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a b s t r a c t

In this paper we propose an adaptive nonmonotone algorithm for minimax problem.
Unlike traditional nonmonotone method, the nonmonotone technique applied to our
method is based on the nonmonotone technique proposed by Zhang and Hager [H.C. Zhang,
W.W. Hager, A nonmonotone line search technique and its application to unconstrained
optimization, SIAM J. Optim. 14(4)(2004) 1043–1056] instead of that presented by Grippo
et al. [L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for
Newton’s method, SIAM J. Numer. Anal. 23(4)(1986) 707–716]. Meanwhile, by using
adaptive technique, it can adaptively perform the nonmonotone trust-region step or
nonmonotone curvilinear search step when the solution of subproblems is unacceptable.
Global and superlinear convergences of the method are obtained under suitable conditions.
Preliminary numerical results are reported to show the effectiveness of the proposed
algorithm.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Consider the minimax problem

min
x2Rn

FðxÞ ¼max
i2P

f iðxÞ; ð1:1Þ

where P ¼ f1;2; . . . ; pg; fi : Rn ! R; i 2 P are continuously differentiable.
This problem is a nonsmooth optimization problem because the objective function FðxÞ contains a ‘‘max’’ operator which

is not differentiable. Therefore, many unconstrained optimization algorithms with the use of derivatives can not be applied
to solve the problem (1.1) directly.

The minimax problem (1.1) is equivalent to the following nonlinear programming problem with nþ 1 variables.

min
ðx;zÞ2Rnþ1

z;

s:t: f iðxÞ � z 6 0; i 2 P;

8<
: ð1:2Þ

where x 2 Rn and z 2 R. From problem (1.2), the first order optimal conditions of problem (1.1) is obtained as follows:
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Xm

i¼1

k�irfiðx�Þ ¼ 0;

Xm

i¼1

k�i ¼ 1;

k�i P 0; i 2 P;

k�i ðfiðx�Þ � Fðx�ÞÞ ¼ 0; i 2 P:

8>>>>>>>>>><
>>>>>>>>>>:

ð1:3Þ

where k� ¼ ðk�1; . . . ; k�pÞ
T is the corresponding Lagrange multiplier, and x� is an optimal solution of problem (1.1). The point x�

satisfied (1.3) is defined as a K-T point of the original problem (1.1).
However, Polak et al. [2] pointed out that there are some drawbacks to directly solve the form (1.2) using smooth SQP

type algorithms. To tackle these drawbacks, there are several smooth approaches that have been developed to exploit the
Kuhn–Tucker optimality conditions for this problem by solving either unconstrained subproblems or constrained subprob-
lems [3]. For example, Zhu [4] developed a line search algorithm for minimax problems, and Xue [5,6] developed a class of
Newton-like algorithms, Zhou [7] proposed a nonmonotone SQP line search method with second-order correction. Recently,
Jian et al. [8] proposed a SQP algorithm. Typically, under mild assumptions, these algorithms have a locally superlinear
convergence.

Trust-region methods are powerful methods that can lead to the strong global convergence (see [9,15,22–30]). However,
unlike the smooth unconstrained optimization, the trust-region methods for nonsmooth optimization, in general, have the
drawback of the Maratos effect, which badly slow down the rate of convergence. An approach based on trust-region strategy
was proposed in [10,11] for a class of composite optimization problems, which can be applied to solve minimax problems. To
overcome the Maratos effect, this approach employed the second-order correction step, and thus the rate of superlinear con-
vergence was obtained by Yuan [12]. Another trust-region based algorithms for minimax problems were developed in
[13,14], which were combined trust-region methods with line or curve search methods. This technique is similar to the tech-
nique of combining trust-region methods with line search methods [15], which can avoid repeatedly solving the trust-region
subproblems in each iteration, and thus greatly decrease in computation work. Recently, Ye et al. [16] proposed a trust region
Newton-CG method for minimax problem that used a new smoothing technique and solved a smooth unconstrained sub-
problem in each iteration. Numerical results show that the algorithm is efficient.

