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DISLOCATION BOUNDARIES—THE DISTRIBUTION FUNCTION
OF DISORIENTATION ANGLES
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Abstract—In dislocation structures orientation differences arise across dislocation boundaries during plastic
deformation. The distribution function of the disorientation angles related to dislocation boundaries has been
determined empirically and is almost independent of experimental parameters such as material type, plastic
strain, temperature and deformation conditions (Hughes et al., Phys. Rev. 81 (1998) 4664). In the present
paper distribution functions are derived from geometrical considerations for quite general assumptions on
the number of sets of parallel dislocations and their arrangement. The relation between the obtained distri-
bution functions for the disorientation angles and general orientation distributions is elucidated. A comparison
with the experimental results shows that the Rayleigh distribution obtained for an equivalent contribution
from two dislocation sets with perpendicular rotation axes is most appropriate for describing the experimental
data. For experimental distributions with a larger spread in the disorientation angles and relatively large
deviations from a Rayleigh distribution a superposition of two Rayleigh distributions is suggested implying
the presence of two different types of boundaries in a given structure. Finally, it is shown that an analysis of
distribution functions of disorientation angles can further the understanding of deformation induced structural
changes.  2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Zusammenfassung—Während plastischer Verformung treten in Versetzungsstrukturen Orientierungsunter-
schiede auf. Die Verteilung der Fehlorientierungswinkel von Versetzungsgrenzen wurde empirisch ermittelt
und erweist sich als nahezu unabhängig von den experimentellen Parametern wie Werkstoff, Dehnung, Tem-
peratur oder den konkreten Verformungsbedingungen (Hughes et al., Phys. Rev. 81 (1998) 4664). In dieser
Arbeit werden Verteilungsfunktionen der Desorientierungswinkel aus geometrischen Überlegungen für allge-
mein gehaltene Annahmen über die Zahl der enthaltenen Sätze paralleler Versetzungen und deren Anordnung
abgeleitet. Der Zusammenhang zwischen den abgeleiteten Verteilungsfunktionen der Desorientierungswinkel
und allgemeinen Orientierungsverteilungsfunktionen wird dargelegt. Ein Vergleich mit experimentellen Er-
gebnissen zeigt, daß Rayleigh-Verteilungen, die von gleichberechtigten Beiträgen zweier Sätze von Ver-
setzungen mit orthogonaler Drehachse rühren, zur Beschreibung der experimentellen Daten am besten geeig-
net sind. Für experimentell gefundene Verteilungen, die eine breitere Streuung zeigen und auch größere
Abweichungen von einer Rayleigh-Verteilung aufweisen, wird die Überlagerung zweier Rayleigh-Vertei-
lungen vorgeschlagen und damit die Annahme zweier unterschiedlicher Arten von Versetzungsgrenzen in
der Versetzungsstruktur impliziert. Schließlich wird gezeigt, daß eine Analyse der Verteilungsfuntionen der
Desorientierungswinkel förderlich für die Erklärung verformungsinduzierter Änderungen in der Substruktur
ist.  2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Deformation-induced dislocation boundaries are
characteristic for plastically deformed metals and
alloys. Such boundaries have different features and
two different types of boundaries can be distinguished
[1]: ordinary cell boundaries (incidental dislocation
boundaries, IDBs) arising from a statistical mutual
trapping of dislocations and geometrically necessary
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boundaries (GNBs) caused by different activities on
the slip systems on either side of the boundary. Orien-
tation differences between regions separated by dislo-
cation boundaries arise and disorientations are con-
nected with boundaries of both types: disorientation
angles across IDBs are relatively small with a narrow
spread, whereas the disorientation angles across
GNBs can have a much wider spread and their aver-
age disorientation angle is larger than that of IDBs.

For the distribution functions f(q) (i.e. the continu-
ous probability density function or, alternatively, the
discrete probability densities p) of the disorientation
angles q across both types of boundaries scaling was
established based on experimental data on cold-rolled
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pure aluminium polycrystals [2]: The distribution
functions determined after different plastic strains
(rolling reductions) coincide after a normalization of
the disorientation angles by their respective average
angle q̄ according to

f̂(x) = f(q)
dq
dx

= q̄f(xq̄) with x = q/q̄. (1)

This is valid on the condition that IDBs and GNBs
are treated separately as scaling does not occur, if all
boundaries are grouped together. Figure 1 illustrates
this behaviour for IBDs and GNBs in aluminium
cold-rolled to different strains.

The same behaviour was found for IDBs in copper
single crystals [3, 4] (after hot-compression) and was
also confirmed for nickel (rolling) and a stainless steel
(compression) [5]. Although observed in different
materials all distributions for IDBs (ordinary cell
boundaries [1]) normalized by their average angle fall
on the same master curve [5].

In previous papers [3, 4] the shape of the distri-
bution and the scaling (for small disorientation
angles) were traced to a simple geometrical reason:
the existence of two inclined dislocation sets in each
boundary. The purpose of the present paper is to
extend the previous analysis to more than two dislo-
cation sets and to address some apparent limitations
of the approach. The basic idea is to explore the gen-
eral possibilities rather than a consideration of spe-

Fig. 1. Histograms (relative frequencies p̂i = q̄pi of finding a normalized disorientation angle x = q/q̄ within a
bin of width �x�1/3) of the disorientation angles normalized by the average disorientation angle q̄ for different
types of boundaries in cold-rolled aluminium after different rolling reductions: (a) incidental dislocation bound-
aries; and (b) geometrically necessary boundaries (from Ref. [2]). The solid lines represent an empirical fit of
a distribution f̂(x) = aaxa�1 exp(�ax)/�(a) with a = 3 for IDBs and a = 2.5 for GNBs (this distribution will not
be discussed further; it was suggested [2] by an analogy to the analysis of island growth, without direct

correspondence to the dislocations accumulated in a boundary).

cific dislocation arrangements resulting from certain
activated slip systems. In this manner, the investi-
gation is not restricted to any particular deformation
mode.

First, the analysis is limited to small disorientation
angles, before the occurrence of higher disorientation
angles is taken into account. This allows the theoreti-
cal distributions to be compared with experimental
observations showing a relatively large variation in
disorientation angles and angular spread. The com-
parison shows that distribution functions can be a use-
ful tool in the analysis of formation and evolution of
dislocation boundaries.

