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In this paper, a mathematical physiological model, Mackey–Glass system of a delay differ-
ential equation, is considered. With a greater delay, a periodic solution arises, which char-
acterizes the disease of chronic granulocytic leukemia (CGL). To treat such disease, a blood
transfusion feedback control is considered, from the point of view of mathematical control.
By using a nonstandard finite-difference (NSFD) scheme to the control system, we obtain a
numerical discrete system and analyze its Neimark–Sacker and fold bifurcations. The
results imply that the condition of the illness could be relieved by transfusing blood to
the patient, if the control is a delay control. Finally, the effectiveness of the control are illus-
trated by several numerical simulations.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, since some results provided by mathematical physiological models are always much close to clinical manifes-
tation, more and more mathematical models are applied to medical researches for providing some safe ways to explore the
effects of novel techniques. With the building of the relation between the onset of some disease and the occurrence of some
bifurcation, theories in dynamics of differential equations are used to analyze the state of illness and to provide therapeutic
treatments.

In Mackey and Glass [1], Mackey and Glass described a physiological system as delay differential equation (DDE):
_pðtÞ ¼ �cpðtÞ þ bhnpðt � sÞ
hn þ pnðt � sÞ ; t P 0; ð1Þ
in which p(t) denotes the density of mature blood cells in circulation at time t, time delay s > 0 measures the time between
the initial of cellular production in the bone marrow and the release of mature cells into the blood, b, h, n P 3 and c are all
positive constants. In fact, in normal healthy adults, the circulating levels of granulocytes are either constant or showing a
mild oscillation with a period of 14 to 24 days. Cyclical neutropenia is a disease characterized by spontaneous oscillations in
granulocyte numbers from normal to subnormal levels with a period of about 21 days. For some patients with chronic gran-
ulocytic leukemia (CGL), the circulation granulocyte numbers display large-amplitude oscillations with period ranging from
30 to 70 days, depending on the patients.

Meanwhile, the above phenomenon also could be interpreted by the dynamics of system (1), which could be gotten easily
from [2]. It shows that, if b/c > n/(n � 2), then a periodic solution will arise as s increases and crosses a value, that is, system
(1) will undergo a Hopf bifurcation. This reflects the fact that, if the time delay is long enough, then there is no adequate
blood cells being released into circulating bloodstreams, thus the stability of the circulating level is destroyed and even
CGL is caused.
. All rights reserved.
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Although the qualitative properties of system (1) could be gotten by [2], considered the performance and a better monitor
for the circulating levels of granulocytes, we must turn to the numerical simulation of system (1). In order to replicate ex-
actly the dynamical behavior, dynamical consistent numerical methods are needed. In [3–5], some numerical methods
which could preserve the Hopf bifurcation of DDEs are given. In [6], a nonstandard finite-difference (NSFD) scheme [7,8]
for system (1) is constructed as follows:
pkþ1 � pk ¼
1� e�csh

cs
f ðpk;pk�mÞ; k ¼ 0;1;2; . . . ; ð2Þ
where h ¼ 1=mðm 2 ZþÞ is time step size, pk is the numerical approximation of p(kh), f(pk,pk�m) is an approximation of the
right-hand side of system (1). Using NSFD scheme (2) to (1), it yields a numerical discrete system, whose dynamics has been
studied in [6].

Lemma 1 [6]. For the numerical discrete system of (1) with positive equilibrium p� ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=c� 1n

p
,

(i) If 1 < b/c < n/n � 2, then p⁄ is asymptotically stable for any s P 0.
(ii) For b/c > n/(n � 2), there exists a sequence of sk (k = 0,1,2, . . . , [(m � 1)/2]) such that the numerical discrete system under-

goes a Neimark–Sacker (i.e. discrete Hopf) bifurcation at p⁄ when s = sk.
(iii) If b/c > n/(n � 2), then p⁄ is asymptotically stable for s 2 [0,s0), and there exists a unique closed invariant curve for s > s0.
Remark 1. Comparing Lemma 1 with the results in [2], we could see that the NSFD scheme could represent the asymptotical
stability and the Hopf bifurcation with a mild restriction on time step size. Hence, in this paper, we will apply the scheme to
simulate some systems. And we always believe that the dynamics of the numerical discrete system is topologically equiv-
alent to the ones of the continuous system.

The purpose of this paper is to construct a feedback control for system (1) having a periodic solution, such that the phys-
iological system could be stabilized at a positive equilibrium. In Section 2, the feedback control system is described by a DDE,
and three types of control functions are given. The dynamics of the numerical discrete systems, derived by NSFD scheme (2),
are studied by applying the bifurcation theorem (see [9–11]) in Section 3. The result shows that the positive fixed point cannot
be stabilized by a linear non-delay control, but could be stabilized by a linear/nonlinear delay control. By analyzing the dis-
tribution of characteristic roots, we get the range of coefficients in the delay control functions, under which the positive fixed
point is asymptotically stable. The main result in this paper implies that the circulating bloodstreams can be stabilized by
transfusing blood with a suitable speed. Finally, some numerical experiments are illustrated to verify the theoretical results.