Grippo et al. [1] first introduced a nonmonotone line-search technique for Newton’s method, in which the stepsize ak sat-
isfies the following condition:

f ðxk þ akdkÞ 6 max
06j6mðkÞ

f ðxk�jÞ � bakgT
k dk: ð1:4Þ

which b 2 ð0;1Þ;0 6 mðkÞ 6minfmðk� 1Þ þ 1;Mg, and M is a fixed nonnegative integer. Since then many authors general-
ized the nonmonotone technique to different methods and proposed various nonmonotone line search algorithms or non-
monotone trust region algorithms, such as Mo et al. [9], Zhang and Zhang [23], Zhang [24], Deng et al. [26], Toint[27],
Sun [28]. Dai [17] and Toint[27] pointed out that the nonmonotone method can enhance the possibility of finding a global
optimum. Furthermore, it can improve the rate of convergence in cases where a monotone scheme is forced to creep along
the bottom of a narrow curved valley. In addition, as is shown in Panier and Tits[21], the Moratos effect in the context of
smooth constrained optimization can also be avoided by means of nonmonotone technique, and Zhou and Tits[7], Yu and
Gao[20] generalized the nonmonotone technique to minimax problems based on line search method accordingly. Recently,
Wang and Wang [13] generalized the nonmonotone technique to minimax problem based on trust region method. Theoret-
ical analysis and lots of numerical results indicated that these algorithms with a nonmonotone scheme were more efficient
than those with a monotone scheme.

Although these nonmonotone techniques based on (1.4) work well in many cases, there are some drawbacks (see [18]).
First, a good function value generated in any iteration is essentially discarded due to the max function in (1.4). Second, in
some cases, the numerical performance is very dependent on the choice of M (see [19] and [27]). Furthermore, Dai [17]
has presented an example to show that for a strongly convex function, although an iterative method is generating R-linearly
convergent sequence, the iterates may not satisfy the condition (1.4) for k sufficiently large, for any fixed bound M on the
memory.

In order to overcome these disadvantages, Zhang and Hager [18] proposed an improved nonmonotone line search tech-
nique, they replaced the ‘‘max’’ function value in (1.4) with a weighted average of the successive function values, which find
a stepsize ak satisfying the following inequality

f ðxk þ akdkÞ 6 Ck � bakgT
k dk; ð1:5Þ

where

Ck ¼
f ðx0Þ; k ¼ 0;
ðgk�1Q k�1Ck�1 þ fkÞ=Q k; k P 1;

�
ð1:6Þ
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Q k ¼
1; k ¼ 0;
gk�1Q k�1 þ 1; k P 1;

�
ð1:7Þ

and gk�1 2 ½gmin;gmax�, 0 6 gmin 6 gmax 6 1. Mo et al. [9] first extended this nonmonotone technique to traditional trust region
method for unconstrained optimization problem. The numerical results showed that this nonmonotone technique is superior
to that of (1.4) (see [9,18]).

In this paper, motivated by Mo et al. [9], as a continued study on basis of Wang and Wang [13], we generalize this non-
monotone technique proposed by Zhang and Hager [18] to the minimax problem, and propose a new algorithm that combine
the nonmonotone trust region method with the nonmonotone curvilinear search method. Under mild conditions, the global
and superlinear convergence are obtained. Preliminary numerical experiments show that the proposed algorithm is
competitive.

This paper is organized as follows: The algorithm is presented in Section 2. In Section 3, we analyzed the convergence. In
Section 4, we report some numerical results obtained. Finally, we end the paper with the conclusions.

We shall use the following notation and terminology. Unless otherwise stated, the vector norm used in this paper is
Euclidean vector norm on Rn, and the matrix norm is the induced operator norm on Rn�n. In addition, we denote
IAðxÞ ¼ fi : fiðxÞ ¼ FðxÞg; INðxÞ ¼ fi : fiðxÞ < FðxÞg, Fk ¼ FðxkÞ.