2. SMALL DISORIENTATION ANGLES

2.1. A single dislocation set

Disorientations across IDBs arise from statistical
fluctuations in the dislocation fluxes passing the
boundaries. For a single activated slip system only a
single set of dislocations is stored in the boundary
and a Gaussian distribution fG,sa

(a) for the disorien-
tation angles a results with vanishing mean value and
a standard deviation sa depending on plastic strain
[6]. In case of GNBs disorientations are caused by an
imbalance between activities of the slip system on
both sides of the boundaries. In a deformation struc-
ture the imbalances are not the same across each
GNB, for instance, both positive and negative imbal-
ances are required in order to avoid an overall bend-
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ing. A statistical distribution of different imbalances
across different GNBs in the deformation structure
leads to a Gaussian distribution of the disorientation
angle with vanishing mean value for GNBs also [7],
but with a stronger increase of the standard deviation
with plastic strain than for IDBs [7, 8].

A single dislocation set in the boundaries is
expected only for a single activated slip system and
therefore restricted to single glide in single crystals.
In unidirectional deformation, no boundary formation
is found in single glide. The predicted Gaussian distri-
bution of the disorientation angle may be observable
only in cyclic deformation where a single activated
slip system leads to the formation of dislocation
walls. On the other hand, in cyclic deformation the
evolution of the disorientation angle is strongly
retarded [8].

In polycrystals and even in single crystals after the
onset of secondary glide plastic deformation is carried
by several slip systems and several sets of dislo-
cations are accumulated in the boundaries. The conse-
quences of having more than a single dislocation set
in the boundaries are investigated. In the following,
it is assumed that the contribution of each dislocation
set to the disorientation of the boundary is statistically
equivalent, a generalization to non-equivalent contri-
butions is outlined in Appendix A.

2.2. Two inclined dislocation sets

For a theoretical description of the shape of the
distribution function two sets of inclined edge dislo-
cations in the boundaries have been considered [3, 4]
as shown in Fig. 2. This idea, which also explains the
scaling behaviour, is summarized shortly.

Each set i of parallel edge dislocations of Burgers
vector b

→
i (perpendicular to the boundary plane) with

a mutual distance hi in a boundary contributes to the
total disorientation across the boundary with a
rotation around a rotation axis u→ i by an angle
ai = bi/hi [9]. If a dislocation boundary consists of
two dislocation sets only, the common disorientation
angle q is defined by the individual disorientation
angles a1 und a2 and an inclination angle b between
the two rotation axes (cos b = u→1·u

→
2):

cos(q/2) = cos(a1/2)cos(a2/2) (2)
�sin(a1/2)sin(a2/2)cos(b).

For small disorientation angles q and ai the trigono-
metric functions are replaced by the first terms of a
Taylor expansion:

q2 = a2
1 + a2

2 + 2a1a2 cos(b). (3)

It is assumed that both dislocation sets contribute in
an equal manner and the disorientation angles ai of
each individual dislocation set are Gaussian distrib-
uted (e.g. for IDBs from statistical fluctuations in the
dislocation fluxes passing through the dislocation

Fig. 2. Schematic view of a tilt boundary composed by two
sets of parallel edge dislocations. Both dislocation sets have
the same Burgers vector b

→
(parallel to the boundary normal z).

Each set causes a rotation around an axis parallel to the dislo-
cation line (x or x� axis). The dislocation lines are inclined
towards each other by an angle b. The line direction of one set
(x) is pointing towards the drawing plane, the other (x�) out-
wards causing the apparent opposite sign of the dislocations

(from Ref. [3]).

boundaries [6, 7]) with vanishing mean values and
the same standard deviation sa. From the probability
of finding a disorientation angle less than q

P(X�q) = � �
q

2
>a

2
1 + a

2
2 + 2a1a2 cos(b)

fG,sa
(a1)fG,sa

(a2) da1 da2

(4)

the distribution function†

fb(q) =
dP
dq

=
q

s2
a sin b

(5)

exp��
q2

2s2
a sin2 b�I0� q2 cos b

2s2
a sin2 b�

is obtained [3].
The distribution of equation (5) causes a pro-

portionality of the moments of order m of the dis-
orientation angle to the power m of the standard devi-
ation sa

�qm��sm
a�q̄m (6)

where the brackets �·� denote ensemble averages.

† Note, the setting error in equation (19) in Ref. [3] for
the scaled distribution f̂(x) where sin b2 has to be corrected
to (sin b)2 = sin2 b.



1482 PANTLEON and HANSEN: DISLOCATION BOUNDARIES

Consequently, normalization of the disorientation
angle by the average angle q̄ = �q� removes all depen-
dence on the standard deviation and the resulting dis-
tributions

f̂b(q/q̄) = fb(q)
dq
dx

= q̄fb(xq̄) (7)

show scaling for any inclination angle b between the
rotation axes.

For the case of two perpendicular sets of edge dis-
locations, i.e. b = 90° between the rotation axes, the
distribution of equation (5) is simplified considerably
resulting in the Rayleigh distribution

f90°(q) =
q
s2
a

exp��
q2

2s2
a
� = fR(q) (8)

which is well known for grain size distributions (e.g.
Ref. [10]). With q̄ = sa√π/2 and x = q/q̄ the scaled
Rayleigh distribution becomes

f̂R(x) = q̄fR(xq̄) =
πx
2

exp��
πx2

4 �. (9)

2.2.1. Example. An example for deposition of
two similar sets of edge dislocations in the same
boundary as shown in Fig. 2 is simple shear of a face
centred cubic crystal along the (001) plane in the
[110] direction. Of the 12 possible slip systems of
�110�{111} type only two systems are activated. Both
have the same Burgers vector b

→
= [110]a/2 and differ

in the slip plane normal (n→1 = (11̄1)/√3 or
n→2 = (11̄1̄)/√3). In boundaries on the (110) plane per-
pendicular to the shear direction (n→b = (110)/√2),
edge dislocations of both slip systems are stored.
Their line vectors are inclined towards each other
with cos b = (n→1×n→b)·(n→2×n→b)/�n→1×n→b� �n→2×n→b� = 1/3
corresponding to an inclination angle b of about
70.5°.

2.2.2. Boundary character. Originally [3], the
occurrence of two dislocation sets with inclined
rotation axes was illustrated by a tilt boundary with
two independent sets of edge dislocations. But this is
not a necessary restriction and the same formulation
is valid if the total disorientation between the adjacent
cells is a superposition of a tilt and a twist compo-
nent: The tilt component may be formed by a single
set of edge dislocations leading to a rotation axis
along their line vector. For the independent twist
component screw dislocations in the boundary are
required causing a rotation with an axis perpendicular
to the boundary. For boundaries with mixed character
the disorientation angle distribution is given by the
Rayleigh distribution as well, because the axes of
both rotations are perpendicular. It is immaterial for
the considerations here, that the twist component is
due to two (or more) correlated sets of parallel screw
dislocations with different orientations in the bound-

ary. With respect to their effect on the rotations they
can be treated as a single independent set. Moreover,
possible dislocation reactions will not alter the dis-
orientation of the boundary.