2. A control system with blood transfusion feedback

For the past years, bifurcation control theory has been used in more and more fields. Typical bifurcation control objectives
include delaying the onset of an inherent bifurcation, stabilizing a bifurcation solution or branch, monitoring the multiplic-
ity, amplitude, and frequency of more limit cycles emerging from bifurcation, etc. (see [12,13] and the references therein). By
applying bifurcation control theory, Kramer et al. [14] made use of feedback controls to a model of human cortical electrical
activity and discussed the types of bifurcation that both produce (subHopf/fold cycle) and destroy the large amplitude, stable
oscillations characteristic of a seizure. In [15], an effective external pancreatic insulin production was introduced into a mod-
el of blood-glucose concentration to control the condition of diabetic patient.

Motivated by the observation that many physiologists cite control as a potential influence in the evolution of biological
systems, and by the above analysis for the aetiology of CGL, we investigate whether the symptoms of CGL could be relieved
by transfusing blood to the patient using a control equipment. In medical research, blood transfusion therapy is usually
adopted to stabilize the patient’s condition. In clinical research, besides what kind of blood, the speed and the volume of
transfusing blood should be also considered to prevent adverse reactions. Since the amount of blood in a person is fixed,
which takes 7% � 8% of the person’s weight. So as the blood is transfused, the excess plasma is discharged from the blood
vessel and the mature blood cells are left in. Hence, roughly speaking, transfuse blood is equivalent to transfuse mature cells.

Here we suppose that B > 0 is the density of mature blood cells in the blood bag and the blood is transfused into the pa-
tient under a controllable speed u(t) which will be designed later. For example, there is u(t) blood is transfused at the time t,
thus the amount of mature blood cells increases by Bu(t) cells. Hence, the blood transfusion control system is gotten as:
_pðtÞ ¼ �cpðtÞ þ bhnpðt � sÞ
hn þ pnðt � sÞ þ BuðtÞ; t P 0; ð3Þ
In the rest of this paper, we always assume that b/c > n/(n � 2) and s > s0, which guarantee that system (1) has a periodic
solution. For the sake of simplicity, we restrict ourselves to three types of feedback control functions:

(1) linear non-delay control (LNDC):
uðtÞ ¼ gðpðtÞÞ ¼ ~kðpðtÞ � p�Þ; ~k > 0; ð4Þ
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(2) linear delay control (LDC):
uðtÞ ¼ gðpðt � sÞÞ ¼ aðpðt � sÞ � p�Þ; a > 0; ð5Þ
(3) nonlinear delay control (NLDC) which could be expanded as:
uðtÞ ¼ gðpðt � sÞÞ ¼ aðpðt � sÞ � p�Þ þ bðpðt � sÞ � p�Þ2 þ cðpðt � sÞ � p�Þ3 þ oððpðt � sÞ � p�Þ3Þ; ð6Þ
where ~k; a; b and c are coefficients to be determined.
3. Stabilization of control system

In this section, we mainly discuss the stability and bifurcation of the numerical discrete control systems according to (4)–
(6), respectively. It is known that the fixed point is asymptotically stable if and only if all the characteristic roots of the lin-
earization at the fixed point stay in the unit circle. However, from the analysis in [6], we see that if u(t) = 0, the characteristic
equation of the numerical discrete system of (3) will have finite roots outside the unit circle and the others inside the unit
circle. Hence we attempt to manipulate the control parameters such that all the characteristic roots are pulled back into the
unit circle. At first, let us consider the simplest case.

3.1. Linear non-delay control

Under transformations
ðTÞ :¼ pðtÞ ¼ hxðtÞ; zðtÞ ¼ xðstÞ; yðtÞ ¼ zðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=c� 1n

p
;

system (3) is equivalent to
_yðtÞ ¼ s �c yðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
b
c
� 1n

s !
þ

b yðt � 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �
1þ yðt � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
b
c � 1n

q� �n þ B~kyðtÞ

8><>:
9>=>;: ð7Þ
Applied NSFD scheme (2) to system (7), we get numerical discrete system:
ykþ1 ¼
1
c

B~kþ ðc� B~kÞe�csh
h i

yk þ ð1� e�cshÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
b
c
� 1n

s
þ

b yk�m þ
ffiffiffiffiffiffiffiffiffiffiffi
b
c � 1n

q� �
c 1þ yk�m þ

ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �n
� �

8>><>>:
9>>=>>;: ð8Þ
Clearly, the origin is a fixed point and the linearization at it is
ykþ1 ¼
1
c

B~kþ ðc� B~kÞe�csh
h i

yk þ
1
b
ð1� e�cshÞ ncþ ð1� nÞb½ �yk�m;
whose characteristic equation is
kmþ1 � 1
c