2. Algorithm

In this section, we describe a new nonmonotone trust-region algorithm for problem (1.1). We want to compute a new
iterate xkþ1 from the current iterate xk by using SQP trial step dk, which is the solution of the following trust region
subproblem

min
d2Rn

F 0ðxk; dÞ þ 1
2 hd;Bkdi;

s:t: kdk1 6 Dk;

(
ð2:1Þ

where Bk 2 Rn�n is a symmetric approximation matrix, and

F 0ðxk; dÞ ¼max
i2P
fhrfiðxkÞ; di þ fiðxkÞg � FðxkÞ ð2:2Þ

is a directional derivative along with direction d at point xk. The solution of (2.1) can be obtained also by solving the follow-
ing equivalent trust-region subproblem

min
ðd;zÞ2Rnþ1

1
2 hd;Bkdi þ z ¼ qkðd; zÞ;

s:t: hrfiðxkÞ; di � z 6 FðxkÞ � fiðxkÞ; i 2 P;

kdk1 6 Dk:

8>><
>>: ð2:3Þ

In trust-region subproblems (2.1) and (2.3), here we use the ‘1 norm on the trust-region bound, so that the subproblems
become standard quadratic problems. In addition, unlike the traditional quadratic subproblem in smooth SQP methods, sub-
problem (2.3) is always a feasible problem. In fact, it always has a feasible solution ð0; 0Þ. Therefore, we do not need to con-
sider the inconsistent of quadratic subproblem that usually occurs in SQP method for solving smooth optimization problems.
In order to circumvent the Maratos effect, Fletcher [10,11] requires to solve a second-order correction step ~dk, and Zhou [7]
additionally performs a curvilinear search as follows

f ðxk þ tkdk þ t2
k
~dkÞ 6 max

06j62
f ðxk�jÞ � atkhdk;Bkdki: ð2:4Þ

In this paper, we embed the nonmonotone technique proposed by Zhang and Hager [18] into an adaptive algorithm that
combine the nonmonotone trust-region method with the nonmonotone curvilinear search method for minimax problem,
that is, if the stepsize dk þ ~dk can not be acceptable in the nonmonotone trust-region scheme, we perform a nonmonotone
curvilinear search, such that a stepsize tk satisfy the following inequality:

Fðxk þ tkdk þ t2
k
~dkÞ 6 Ck � btkhdk;Bkdki: ð2:5Þ

where b 2 ð0; 1
2Þ; ðdk; zkÞ is a solution of (2.3), and ~dk;~zk is the second-order correction step which is the solution of following

quadratic problem

min
ð~d;~zÞ2Rnþ1

1
2 hdk þ ~d;Bkðdk þ ~dÞi þ ~z;

s:t: hrfiðxkÞ; ~di � ~z 6 Fðxk þ dkÞ � fiðxk þ dkÞ; i 2 P;

kdk þ ~dk1 6 Dk:

8>>><
>>>:

ð2:6Þ

In addition, we use FðxÞ to be the merit function, and for problem (1.1), the Lagrangian is defined by Lðx; kÞ ¼
P

i2PkifiðxÞ. Now
we give the algorithm as follows
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Algorithm 2.1.

Step 0 Choose initial point x0 2 Rn, and parameters 0 6 gmin 6 gmax < 1, 0 < D0 < Dmax;0 < s1 < 1 < s2, b 2 ð0;0:25Þ;
0 < l 6 2b < g < 1, h 2 ð0;1Þ; e > 0. Set C0 ¼ Fðx0Þ;Q 0 ¼ 1, B0 ¼ I; k ¼ 0.

Step 1 Compute a solution ðdk; zkÞ by solving the quadratic program (2.3). If kdkk 6 e, stop; Otherwise,
Step 2 Compute a solution ð~dk;~zkÞ by solving the quadratic program (2.6). If k~dkk > kdkk, set ~dk ¼ 0;
Step 3 Compute the following ratio

rk ¼
Ck � Fðxk þ dk þ ~dkÞ
qkð0;0Þ � qkðdk; zkÞ

: ð2:7Þ

Step 4 If rk > l, set sk ¼ dk þ ~dk, xkþ1 ¼ xk þ sk, go to Step 6; Otherwise;
Step 5 Compute tk, which is the first value in the sequence of f1; h; h2; . . .g such that

Fðxk þ tkdk þ t2
k
~dkÞ 6 Ck � btkhdk;Bkdki: ð2:8Þ

Set sk ¼ tkdk þ t2
k
~dk; xkþ1 ¼ xk þ sk.