2.3. Three perpendicular dislocation sets

Beyond that, there might be a third set of dislo-
cations leading to a third axis of rotation. For
instance, beside two edge dislocation sets leading to
two inclined rotation axes in the boundary, there
might be screw dislocations in the boundary leading
to a third independent rotation axis perpendicular to
the boundary. Even in this case, the problem can be
treated for small disorientation angles by the same
methods [3] as in case of two sets, but in most cases
the integrals can not be solved analytically (compare
Appendix A).

However, if all three rotation axes are perpendicu-
lar towards each other and each dislocation set con-
tributes in an equal manner, i.e. the disorientation
angle ai of each individual contribution is Gaussian
distributed with a vanishing mean value and the same
standard deviation sa, the integration is straightfor-
ward and a Maxwell distribution

fM(q) = �2
π
q2

s3
a

exp��
q2

2s2
a
� (10)

results (i.e. the same distribution as for the speed of
molecules in an ideal gas). From the expectation
values of order m

�qm� =
2

√π2m/2sm
a��m + 3

2 ��sm
a (11)

(with the Gamma function �) and their pro-
portionality to sm

a or q̄m, respectively, it becomes
obvious that the Maxwell distribution shows scaling,
because all effects from the standard deviation can be
eliminated by normalization of the disorientation
angle by the average angle.

With q̄ = sa√8/π and x = q/q̄ the scaled Maxwell
distribution

f̂M(x) = q̄fM(xq̄) =
32x2

π2 exp��
4x2

π � (12)

results. As obvious from Fig. 3, this scaled distri-
bution has some significant differences compared to
the scaled Rayleigh distribution of equation (9).
Especially, the maximum f̂max = f̂(xmax) of the scaled
Maxwell distribution is higher and shifted towards
larger normalized disorientation angles xmax. Further-
more, the scaled Maxwell distribution is not as wide
as the scaled Rayleigh distribution and has a smaller
standard deviation (compare Table 1).
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Fig. 3. Comparison of the scaled Rayleigh (equation (9)) and
the scaled Maxwell distribution (equation (12)).

Table 1. Comparison of characteristic measures (position xmax and
height f̂(xmax) of maximum, estimation value �x2�) of scaled Maxwell
and Rayleigh distribution (note that the square of the standard deviation

is given by �(x��x�)2� = �x2���x�2 = �x2��1)

Measure Maxwell Rayleigh

xmax √π/2�0.886 > √2/π�0.798
f̂(xmax) 8/eπ�0.937 > √π/2e�0.760
�x2� 3π/8�1.18 � 4/π�1.27

2.4. Scaling

According to equations (9) and (12) the depen-
dence of the distribution functions fR(q) and fM(q) on
the standard deviation sa or on the average disorien-
tation angle q̄ are eliminated by normalization of the
disorientation angle by its average and the scaled dis-
tribution functions f̂(x) are independent of sa or q̄.
Consequently, both the Rayleigh and the Maxwell
distribution show scaling behaviour.

Scaling for small disorientation angles is invoked
directly by the usage of equation (3) because multipli-
cation of each disorientation angle ai by a common
factor leads to a multiplication of the resultant dis-
orientation angle by the same factor. This is different
for larger disorientation angles, because the period-
icity and the involved trigonometric functions in equ-
ation (2) prevent the distributions from true scaling
at larger angles.

3. HIGH DISORIENTATION ANGLES

The distributions of disorientation angles were
determined from geometrical arguments and statisti-
cal assumptions in the previous section (and Refs. [3,
4]) on the premise of small disorientations only. For

larger disorientation angles† the trigonometric func-
tions in equation (2) cannot be restricted to the lead-
ing orders of the Taylor series. An extension of the
calculation to higher disorientation angles based on
equation (2) could not be achieved analytically. In
an alternative manner, disorientation distributions are
derived in this section from the orientations of indi-
vidual regions. For the distribution of these orien-
tations a well-known orientation distribution in orien-
tation space, the Bingham or Watson distribution, is
assumed. It will be shown that the Rayleigh and the
Maxwell distribution are asymptotic representations
for low disorientation angles.

3.1. Description of rotations as quarternions

Orientations are determined by a rotation of an
angle w around an axis u→ (on the unit sphere S3 in
R3) from a reference orientation. They can be
described by unit quarternions (e.g. Ref. [11])

x = 	
x0

x1

x2

x3


 = 	x0

x→
 (13)

= 	 cos(w/2)

u→sin(w/2)
 = 	
cos(w/2)

sin(w/2)sin J cos f

sin(w/2)sin J sin f

sin(w/2)cos J



on a unit hypersphere S4 in four dimensions. Since
the quarternion x and its negative �x represent the
same orientation, only the positive hemisphere S+

4 is
required with 0�w�π, 0�J�π and 0�f�2π. The
respective volume element on S+

4 is

dV = sin2(w/2)sin J dw dJ df. (14)

The disorientation between two orientations R� and
R� is found from the rules for performing successive
rotations R�(R�)�1 leading to a disorientation angle q
given by

cos(q/2) = x�0x�0 + x→�·x→� = x�·x�. (15)

3.2. Distribution function in orientation space

For the calculation of the disorientation distribution
from orientations of individual regions (separated by
dislocation boundaries) the common Bingham distri-
bution [12] is considered for the distribution of their
orientations. This orientation distribution can be
obtained from a maximum-likelihood principle or can
be characterized alternatively as the maximum

† E.g. the relative error in the approximation
sin(q/2)�q/2 becomes larger than 1% only for angles
above 28°.
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entropy distribution on the (positive) hypersphere S+
4

(compare the discussion in Ref. [11]). Additionally,
from rotation symmetry and a maximum probability
at a chosen orientation x� the (bi-polar) Watson distri-
bution [13]

fW(x) =
1

N(K)
exp(K(x·x�)2) (16)

N(K) = 2π2
1F1(1/2;2;K) (17)

follows, where 1F1 is the degenerate hypergeometric
function and K describes the spread of orientations.

3.3. Disorientation distribution

Because any orientation can be used as the refer-
ence orientation, without losing generality the fixed
orientation is chosen to be the identity
x� = ±(1,0,0,0) leading to the orientation distribution

fW(w,J,f) =
1

N(K)
exp(K cos2(w/2)) = fW(w).

