9:003;CAr8 ¼ 2:339

As shown in Figure 18, the contact areas of different
models are compared with the finite element results of
rigid base case. It can be seen from Figure 18(a) that all
models are consistent with finite element results when
the interference is less than 0.04. With the increase of
interference, JG model gradually overestimates con-
tact area. AF model underestimates contact area

A�r ¼ !
� for 05!�41:9!�c

A�r ¼ 1:9�Cey!� !�=!�c
� �Cey for 1:9!�c 5!�40:6528!�c=ey

A�r ¼ CAr1!
�3 þ CAr2!

�2 þ CAr3!
� þ CAr4

� �
=� for 0:6528!�c=ey4!

�40:1
A�r ¼ CAr5!

�þCAr6ð Þ=� for 0:15!�40:5
A�r ¼ CAr7!

�3:474 þ CAr8

� �
=� for 0:54!�5 0:75

ð15Þ

Figure 17. Comparison of the contact loads for deformable base case: (a) comparison in interference range 0<!*< 0.1 and (b)

comparison in interference range 0.1<!*< 0.7.
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when the interference is about 0.1, while it is close to
the finite element results for the interferences in
0:25!�5 0:5, as shown in Figure 18(b). WJK
model fits finite element results well for the interfer-
ences within 0.55, while it deviates from finite element
results for larger interferences. It can be seen that equa-
tion (15) coincides with finite element results well in the
overall range

The coefficients in equation (16) are as follows

CFr1 ¼ 9:348e�0:3698y � 78:23;

CFr2 ¼ 179:7e0:1001y � 114:2;

CFr3 ¼ �24:55e
0:4351
y þ 8:354;

CFr4 ¼ �0:5627e
0:5983
y þ 0:00606;

CFr5 ¼ 27:04e0:3996y þ 6:672;

CFr6 ¼ �36:39e
0:5014
y � 6:592;

CFr7 ¼ 21:66e0:6461y þ 3:931;

CFr8 ¼ �6:085e
0:7973
y þ 0:1848;

CFr9 ¼ 22:87;CFr10 ¼ �31:621;

CFr11 ¼ 17:34;CFr12 ¼ �2:264

The contact load of rigid base is formulated as
equation (16). The first two parts of equation (16)
are from Hertz solution and JG model, respectively.
The last three parts of equation (16) are obtained by

fitting finite element results. The influence of material
properties is considered in the coefficients CFr1 � CFr8.

For rigid base case, the contact loads of different
models are compared in Figure 19. It is clear that AF
model overestimates contact load in the overall range.
JG model is close to finite element results for small
contact interferences, as illustrated in Figure 19(a).
The difference between JG model and finite element

results is obvious for large contact interferences, as
shown in Figure 19(b). It can be seen that equation
(16) coincides with finite element results well in the
overall range. Therefore, equation (16) could model
the overall contact load accurately.

By comparing with finite element results and some
existing models, it can be seen that equations (13) and
(14) could predict the overall contact area and contact
load of deformable base case accurately. The contact
area and contact load of rigid base can be modeled by
equations (15) and (16) accurately in the overall
range.

Comparison with experimental results

Many experimental works for the contact of a hemi-
sphere and a rigid flat have been published. In order
to validate this study, the proposed formulations are
compared with the experimental results given by
Ovcharenko et al.,17 Jamari and Schipper,9 and
Chaudhri et al.11
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for 1:9!�c 5!�4c0:6528!
�=ey

F�r ¼ CLr1!
�3 þ CLr2!

�2 þ CLr3!
� þ CLr4 for 0:6528!�c=ey 5!�40:1

F�r ¼ CLr5!
�3 þ CLr6!

�2 þ CLr7!
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� þ CLr12 for 0:55!�40:75

ð16Þ

Figure 18. Comparison of the contact areas for rigid base case: (a) comparison in interference range 0<!*< 0.1 and (b) com-

parison in interference range 0<!*< 0.7.
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Ovcharenko et al.17 measured the contact areas
under given contact loads of a stainless steel sphere
contacting against a rigid flat. The sphere radius is
1.19mm. The elasticity modulus of stainless steel is
200GPa, and the yield stress is 1080MPa. Poisson’s
ratio is 0.30. The measured results are compared with
the formulations of rigid base case of this study.

As shown in Figure 20, comparison of this study
with the experimental results of Ovcharenko et al.17 is
presented. It can be seen that this study coincides with
the experiment data well, which validates this study.
As the loads of the experiment are relatively small, the
contact areas and contact loads all fall in the range of
the second part in equations (15) and (16), respect-
ively. Therefore, the comparison is actually between
the experimental data and JG model,8 which is
adopted as the section part of the model in this study.