Step 6 If rk 6 l;Dkþ1 2 ½kskk; s1Dk�;
If rk P g and kskk ¼ Dk, Dkþ1 ¼ minðs2Dk;DmaxÞ;
Otherwise, Dkþ1 ¼ Dk.

Step 7 Choose gk 2 ½gmin;gmax�, and set Qkþ1 ¼ gkQk þ 1, Ckþ1 ¼ ðgkQ kCk þ Fkþ1Þ=Q kþ1.
Step 8 Update Bk to Bkþ1; k :¼ kþ 1, go to Step 1.

In Algorithm 2.1, since the scheme includes the curvilinear search (2.8), we use Damped BFGS formula for updating Bk to
Bkþ1 [30]. We recall the following results on minimax problem [13].

Lemma 2.1. Suppose that ðdk; zkÞ is the solution of SQP trust-region subproblem (2.3). Then

(1) If dk ¼ 0, there holds zk ¼ 0.
(2) If dk – 0, there holds zk < 0.

Theorem 2.1. Suppose that fxkg and fdkg are generated by Algorithm 2.1, then

(1) dk ¼ 0 if and only if xk is the K-T point of the problem (1.1),
(2) fxkg is well-defined.

3. Convergence Analysis

In order to analyze the convergence, we suppose that the following standard assumptions hold throughout the analysis.

Assumption 3.1. For any point x0 2 Rn, the level set
Lðx0Þ ¼ fx 2 Rn : FðxÞ 6 Fðx0Þg is compact.

Assumption 3.2. For each x 2 Lðx0Þ, the vectors

rfiðxÞ
�1

� �
; i 2 IAðxÞ

are linearly independent.

Assumption 3.3. There exist r1;r2 > 0 such that for every x 2 Rn and every integer k, r1kxk2
6 hx;Bkxi 6 r2kxk2 holds.

Assumption 3.1 is introduced in order to ensure the existence of a solution to problem (1.1); Assumption 3.2 is a common
assumption in the literature on the minimax problems, and Assumption 3.3 is generally required to get global convergence in
the context of SQP-type methods which using line-search.

Lemma 3.1. Suppose that the sequence fxkg and fdkg are generated byAlgorithm 2.1, the entire sequence fxkg converges to x�.
Then,

(1) If x� is the K-T point of problem (1.1), then the corresponding sequence of multipliers fkkg converges to k�, and k� is the cor-
responding multiplier of x�.

(2) x� is the K-T point of problem (1.1), if and only if fdkg converges to zero.

8036 F.-S. Wang, C.-L. Wang / Applied Mathematics and Computation 219 (2013) 8033–8041
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Proof. The proof is similar to Lemma 3.1 in [13]. h

Lemma 3.2. Suppose that the sequence fxkg is generated by Algorithm 2.1, and ðdk; zkÞ is the solution of subproblem (2.3), uk is
the corresponding multiplier, then zk 6 �hdk; ðBk þ ukIÞdki.

Proof. The proof is similar to Lemma 3.2 in [13]. h

Now we define two index sets as follows

D1 ¼ fk : rk > lg; D2 ¼ fk : rk 6 lg:

The following lemmas are important to the analysis of the convergence of Algorithm 2.1.

Lemma 3.3. Suppose that the sequence fxkg is generated by Algorithm 2.1, then the following inequality holds for all k.

Fkþ1 < Ckþ1 < Ck: ð3:1Þ

Proof. In order to get the conclusion, we consider three cases, respectively.