(18)

The disorientation angle q between R� and R� = I is
then given directly by

cos(q/2) = x0 = cos(w/2) (19)

q = w>0. (20)

From the probability of finding a disorientation angle
smaller than q

P(X�q) =

�� �
w�q

fW(w,J,f)sin2(w/2)sin(J) dw dJ df (21)

= 4π�
q

0

fW(w)sin2(w/2) dw

the desired general disorientation distribution on the
interval q�[0,p)

fW,3(q) =
dP
dq

= 4πfW(	)sin2(q/2) (22)

=
4π

N(K)
exp(K cos2(q/2))sin2(q/2)

is derived.
For small disorientation angles q the trigonometric

functions in equation (22) can be restricted to their
leading orders in q resulting in a simplified distri-
bution

fW,3(q)�
4π
Ñ �q2�2

exp�K�1�
q2

4 ��. (23)

With K = 2/s2
a this is the Maxwell distribution of equ-

ation (10) obtained earlier for three independent dis-
location sets with perpendicular rotation axes. Note,
that the range of the disorientation angle has been
changed tacitly to q�[0,
) and a different normaliz-
ation factor Ñ arises.

3.4. Restricted rotation axis

In the previous subsections a uniform distribution
of the possible rotation axes u→ on the unit sphere S3

was assumed. This situation corresponds to the exist-
ence of three rotation axes or three equivalent dislo-
cation sets in the boundary, respectively. In a similar
way, the combined effect of only two relevant dislo-
cation sets (as two edge dislocation sets in a tilt
boundary or one edge dislocation set and screw dislo-
cations in a more general boundary) can be treated.
The rotations associated with both dislocation sets act
simultaneously, not subsequently. Then all possible
rotation axes of the combined rotation are confined
in the plane defined by the two individual rotation
axes. The resulting rotation axes are all perpendicular
to a certain direction and consequently restricted to a
unit circle S2.

The possible rotations form only a subpart of the
hemisphere S+

4 which can be described with e.g.
J = π/2 (x3�0) or equivalently by a hemisphere S+

3

with a reduced dimension. As an analogue to the Wat-
son distribution of equation (18) on S+

4 the orien-
tation distribution

f∗W(w) =
1

N∗(K)
exp(K cos2(w/2)) (24)

on S+
3 is considered. A different normalization factor

N* arises from neglecting x3 or q due to the different
“volume” element on S+

3

dV∗ = sin(w/2) dw df. (25)

This leads to the disorientation distribution on the
interval q�[0,π)

fW,2(q) = 2πf∗W(q)sin(q/2) (26)

=
2π

N∗(K)
exp(K cos2(q/2))sin(q/2)

with

N∗(K) = 4π�
1

0

exp(Ku2) du. (27)

For small angles the disorientation distribution sim-
plifies to the Rayleigh distribution of equation (8)
with K = 2/s2

a

fW,2(q)�
2π
Ñ∗
q
2

exp�K�1�
q2

4 ��. (28)
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3.5. Relation with distributions for small disorien-
tation angles

Consequently, the distributions derived in Section
2 on the basis of the dislocation content of the bound-
aries can be seen as asymptotic representations for
small angles of the disorientation distributions
obtained from orientation distributions proposed on
statistical assumptions about orientations (maximum-
likelihood principle or maximum entropy [11]).

An application of the more complex distributions
for describing experimental data seems not really
necessary due to the fact, that there are only small
differences between the distributions from equations
(22) and (26) and their low disorientation angle pen-
dants of equations (10) and (8). For example, the rela-
tive error between the distribution given by equation
(22) and a Maxwell distribution is less than 2% in
the range 0�q�20° if both distributions have their
maximum at 10°. In case of the distribution given by
equation (26) and the Rayleigh distribution the rela-
tive error will be even less than 1% for the same con-
ditions.

Of course, for higher disorientation angles the rela-
tive errors increase, but for disorientation angles
below about 20° the distributions obtained in Section
2 in the limit of small disorientation angles should be
sufficient for describing experimental data. Thus, in
the following only Rayleigh and Maxwell distri-
butions will be applied.

3.6. Scaling

In contrast to the behaviour of the Maxwell and
Rayleigh distribution the distributions of equations
(22) and (26) do not show scaling behaviour, even if
there is only one parameter K which describes the
whole distribution. Due to nonlinearities in q caused
by the trigonometric functions and their periodicity
there is no relation like �qm��q̄m and scaling by nor-
malization with the average disorientation angle can
be validated only in the limit of low disorientation
angles. Obviously, the (inherent) periodicity of orien-
tation space prevents true scaling.

4. COMPARISON WITH EXPERIMENTAL DATA

By means of a transmission electron microscope
the disorientation angles connected with dislocation
boundaries are determined by Liu and Hansen [14,
15] in cold-rolled pure aluminium polycrystals. The
inspection of individual boundaries allows the distinc-
tion between the two boundary types (IDBs and
GNBs) from their morphology. The original data for
four different rolling reductions (or plastic strains,
respectively) [2, 14] which led to Fig. 1 are evaluated
here in a slightly different manner.

Owing to the relatively low disorientation angles
(the largest disorientation angle is 15.5°) a compari-
son of the experimental data with the theoretical dis-
tributions is restricted to the findings for small dis-

orientation angles of Section 2. First, the
experimental distributions are examined separately
for IDBs and GNBs. Later, all boundaries are taken
together and the superposition of both distributions
is discussed.

4.1. Disorientation angles in IDBs

For each plastic strain the disorientation angles
determined for incidental dislocation boundaries are
normalized by their average value and the normalized
angles x = q/q̄ are gathered into bins of size
�x = �q/q̄ (=0.2). The number of occasions Ni in a
certain bin i and the total number of measured dis-

orientation angles N = �Ni define (an estimation of)

the probability

p̂i =
Ni

N
1

�x
(29)

to find a normalized disorientation angle in a bin i of
width �x. These relative frequencies (or probability
densities) are shown in Fig. 4 for four different
strains. All histograms are quite similar and coincide
nearly. Based on this observation (or Fig. 1,
respectively) scaling of the probability density func-
tions was suggested [2].

The same data are displayed in an alternative way
as accumulated frequencies P in Fig. 5. Plotting the
probability P of finding a normalized disorientation
angle less than x has the opportunity that the disorien-
tation angles need not to be gathered into bins. No
information is lost and more details can be revealed
compared to the histograms of Fig. 4, even if only

Fig. 4. Histograms (relative frequencies p̂i of finding a nor-
malized disorientation angle within a bin of width �x = 0.2) of
the normalized disorientation angles x = q/q̄ of incidental dislo-
cation boundaries in cold-rolled aluminium for different rolling
reductions [2, 14]. The lines show the scaled theoretical distri-
butions f̂(x): Rayleigh (equation (9)), Maxwell (equation (12)),

and Gauss (equation (A11)).
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Fig. 5. Accumulated frequencies P of the normalized disorien-
tation angles x = q/q̄ of incidental dislocation boundaries in
cold-rolled aluminium for different rolling reductions [2, 14]
(only every 15th data point is shown). The lines show the prob-
abilities that a normalized disorientation angle is less than x
corresponding to the theoretical distributions: Rayleigh
(equation (9)), Maxwell (equation (12)), and Gauss (equation

(A11)).

every 15th measurement is shown as a data point as
in Fig. 5.