In order to validate the contact stages beyond the
valid range of JG model, comparison with the experi-
ment work of Jamari and Schipper9 is presented.
A copper sphere contacting against a rigid flat was
measured by Jamari and Schipper.9 The hardness of

the copper in the experiment is 1.2GPa, the elasticity
modulus is 120GPa, and the Poisson’s ratio is 0.35.
The sphere diameter is 3mm.

In the experiment of Jamari and Schipper,9 the
contact load is large enough that the contact is
beyond the valid range of JG model. The compari-
son of equation (15) and the experimental data of
Jamari and Schipper9 is given in Figure 21. It can be
seen that equation (15) is slightly larger than the
measurements, while it coincides with the experimen-
tal results well, which validates the accuracy of the
proposed formulations in this study.

Chaudhri et al.11 measured the mean contact pres-
sure of a phosphor bronze sphere pressed by two rigid
flats. The radius of the measured sphere is 1.5875mm.
The material elasticity modulus is 115GPa, and the
Poisson’s ratio is 0.35. The hardness is about 2.7GPa,
and the yield stress is about 857MPa.19 The experi-
ment cover fully plastic contact and it will be com-
pared with the formulations of deformable base case.
In order to compare with the experimental results, the
contact radius is derived from equation (13) and the

Figure 19. Comparison of the contact loads for rigid base case: (a) comparison in interference range 0<!*< 0.1 and (b) com-

parison in interference range 0.1<!*< 0.7.

Figure 20. Comparison of this study with experiment

results:16 contact area vs. contact load.

Figure 21. Comparison of this study with experiment

results:9 contact area vs. contact interference.
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mean contact pressure is obtained from equations (13)
and (14).

Figure 22 shows the comparison of the experimen-
tal results11 with this study. Since the proposed for-
mulations are section wise, there are several jumps in
mean contact pressure curve. However, the mean con-
tact pressure predicted by this study fits well with the
experimental results.

The comparisons with several experimental results
indicate that this study can predict the overall contact
behavior of an elastic–plastic sphere and a rigid flat
well.

Conclusions

The overall contact of a hemisphere against a rigid
plane is studied in this study. The upper limit of overall
contact area is derived based on volume conservation.
A finite element model on the contact of a hemisphere
and a rigid plane is established and analyzed. The influ-
ences of material yield stress to elasticity modulus ratio
and base boundary condition are investigated. By
adopting some existing models and fitting finite elem-
ent results, empirical formulations for overall contact
area and contact load are obtained.

Finite element study shows that the overall contact
area is bounded by Hertz solution and the upper limit.
The material yield stress to elasticity modulus ratio
mainly affects the contact behaviors (contact area,
mean contact pressure, and contact load) in the
early stage of contact. When the dimensionless inter-
ference is larger than 0.5, the material properties ratio
has no influence on the contact behaviors. The bound-
ary condition of hemisphere base affects the contact
behaviors significantly for large interferences, but the
influence can be neglected at early stage of contact.

By comparing with finite element results, some
existing models, and experimental data, this study is
suitable to model the overall contact area and contact

load of an elastic perfectly plastic hemisphere against
a rigid plane.
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Appendix

Notation

Ae elastic contact area
Au the upper limit of contact area
A� dimensionless contact area A=�R2

A�d dimensionless contact area of
deformable base

A�r dimensionless contact area of rigid
base

CAd1 � CAd10 coefficients of deformable base area
CAr1 � CAr8 coefficients of rigid base area
Cey factor relates to ey: 0:14 expð23eyÞ
CFd1 � CFd12 coefficients of deformable base load
CFr1 � CFr12 coefficients of rigid base load
C� factor relates to �: 1:295 expð0:736�Þ
ey yield stress to modulus ratio Y=E0

E material Young’s modulus
E0 equivalent modulus E= 1� �2

� �
Fe elastic contact load
F� dimensionless contact load

F= �YR2
� �

F�d dimensionless contact load of
deformable base

F�r dimensionless contact load of rigid
base

HG variable hardness of the hemisphere
in contact

P mean contact pressure F=A
R radius of the hemisphere
V1 volume of the hemisphere before

contact
V2 volume of the hemisphere after

contact
Y yield stress of material

� Poisson’s ratio
! contact interference
!c critical contact interference
!� dimensionless interference !=R
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