Case (1). When k 2 D1.
Since rk > l, from (2.7) we have

Fkþ1 < Ck � lðqkð0;0Þ � qkðdk; zkÞÞ 6 Ck: ð3:2Þ

This, together with (1.5) and (1.6), we have

Ckþ1 ¼
gkQ kCk þ Fkþ1

Q kþ1
<

gkQ kCk þ Ck

Q kþ1
¼ Ck ð3:3Þ

and

Fkþ1 � Ckþ1 ¼ gkQ kðCkþ1 � CkÞ: ð3:4Þ

It follows from (3.3) and (3.4) that the inequality (3.1) holds.
Case (2). When k 2 D2.
From (2.8) in Step5, since Ck is the same as that in case (1), and note that xkþ1 ¼ xk þ tkdk þ t2

k
~dk, we have again that (3.2),

(3.3) and (3.4) hold, which yield the inequality (3.1).
Therefore, (3.1) holds for all k, which completes the proof. h

Lemma 3.3 implies that the sequence fCkg is monotonic non-increasing.

Lemma 3.4. Suppose that Assumptions 3.1–3.3 hold, and the sequence fxkg is generated by Algorithm 2.1, then

(1) The sequence fCkg is convergent.
(2) lim

k!1
t̂kkdkk ¼ 0; ð3:5Þ

where

t̂k ¼
l
2b ; k 2 D1;

tk; k 2 D2:

(
ð3:6Þ

(3) lim
k!1
kxkþ1 � xkk ¼ 0: ð3:7Þ

Proof. (1) By Lemma 3.3, we know that Fkþ1 < Ckþ1 for all k and fCkg is a monotonic non-increasing sequence. On the other
hand, from Assumption 3.1 and the continuity of FðxÞ, we have that fFkg is bounded below. Thus fCkg is convergent. Let

lim
k!1

Ck ¼ C�: ð3:8Þ

When k 2 D1, by Algorithm 2.1, it follows from Lemma 3.2 that

Fkþ1 ¼ Fðxk þ dk þ ~dkÞ 6 Ck þ l zk þ
1
2
hdk; Bkdki

� �
6 Ck þ l �ukkdkk2 � 1

2
hdk;Bkdki

� �
6 Ck �

1
2
lr1kdkk2

; ð3:9Þ

Meanwhile, in view of k~dkk 6 kdkk, we obtain

kxkþ1 � xkk ¼ kdk þ ~dkk 6 2kdkk: ð3:10Þ

F.-S. Wang, C.-L. Wang / Applied Mathematics and Computation 219 (2013) 8033–8041 8037
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If k 2 D2, by Algorithm 2.1, in this case, we perform curvilinear search.

Fkþ1 ¼ Fðxk þ tkdk þ t2
k
~dkÞ 6 Ck � btkhdk;Bkdki 6 Ck � br1tkkdkk2

: ð3:11Þ

Meanwhile, in view of tk < 1, we have

kxkþ1 � xkk ¼ ktkdk þ t2
k
~dkk 6 2tkkdkk: ð3:12Þ

Denote

t̂k ¼
l
2b ; k 2 D1;

tk; k 2 D2:

(
ð3:13Þ

Combining (3.9) and (3.11), it gives

Fkþ1 6 Ck � br1 t̂kkdkk2
; ð3:14Þ

Next we claim that jFkþ1 � Ckj ! 0 as k!1, which gives

lim
k!1

t̂kkdkk ¼ 0: ð3:15Þ

In fact, from (3.4) we have

jFkþ1 � Ckþ1j 6 gmaxQ kjCkþ1 � Ckj: ð3:16Þ

On the other hand, from (1.7) and note that gmax 2 ½0;1Þ (see in Algorithm 2.1), we have

Qk ¼ gk�1Q k�1 þ 1 ¼
Xk

j¼1

Yj

i¼1

gk�i þ 1 6
Xk

j¼1

gj
max þ 1 6

X1
j¼0

gj
max 6

1
1� gmax

: ð3:17Þ

It follows from (3.8), (3.16) and (3.17) that

lim
k!1
jFkþ1 � Ckþ1j ¼ 0: ð3:18Þ

In addition, we have

jFkþ1 � Ckj 6 jFkþ1 � Ckþ1j þ jCkþ1 � Ckj: ð3:19Þ

Combining (3.8), (3.18) and (3.19), we immediately obtain the result.
In addition, by the definition of t̂k, if k 2 D1, there is a constant q1 such that q1 t̂k > 2. Let q ¼maxfq1;2g, it follows from