However, in the following always both kinds of
representation (as histograms and as accumulated
frequencies) are utilized, because they provide comp-
lementary information on the shape of the distri-
bution function.

All experimental curves for the different rolling
reductions (which are divided up with a view to
greater clarity in Fig. 5a and b) are quite similar. No
difference at all can be detected between the curves
for 5 and 10% in Fig. 5a confirming the scaling
hypothesis. From Fig. 5b some deviations of the dis-
tributions corresponding to larger strains (30 and
50%) are observed, especially at higher normalized
disorientation angles x. These deviations indicate that

scaling may not hold exactly as the strain is increased
(compare Section 4.5).

The observed deviations can be substantiated
further by statistical tests for the similarity of distri-
butions. An estimation for the hypothesis that two
empirically obtained data sets belong to the same dis-
tribution function can be gained by the Kolmogorow–
Smirnow test (e.g. Ref. [16]). This statistical two
sample test is based on the accumulated frequencies
P of two data samples and the supremum (i.e.
maximum) of their difference �P1(x)�P2(x)�. The
probability value (p-value) represents the probability
of wrongly rejecting the hypothesis that the two
samples belong to the same distribution if it is in fact
true. The results of such tests for the data of the
scaled disorientation angles x = q/q̄ summarized in
Table 2 show that the disorientation data after 5 and
10% are most likely belonging to the same distri-
bution. The same holds to a lesser extent for distri-
butions at subsequent strains, but with increasing dif-
ference in rolling reduction any correlation vanishes.

4.2. Comparison with theoretical distributions

The theoretical scaled distributions obtained in
Section 2 which contain no fitting parameter are given
also in Fig. 4. A comparison with the experimental
data (histograms) reveals that a Rayleigh distribution†
(equation (9)) describes the experimental data more
accurately than the Maxwell distribution (equation
(12)) Especially, the width of the Maxwell distri-
bution is too small. This becomes very obvious at
angles larger than the mean disorientation angle, for
which the Maxwell distribution significantly under-
estimates their occurrences. However, at very small
normalized disorientation angles the histograms in
Fig. 4 are not decisive.

That a Rayleigh distribution is more likely than a
Maxwell distribution is supported by Fig. 5 where the
accumulated frequencies (or the cumulative distri-
bution function)

Table 2. Results (p-values) of Kolmogorov–Smirnov tests on the nor-
malized disorientation angles x for different types of boundaries (IDBs
and GNBs): the normalized disorientation angles at two different strains
are compared and the probability that the data belong to the same distri-
bution are determined. The result for the normalized disorientation
angles x = q/q̄all from the data taken all boundaries together are also
given. Numbers in italic indicate that the hypothesis that the data belong
to the same distribution would be rejected for a significance level of

15%

Strains 5%/ 5%/ 5%/ 10%/ 10%/ 30%/
10% 30% 50% 30% 50% 50%

IDBs 0.99 0.20 0.01 0.37 0.03 0.42
GNBs 0.33 0.59 0.37 0.75 0.49 0.56
All boundaries 0.11 0.00 0.02 0.01 0.59 0.07

† Or even a distribution with an inclination angle
b�90°, compare Ref. [4].
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P = �
x

0

f(x�) dx� (30)

corresponding to the ideal distributions are given also
without any fitting and compared with experimental
data. Accumulated frequencies and histograms show
the same trend: Similarly as seen from the histograms
the Rayleigh distribution describes the experimental
data best in Fig. 5 for all disorientation angles. Even
for small disorientation angles the agreement of the
experimentally obtained accumulated frequencies
with the Rayleigh distribution is better than with the
Maxwell distribution. The data points for 5 and 10%
resemble the accumulated frequencies of a Rayleigh
distribution remarkably closely and nearly no differ-
ences can be detected in Fig. 5a. Even for larger
strains (rolling reductions of 30 and 50% in Fig. 5b)
where deviations are observed (to be discussed in
Section 4.5), the Rayleigh distribution is still a good
approximation. Neither a Maxwell distribution (the
observed deviations arise in opposite manner com-
pared to a Maxwell distribution) nor a Gaussian dis-
tribution (with a vanishing mean value) achieves a
good agreement.

Note, that a Gaussian distribution expected for a
single dislocation set in the boundary has its
maximum at 0°, whereas experimentally determined
distributions of the disorientation angles show a
maximum at finite angles. The corresponding lack of
small disorientations originally led to the proposal of
several dislocation sets in a boundary [3].

4.3. Disorientation angles in GNBs

The same evaluation can be performed on the data
of geometrically necessary boundaries. Fig. 6a shows
the accumulated frequencies P for the normalized dis-
orientation angles x across GNBs for four different
plastic strains. Owing to the smaller number of meas-
ured boundaries a larger bin size �x = 0.4 is chosen
in the histograms of Fig. 6b. As noted before, all
curves fall closely together confirming the proposed
scaling for GNBs [2].

A comparison with theoretical distributions eluci-
dates that the Rayleigh distribution (equation (9))
again gives a better description than a Maxwell distri-
bution of equation (12). But the agreement of the dis-
orientation angle distributions for GNBs (like for the
IDBs at higher strains) with a Rayleigh distribution
is not as good as in the case of IDBs at small strains.
The curves in Fig. 6 give some hints that the maxima
of the probability density functions may be shifted to
smaller normalized disorientation angles.

Kolmogorow–Smirnow tests (Table 2) give some
evidence for the hypothesis that the data sets for the
normalized disorientation angles across GNBs at dif-
ferent strains belong to the same distribution function.
Table 2 also shows that for the combined data of all
boundaries taking together IDBs and GNBs the

Fig. 6. Normalized disorientation angles x = q/q̄ of geometri-
cally necessary boundaries in cold-rolled aluminium for differ-
ent rolling reductions [2, 14]: (a) accumulated frequencies P
(only every 15th data point is shown); and (b) histograms of
relative frequencies p̂ for bins of width �x = 0.4. The lines
show the distributions functions f̂ or the corresponding prob-
abilities P that a normalized disorientation angle is less than x
for the Rayleigh (equation (9)) and the Maxwell (equation (12))

distribution.

hypothesis of belonging to the same distribution is
(almost) always rejected (for a significance level of
15%). This will be discussed in the following subsec-
tion.