(3.10) and (3.12) that

kxkþ1 � xkk 6 qt̂kkdkk; ð3:20Þ

which gives from (3.5) that (3.7) holds, and the proof is completed. h

Theorem 3.1. Suppose that fxkg is generated by Algorithm 2.1, Assumptions 3.1–3.3 hold and the multiplies uk is bounded, if the
algorithm does not stop in finite step, then any accumulation of fxkg is a K-T point of problem (1.2).

Proof. By Assumption 3.1, if Algorithm 2.1 does not stop in finite step, since the sequence fxkg is contained in the compact
set Lðx0Þ, there exists a convergent subsequence, we might as well denote it by fxkg, and suppose that
limk!1xk ¼ x�; x� 2 Lðx0Þ.

Next we prove that the corresponding subsequence fdkg converges to zero. When k 2 K \ D1, by Lemma 3.4, obviously,
the assertion is true. So, it suffices to prove that it is also true when k 2 K \ D2. Suppose on contrary that the assertion is false,
then there exists an infinite subset K1 � K \ D2, such that infk2K1

kdkk > 0, i.e., there exists d > 0, such that kdkk > d for all
k 2 K1.

We first show that there exits a positive scaler tmin > 0 independent of k such that the curvilinear search (2.8) is always
satisfied for some tk > tmin and for all k 2 K1. By the Taylor expansion at xk, there holds

fiðxk þ tdk þ t2~dkÞ ¼ fiðxkÞ þ hrfiðxkÞ; tdk þ t2~dki þ oðtkdkkÞ:

By Lemma 3.2 and note that dk and ~dk are all bounded, for t 2 ð0;1Þ and every i 2 P, we have

fiðxk þ tdk þ t2~dkÞ ¼ fiðxkÞ þ thrfiðxkÞ;dki þ oðtÞ 6 fiðxkÞ þ tðFk þ zk � fiðxkÞÞ þ oðtÞ
¼ ð1� tÞfiðxkÞ þ tFk þ tzk þ oðtÞ 6 Fk þ tzk þ oðtÞ 6 Fk � thðBk þ ukIÞdk; dki þ oðtÞ
6 Fk � thBkdk;dki þ oðtÞ: ð3:21Þ

It follows by Assumption 3.3 and the contradiction hypothesis that
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fiðxk þ tdk þ t2~dkÞ 6 Fk � bthBkdk; dki � tð1� bÞhBkdk;dki þ oðtÞ 6 Fk � bthBkdk;dki � tð1� bÞr1d
2 þ oðtÞ: ð3:22Þ

This, together with t < 1, suggests that there exists ~ti > 0, for all t 2 ð0;~ti� and k, it holds

fiðxk þ tdk þ t2~dkÞ 6 Fk � bthBkdk; dki: ð3:23Þ

Let tmin ¼min
i2P

~ti; tk ¼ tmin=2. Then the following inequality

Fðxk þ tkdk þ t2
k
~dkÞ 6 Fk � btkhBkdk;dki ð3:24Þ

holds for all k 2 K1. Thus ftkdkg is uniformly bounded below on K1 by dtmin=2, which contradicts to Lemma 3.4. Therefore,
dk ! 0 as k!1. By Lemma 3.1, x� is just a K-T point of problem (1.1). h

Remark 3.1. From the proof of Theorem 3.1, we can see that, there exists a stepsize tk in step 5 of Algorithm 2.1 such that
(2.8) is satisfied, which means that Algorithm 2.1 is well defined.