4.4. Superposition of distributions

As a consequence of the preceding subsections
experimental probability densities of the disorien-
tation angles of either IDBs or GNBs may be
described in a reasonably good approximation by a
Rayleigh distribution. This finding allows the separ-
ation of disorientation angles according to the type
of the boundaries from data where the disorientation
angles of all dislocation boundaries are taken together
without distinction between IDBs and GNBs. Accord-
ingly, the combined data are described by a superpo-
sition
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fsum(q) =
xIDBfR,q̄IDB

(q) + xGNBfR,q̄GNB
(q) = (31)

xIDBq̄IDBf̂R(q/q̄IDB) + xGNBq̄GNBf̂R(q/q̄GNB)

of two Rayleigh distribution functions corresponding
to the two types of boundaries with their relative fre-
quencies (xIDB and xGNB = 1�xIDB) and average dis-
orientation angles (q̄IDB and q̄GNB).

This is illustrated for the experimental data on an
aluminium polycrystal cold-rolled to a reduction of
5%, where the disorientation angles of all boundaries
(IDBs and GNBs) are taken together as in Fig. 7 and
no distinction is made between the two different types
of dislocation boundaries. The resulting probability
density function in Fig. 7b shows a maximum at the
bin centered at 0.5 (from 0.4 to 0.6) with a height of

Fig. 7. Disorientation angles from aluminium after 5% cold-
rolling for all boundaries (IDBs and GNBs taken together [2,
14]): (a) accumulated frequencies P (only every 15th data point
is shown); and (b) histogram (of scaled distributions p̂) together
with the theoretical distributions f̂: Rayleigh (equation (9)) and
Maxwell (equation (12)). The dashed dotted line is obtained
by fitting according to equation (31) with two Rayleigh distri-
butions of different mean values (in (a) the data for all bound-
aries after 50% cold-rolling and a similar fit are also included).

about 0.9. This is obviously in conflict with a Ray-
leigh distribution (compare Fig. 7b and Table 1), but
a fit of a superposition of two Rayleigh distribution
functions according to equation (31) (or the corre-
sponding probabilities P, respectively) to the com-
bined data gives the quite close approximation with
the parameters q̄IDB = 0.55°, q̄GNB = 1.40°, and
xIDB = 0.70 shown in Fig. 7a and b.

On the other hand, the original data set [14] where
a distinction between IDBs and GNBs is made has
mean values of q̄IDB = 0.48° and q̄GNB = 1.28° and a
fraction of 58% of all boundaries is classified as
IDBs. Taking into account the uncertainties of the
experimental data and of the fitting procedure the
results are quite close. Consequently, the two Ray-
leigh distributions of the fit according to equation (31)
in Fig. 7 are closely related to the two different types
of boundaries.

A similar fit of a superposition according to equ-
ation (31) to the combined data of IDBs and GNBs
can be achieved for all rolling reductions (compare
the compilation in Table 3 and the graph for 50% in
Fig. 7a) confirming the separation into both types of
boundaries based on morphology only.

4.5. Distributions at increasing strain

It has been found that a Rayleigh distribution can
describe the disorientation angle distributions of IDBs
with good accuracy as well as disorientation angle
distributions of GNBs. However, some deviations
from the ideal Rayleigh distribution† have been
observed, for instance, with increasing strain.

In some cases (as for the combined data of IDBs
and GNBs in Fig. 7b), experimentally determined

Table 3. Average disorientation angles for IDBs (q̄IDB) and GNBs
(q̄GNB) and fraction xIBD of IDBs in cold-rolled aluminium for different
rolling reductions: (i) from the individual experimental data sets for each
boundary type [2, 14]; and (ii) obtained from the combined data set for
all boundaries by fitting of two Rayleigh distributions according to equ-

ation (31)

Rolling (i) Experimental (ii) Fitting
reduction

xIDB q̄IDB q̄GNB xIDB q̄IDB q̄GNB

(°) (°) (°) (°)

5% 0.58 0.48 1.28 0.70 0.55 1.40
10% 0.53 0.61 1.81 0.61 0.64 1.93
30% 0.68 0.98 4.06 0.64 0.90 3.67
50% 0.67 1.74 5.24 0.59 1.47 4.64

† The Rayleigh distribution is obtained for two equival-
ent dislocation sets with orthogonal rotation axes. A descrip-
tion with two inclined dislocation sets will not alter the argu-
ment, because the distribution function for two dislocation
sets given by equations (5) and (7) show only a slight depen-
dence on the inclination angle b. The maximum of the distri-
butions is shifted to lower disorientation angles, but the
height of the maximum (f̂max�0.76) remains nearly
unaltered [3, 4].
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probability densities normalized by their average
angles show: (i) a maximum height larger than the
maximum height of a scaled Rayleigh distribution
f̂(xmax)�0.76; and (ii) simultaneously the maximum
occurs at smaller normalized angles than xmax�0.8
predicted by the scaled Rayleigh distribution. Due to
the position of the maximum this can not be explained
by the assumption of an equivalent third contribution
to the rotation of the boundary and a corresponding
scaled Maxwell distribution.

Such deviations may have different cases (to be
discussed later) and the experimental data may rep-
resent more than a single distribution. In analogy to
the combined data for IDBs and GNBs, for these
somehow different kind of distributions (which some-
times do not show a proper scaling behaviour, com-
pare Section 5.4) two corresponding Rayleigh distri-
butions for the disorientation angles are considered,
but with different average disorientation angles q̄1

and q̄2. The total disorientation distribution

fsum(q) = x1fR,q̄1
(q) + x2fR,q̄2

(q) (32)
= x1q̄1f̂R(q/q̄1) + x2q̄2f̂R(q/q̄2)

is then a superposition of two Rayleigh distributions
with relative frequencies xi�[0,1] and x2 = 1�x1.
Due to the overlap of both single distributions usually
only one maximum can be seen (as in Fig. 7). An
occurrence of a second maximum requires a large
ratio between the two mean values q̄1 and q̄2. Based
on the idea of a superposition of two distributions the
data for IDBs as well as for GNBs are re-investigated.

4.5.1. IBDs. As shown in Fig. 5b the accumu-
lated frequencies for IDBs after rolling reductions of
30 and 50% deviate slightly from that of a single Ray-
leigh distribution, but a nice agreement can be
obtained by fitting a superposition of two Rayleigh
distributions with different mean values as shown in
Fig. 8a. Based on this fitting procedure the exper-
imentally determined disorientation angles at larger
strains correspond to two different types of IDBs
(IDB1 and IDB2) with two different mean values, both
increasing with strain (compare Fig. 9). At low rolling
reductions (5 and 10%) the approximation with a sin-
gle Rayleigh distribution is quite good and no separ-
ation becomes evident. Indeed, fitting of two Rayleigh
distributions will result only in a superposition of two
distributions with approximately the same mean
value.