In fact, at the current iterate xk, if Algorithm 2.1 is proceeding in step 5, under the conditions of Theorem 3.1, for t 2 ð0;1Þ
and every i 2 P, the inequality (3.21) also holds. Furthermore, if kdkk – 0 in the iteration k, similarly to (3.22), we have

fiðxk þ tdk þ t2~dkÞ 6 Fk � bthBkdk; dki � tð1� bÞhBkdk;dki þ oðtÞ 6 Fk � bthBkdk;dki � tð1� bÞr1kdkk2 þ oðtÞ: ð3:25Þ

Since (3.25) holds for every i 2 P, it follows that

Fðxk þ tdk þ t2~dkÞ 6 Fk � bthBkdk; dki � tð1� bÞr1kdkk2 þ oðtÞ ð3:26Þ

and this implies that, there exists a constant tk; tk 2 ð0;1Þ, so small such that

Fðxk þ tkdk þ t2
k
~dkÞ 6 Fk � btkhBkdk;dki: ð3:27Þ

It follows from the inequality in Lemma 3.3 that, for above tk obtained, the inequality (2.8) holds.
In order to analyze the locally superlinear convergence, let fxkg be generated by Algorithm 2.1, xk ! x�; x� be a K-T point of

problem (1.1), and k� be the corresponding multiplier of x�. Denote IAðx�Þ ¼ fi : k�i > 0g, and make the following hypothesis
further.

Assumption 3.4. The second order sufficiency conditions with strict complementary slackness are satisfied at x� as follows

k�i > 0; i 2 IAðx�Þ;
hd;r2

xxLðx�; k�Þdi > 0; 80 – d 2 S;

(
ð3:28Þ

where

S ¼ fd 2 Rn : hd;rfiðx�Þi ¼ hd;rfjðx�Þi 8i; j 2 IAðx�Þg: ð3:29Þ

Assumption 3.5. The approximation matrices sequence fBkg satisfy the Dennis-More condition

lim
k!1

Bk �
Pm

i¼1k
�
ir2fiðx�Þ

� �
dk

��� ���
kdkk

¼ 0: ð3:30Þ

Similarly to the analysis in [13], it is not difficult to obtain the following results, and so we omitted here.

Theorem 3.2. Suppose that Assumption 3.4 and 3.5 are satisfied, fxkg is generated by Algorithm 2.1, and limk!1xk ¼ x�, where x�

is a K-T point of of problem (1.1). Then, fxkg converges to x� superlinearly.

4. Numerical experiments

In this section we do some experiments to show the computational efficiency of the proposed algorithm, and compare the
performance of Algorithm 2.1 with the algorithm proposed in [13] and the algorithm given in [7]. All experiments are run on
a PC computer with CPU Pentium 4, 2.00 GHz and coded in MATLAB programs. The stopping rule in the experiments is
kdk 6 �. The other parameters are as follows: D0 ¼ 1;Dmax ¼ 10; s1 ¼ 0:5; s2 ¼ 2, b ¼ 0:2; h ¼ 0:5;l ¼ 0:25;g ¼ 0:75;B0 ¼ I,
e ¼ 1:0e� 5.

In the experiments, the update of the parameters gk is that: g0 ¼ 0:2;g1 ¼ 0:1;gk ¼ ðgk�1 þ gk�2Þ=2; k P 2. In addition,
C0 ¼ Fðx0Þ;Q 0 ¼ 1. The tested examples were all from [13], which is a set of standard test problems for minimax problem.

The computation results are shown in Tables 1–3, where Table 1 lists the results obtained by Algorithm 2.1, Table 2 and
Table 3 list the results obtained by the algorithms proposed in [13,7], respectively. In all Tables, the columns have the fol-
lowing meanings: problem denotes the name of the test problem, n denotes the dimension of the problem, m denotes the
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number of functions in ‘‘max’’ operator. NI, NG and NF denote the numbers of iterations, gradient evaluations and function
evaluations, respectively. FðxÞ; kdk 6 e, IAðxÞ and ‘‘time(s)’’ stand for the optimal value of objective function, the norm of
the solution of SQP subproblem, the set of indices of active functions and the cost of CPU running time in seconds,
respectively.