4.5.2. GNBs. In a similar way, distributions for
the disorientation angles of GNBs may be described
by a superposition of disorientation angles from
GNBs of two different types. Again, a better approxi-
mation can be achieved by fitting of a superposition
of two Rayleigh distributions than with a single Ray-
leigh distribution (compare Fig. 8b). As shown in Fig.
9 the different mean disorientation angles of both
types (GNB1 and GNB2) obtained by fitting increase
with strain.

Fig. 8. Accumulated frequencies for the disorientation angles
from aluminium after 30 and 50% cold-rolling [2, 14] (only
every 15th data point is shown): (a) IDBs; and (b) GNBs. The
lines are obtained by fitting with a superposition of two Ray-
leigh distributions of different mean values according to equ-

ation (32).

5. DISCUSSION

5.1. Distribution functions

From geometrical considerations based on different
assumptions on the number of dislocation sets and
their arrangement, different distribution functions of
disorientation angles have been derived, especially
the Gauss, the Rayleigh, and the Maxwell distri-
bution. In general, a comparison between these distri-
butions should be based on the scaled versions. The
scaled distributions in Fig. 3 or 4 show some signifi-
cant differences, e.g. the maximum of the scaled
Maxwell distribution is higher and occurs at higher
normalized disorientation angles than that of the Ray-
leigh distribution.

More general disorientation distributions
(equations (22) and (26)) were obtained from quite
general assumptions on the orientations. These dis-
orientation distributions are valid for arbitrarily large
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Fig. 9. Mean disorientations angles across different types of
IDBs and GNBs in cold-rolled aluminium obtained from fitting
with a superposition of two Rayleigh distributions of different
mean values according to equation (32). For both types of
boundaries no separation was possible for a rolling reduction

of 5%, as well as for 10% in the case of IDBs.

disorientation angles and not restricted to smaller
angles. Owing to the small differences their low angle
approximations, the Rayleigh or Maxwell distri-
bution, are sufficient for an analysis of small disorien-
tation angles (for instance, less than 20°).

5.2. Agreement with experimental data

From comparison with experimentally obtained
frequency distributions it becomes obvious that a
Maxwell distribution shows less agreement than a
Rayleigh distribution. A description of the experi-
mental data for IDBs as well as GNBs with Rayleigh
distribution indicates, that the rotation associated with
a boundary is well described by two dislocation sets.
There is no evidence for a significant contribution of
a third dislocation set leading to a Maxwell distri-
bution. (If a third dislocation set contributes only mar-
ginally, a Rayleigh distribution is still obtained, com-
pare case 2 of Appendix A.)

Ideally, an explanation for the dominance of two
dislocation sets in the boundary should be based on
the activated slip systems (a task out of the scope of
this work). On the other hand, both types of bound-
aries, IDBs and GNBs, despite their different forma-
tion (by statistical trapping or differences in the
activation) show the same tendency pointing towards
a more basic geometrical reason. It remains unclear,
if a contribution of a third set can be excluded for
any type of boundaries. The Rayleigh distribution
may work in some cases, the Maxwell distribution
in others.

5.3. Superposition of different boundary types

Experimentally obtained probability density func-
tions with a maximum f̂max higher than f̂R,max�0.76 at
a normalized angle xmax less than xR,max�0.8 (i.e. the
corresponding values for a Rayleigh distribution,
compare Table 1) are taken as a hint that the distri-

bution does not consist of a single boundary type, but
a superposition of two independent distributions from
different boundaries.

Superpositions of disorientation angle distributions
have been considered in two different cases: (i) All
dislocation boundaries taken together without separ-
ation into IDBs and GNBs. (ii) Changes in distri-
butions with increasing strain for IDBs and GNBs,
respectively. In both cases a good fit of the experi-
mental data is obtained by considering a superpo-
sition of two Rayleigh distributions. This is easy to
understand for (i) as there is a significant morphologi-
cal difference between IDBs and GNBs which may
indicate a difference in the formation and evolution
of these boundaries. Case (ii) is less clear as two IDB
distributions (IDB1 and IDB2) and two GNB distri-
butions (GNB1 and GNB2) are observed. The strain
dependence for the average angle of each of these
four distributions is shown in Fig. 9. This observation
may be understood if the angular evolution of IDBs
and GNBs depends on an “unknown” structural para-
meter, which, for example, could be the crystallo-
graphic orientation of the grain in which the boundary
is formed. This suggestion is supported by obser-
vations on cold-rolled aluminium polycrystals [15],
where quite different dislocation structures in grains
of different orientation are found. Different relation-
ships between disorientation angle and strain have
been observed for IDBs and GNBs, respectively, if
the measurements have been classified according to
grain orientation. Depending on the grain orientation
in some grains GNBs are aligned with slip planes, in
other grains not. The average disorientation angles are
slightly higher for grains with GNBs not aligned with
slip planes than for grains with GNBs on the slip
planes for both kinds of boundaries, IDBs and GNBs
[15, 17].

These observations motivate the description of, e.g.
IDBs, as a mixture of two different types (IDB1 and
IDB2) at larger strains in Section 4.5. At smaller
strains, the orientation effect may be not pronounced
enough for causing two significantly different distri-
butions. Up to rolling reductions of 10% only small
differences between IDBs in grains of different orien-
tations may occur and the data are well described by
a single Rayleigh distribution. Similarly, the existence
of two different types of GNBs may be explained by
the observed orientation dependence [15, 17]. The
formation of GNBs aligned with slip planes (GNB1)
may be quite different from that of GNBs not aligned
with slip planes (GNB2) and the evolution of the dis-
orientation angles across them can be expected to be
different for both.

Another explanation of case (ii) may be that the
mechanism behind the increase of the disorientation
angles changes as the strain is increased. For
example, for IDBs their penetrability for mobile dis-
locations is expected to decrease (respectively, their
resistance to dislocation motion is expected to
increase) as the disorientation angle increases. For
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GNBs, the more pronounced increase of the disorien-
tation angle with strain may lead to changes in the
slip pattern in neighbouring crystallites (in principle
such an effect corresponds to a change in slip pattern
caused by a change in crystal orientation, although on
a smaller scale). Alternatively, the increasing devi-
ation from a single Rayleigh distribution with increas-
ing strain may be due to the formation of new bound-
aries and the resulting distribution may be seen as a
superposition of newly formed and matured bound-
aries.

Considering the different and complex effects it
may be an oversimplification to suggest an analysis
based on a superposition of only two distributions.
However, the calculation shows that a detailed analy-
sis of the disorientation angle distribution may help
to elucidate the physical mechanism behind the for-
mation and evolution of dislocation boundaries during
plastic deformation.

5.4. Lack of scaling

A superposition of two types of boundaries
explains also the lack of scaling for the distributions
comprising disorientation angles of all types of
boundaries: A different evolution of the two separate
average disorientation angles q̄IDB and q̄GNB with
strain and an additional change in the relative fre-
quencies of both types of boundaries strongly affect
the common mean disorientation angle
q̄all = xIDBq̄IDB + xGNBq̄GNB. A relation like
q̄all�q̄IDB�q̄GNB would be required for a scaling of the
total disorientation distribution given by equation
(31), but for IDBs and GNBs such a proportionality
does not hold [2, 7, 8]. (An additional complication
for the interpretation of combined probability density
functions may arise from the ratio of disorientation
angles corresponding to both boundary types, com-
pare Table 3.)

6. CONCLUSIONS

The distributions of disorientation angles are dis-
cussed in the framework of previously proposed
theoretical models [3, 4, 6]. Several constrictions
which seem to limit the earlier geometrical
approach [3, 4] can be relaxed and even more com-
plicated cases can be treated. For instance, dislo-
cation boundaries with arbitrary tilt or twist charac-
ter and an arbitrary number of dislocation sets are
investigated. The corresponding distribution func-
tions are derived for special cases for small dis-
orientation angles.

It is shown that the distribution functions of dis-
orientation angles obtained from geometrical argu-
ments for small disorientation angles can be derived
from quite general assumptions about the distribution
of orientations in the limit of low disorientation angl-
es.

The theoretical models are compared with disorien-
tation angles determined after cold-rolling of alu-

minium polycrystals. It was proved that experimen-
tally determined probability density functions of the
disorientation angles are best described by Rayleigh
distributions which arise from an equivalent contri-
bution of two dislocation sets in the boundary with
perpendicular rotation axes. This type of distribution
shows scaling in agreement with previous obser-
vations. Deviations from ideal Rayleigh distributions
are interpreted as a result of the contributions of dif-
ferent boundaries. For such distributions good
descriptions have been obtained by a superposition of
two Rayleigh distributions which in general does not
show scaling.

In general, it has been found that a detailed analysis
of disorientation angle distributions is useful both in
a synthesis of experimental data and in an attempt to
understand the physical mechanism behind the forma-
tion and evolution of dislocation boundaries during
plastic deformation.
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APPENDIX A

General case for small disorientation angles

The most general case of a disorientation with an
arbitrary number of dislocation sets in a boundary is
considered. It will be shown that for certain simplifi-
cations the special results of Section 2 are obtained.

Each of the dislocation sets i contributing to the
total orientation difference of the boundary consists
of parallel dislocations with Burgers vector b

→
i and a

mutual distance (h = 1/�N
→

i�) where the vector N
→

i

characterizes their density. The disorientation angle q
caused by all dislocations in a boundary free of long-
range stresses is given by Frank’s formula [18]

2 sin(q/2)(p
→×r→) = �s

i = 1

(b
→

i×N
→

i)·p
→

(A1)

with an arbitrary vector p→ in the boundary.
For small disorientation angles the rotation

qr→ = (a1,a2,a3) comprises three independent
rotations (ai) around three orthogonal axes.† These
individual rotations are a result of contributions from
several dislocation sets. Each dislocation set will lead
to a disorientation angle around a certain axis with a
normal distributed disorientation angle given by the
Read–Shockley formula and a vanishing mean value,
e.g. [6, 7]. Dislocation sets corresponding to the same
rotation axis can be superimposed directly leading to
a Gaussian distribution fG,s for the disorientation
angles around this axis. From all possible combi-
nations at most three independent orthogonal
rotations can arise with disorientation angles a1, a2,
and a3 and their individual standard deviations s1,
s2, and s3.

In a first step, the distribution for a combination
of rotations around two axes (corresponding to two
disorientation angles a1 and a2) can be derived along
the same lines as before [3]. From

P(X�f) = �
f

�f

da1 fG,s1
(a1) �

√f2�a2
1

�√f2�a
2
1

da2 fG,s2
(a2)

(A2)

the distribution of the common disorientation angle f
with f2 = a2

1 + a2
2 is determined

fs1,s2
(f) =

dP
df

= �
f

�f

da1 fG,s1
(a1)

2f
√f2�a2

1

fG,s2
(√f2�a2

1)

(A3)

† In the limit of infinitesimal rotations no problems arise
with the non-commutativity of finite rotations.

fs1,s2
(f) =

f
s1s2

(A4)

exp��
f2

2
s2

1 + s2
2

2s2
1s2

2
�I0�f2

2
s2

1�s2
2

2s2
1s2

2
�

which is closely related to the distribution given by
equation (5) for two dislocation sets with inclined
rotation axes. The same type of distribution for two
perpendicular rotations with different standard devi-
ations (equation (A4)) as for two equivalent contri-
butions with equal standard deviations (equation (5))
reveals that both cases even formulated in a very dif-
ferent manner correspond to essentially the same situ-
ation. For two equivalent contributions
(s1 = s2 = s) the Rayleigh distribution results

fs,s(f) =
f
s2 exp��

f2

2s2� = fR(f). (A5)

The most general distribution of an angle q due to
three independent contributions around three orthog-
onal axes (q2 = a2

1 + a2
2 + a3

2 = f2 + a2
3) has to be

determined in an analogous manner from

P(X�q) = �
q

�q

da3 fG,s3
(a3) �

√q2�a2
3

0

dφfs1,s2
(f). (A6)

The integration cannot be performed in general by
elementary methods and has to be done numerically.

But for the special case of two equal contributions
(two of the standard deviations are the same
s = s1 = s2 with an arbitrary s3) an analytical result

fs,s,s3
(q) =

q
s√s2�s2

3

(A7)

exp��
q2

2s2� erf� q√2
√s2�s2

3

ss3
�

can still be obtained. This leads to three different lim-
iting cases:

1. Three equivalent contributions (s3 = s)

f(q) =
2q2

√2πs3 exp��
q2

2s2� = fM(q) (A8)

i.e. the Maxwell distribution (10);
2. Only a small contribution of the third rotation

(s3�s)

f(q) =
q
s2 exp��

q2

2s2� = fR(q) (A9)

i.e. the Rayleigh distribution (8);
3. Only a small contribution of two systems and a

dominating effect of the third rotation (s3�s)
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f(q)�
2

√2πs3

exp��
q2

2s2
3
� (A10)

i.e. a Gaussian distribution leading to a scaled dis-
tribution (with q̄ = s3√2/π)

f̂(x) =
2
π

exp��
x2

π�. (A11)

Consequently, the general case simplifies to the
special distributions discussed before.