From the tables we can see that for most problems, the numbers NI and NG of the new algorithm are in general smaller
than those of the other three algorithms. Especially in terms of the cost of CPU running time, the new algorithm performed
much better than others. This means that the new adaptive nonmonotone trust-region method with curvilinear search is
more effective.

Table 1
Numerical results.

Fun. n/m NI NF NG FðxÞ kdk IAðxÞ time (s)

1 2/3 5 9 5 1.9522 4.6322e�007 1,2 0.5470
2 2/3 4 7 4 2.0000 2.5249e�012 1,2,3 0.5000
3 4/4 11 25 11 �44.0000 1.9957e�006 1,2,4 3.6409
4 2/3 9 19 9 0.6164 2.8766e�006 1,3 0.9689
5 3/6 10 21 10 3.5997 5.6719e�006 2,5 1.8130
6 3/30 8 15 8 0.0508 6.3159e�011 9,18,23,30 5.4210
7 3/21 14 27 14 2.3470e�06 3.9756e�008 2,3,8,11,

12,16,17,21 10.0000
8 7/5 17 42 17 678.6796 5.9932e�006 1,2 7.4380
9 10/9 16 33 16 24.3062 1.0981e�006 1,2,3,5,

6,7,9 11.4220
10 20/18 20 45 20 131.2477 6.8821e�006 1,2,3,5,6,

7,9,11,12,
15,16,17,18 53.2030

Table 2
Numerical results.

Fun. n/m NI NF NG FðxÞ kdk IAðxÞ time (s)

1 2/3 6 6 6 1.9522 8.2328e�007 1,2 1.7230
2 2/3 5 5 5 2.0000 9.4108e�010 1,2,3 1.2720
3 4/4 11 17 11 -44.0000 3.3857e�007 1,2,4 10.9360
4 2/3 11 11 11 0.6164 1.6139e�008 1,3 2.2230
5 3/6 11 11 11 3.5997 1.3166e�006 2,5 4.5470
6 3/30 7 7 7 0.0508 4.2234e�006 9,23 15.2420
7 3/21 15 15 15 2.3470e�06 9.8131e�008 2,3,8,11,

12,16,17,21 27.8300
8 7/5 20 32 20 678.6796 5.7390e�006 1,2 26.6880
9 10/9 14 14 14 24.3062 7.9824e�006 1,2,3,5,

6,7,9 23.7750
10 20/18 21 29 21 131.2477 4.9794e�006 1,2,3,5,6,

7,9,11,12,
15,16,17,18 92.2590

Table 3
Numerical results.

Fun. n/m NI NF NG FðxÞ kdk IAðxÞ time (s)

1 2/3 6 6 6 1.9522 8.2328e�007 1,2 1.6220
2 2/3 5 5 5 2.0000 9.4108e�010 1,2,3 1.2110
3 4/4 9 26 9 �44.0000 1.3009e�006 1,2,4 12.5680
4 2/3 9 12 9 0.6164 6.7713e�008 1,3 2.1530
5 3/6 11 11 11 3.5997 1.3166e�006 2,5 4.6870
6 3/30 7 7 7 0.0508 4.2234e�006 9,23 13.6800
7 3/21 15 15 15 2.3470e�06 9.8131e�008 2,3,8,11,

12,16,17,21 27.3490
8 7/5 16 56 16 678.6796 6.1430e�006 1,2 36.2620
9 10/9 15 33 15 24.3062 3.9247e�007 1,2,3,5,

6,7,9 41.3890
10 20/18 22 73 22 131.2477 1.6683e�006 1,2,3,5,6,

7,9,11,12,
15,16,17,18 166.2890
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5. Conclusions

In this paper, we have introduced an adaptive nonmonotone algorithm for minimizing minimax problem. The new algo-
rithm takes not only the advantages of nonmonotone technique proposed in [18] but also the advantages of adaptive tech-
nique combining the nonmonotone trust-region method with nonmonotone curvilinear search method, which enable the
Maratos effect to be avoided. The new algorithm has strongly global convergence and superlinear convergence, and the
numerical experiments show the efficiency.
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