B~kþ ðc� B~kÞe�csh
h i

km � 1
b
ð1� e�cshÞ½ncþ ð1� nÞb� ¼ 0: ð9Þ
Now we suppose that k = reix is a root of Eq. (9). Differentiating both sides of (9) with respect to ~k, we get
dk

d~k
¼ Bð1� e�cshÞk

cð1þmÞk�m B~kþ ðc� B~kÞe�csh
h i : ð10Þ
Therefore
djkj2

d~k
¼ �k

dk

d~k
þ k

d�k

d~k
¼ Bð1� e�cshÞjkj2r

cð1þmÞk�m B~kþ ðc� B~kÞe�csh
h i��� ���2 ; ð11Þ
in which
r ¼ 2 cð1þmÞR½k� �m B~kþ ðc� B~kÞe�csh
h in o

: ð12Þ
Here R½�� stands for the real part of a complex number. Inserting k = reix into (9) and separating the real and the imaginary
parts, it yields
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r cos x� 1
c B~kþ ðc� B~kÞe�csh
h i

¼ 1
brm ð1� e�cshÞ½ncþ ð1� nÞb� cos mx;

r sin x ¼ � 1
brm ð1� e�cshÞ½ncþ ð1� nÞb� sin mx:

8<: ð13Þ
Squaring both sides of the two equalities and adding them together, it deduces that
R½k� ¼ 1
2c

B~kþ ðc� B~kÞe�csh
h i

þ c
2

b2r2ðmþ1Þ � ð1� e�cshÞ2½ncþ ð1� nÞb�2

b2r2m B~kþ ðc� B~kÞe�csh
h i : ð14Þ
Putting it into (12) and simplifying it, we have
r ¼ ð1�mÞ B~kþ ðc� B~kÞe�csh
h i

þ ð1þmÞc2 b2r2ðmþ1Þ � ð1� e�cshÞ2½ncþ ð1� nÞb�2

b2r2m B~kþ ðc� B~kÞe�csh
h i :
In view of limh?0r = c(1 + r2) > 0 for r > 1, we have
djkj2

d~k

�����
k¼reix ;r>1

> 0
for sufficiently small h > 0.
The above analysis implies that, with the increasing of ~k > 0, the module of k more than one becomes more and more

larger, furthermore, there is no root outside coming into the unit circle. That is, the origin can not be stabilized by the LNDC.

3.2. Linear delay control

In view of that it is the delay s causes the periodic solutions, therefore, we are interested in the time-delay feedback con-
trol. For simplicity let u(t) = g(p(t � s)) be a linear delay function as (5). Taking transformations (T), system (3) is rewritten as:
_yðtÞ ¼ s �c yðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
b
c
� 1n

s !
þ

b yðt � 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �
1þ yðt � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �n þ Bayðt � 1Þ

8><>:
9>=>;: ð15Þ
Using NSFD scheme (2) to system (15), we get numerical discrete system
ykþ1 ¼ e�cshyk þ
1
c
ð1� e�cshÞ �c

ffiffiffiffiffiffiffiffiffiffiffiffi
b
c
� 1n

s
þ

b yk�m þ
ffiffiffiffiffiffiffiffiffiffiffi
b
c � 1n

q� �
1þ yk�m þ

ffiffiffiffiffiffiffiffiffiffiffi
b
c � 1n

q� �n þ Bayk�m

8><>:
9>=>;: ð16Þ
It is easy to see that the origin is a fixed point and the linearization of (16) at the origin is
ykþ1 ¼ e�cshyk þ
1
c
ð1� e�cshÞðBa� d1Þyk�m;
in which d1 = �[nc2 + (1 � n)cb]/b > c. Its characteristic equation is
dðkÞ,kmþ1 � e�cshkm � 1
c
ð1� e�cshÞðBa� d1Þ ¼ 0: ð17Þ
It is known that when a = 0 characteristic Eq. (17) has finite roots outside the unit circle. In the following, we are going to
study whether there exists a suitable a, such that all of the roots are in the unit circle. At first, let us give a useful lemma.

Lemma 2. Suppose k = reix (r P 1, x 2 [0,p]) is the root of Eq. (17) . Then djkj2/da < 0 if Ba � d1 < 0, and djkj2/da > 0 if Ba � d1 > 0.
Proof. From (17), we have
dk
da
¼ Bð1� e�cshÞ

c½ðmþ 1Þkm �me�cshkm�1�
: ð18Þ
Then
djkj2

da
¼ �k

dk
da
þ k

d�k
da
¼ Bjkj2D
ðBa� d1Þjðmþ 1Þk�me�cshj2

; ð19Þ
in which
D ¼ 2fðr � e�cshÞ½ðmþ 1Þr �me�csh� þ re�cshð2mþ 1Þð1� cos xÞg > 0
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for any r P 1. Hence, djkj2/da < 0 if Ba � d1 < 0 and djkj2/da > 0 if Ba � d1 > 0. h
Theorem 1. There exists an a⁄ 2 (0,d1/B) such that for (16) the origin is asymptotically stable if a 2 (a⁄, d1/B).
Proof. Let k(a) denote the root of characteristic Eq. (17) with respect to a. Without loss of generality, according to [6], we
assume that when a = 0, (17) has s roots outside the unit circle and (m + 1 � s) roots inside the unit circle, denoted by
Fig. 1.
and s0
jkjð0ÞjP 1ðj ¼ 1;2; . . . ; sÞ and jkjð0Þj < 1 ðj ¼ sþ 1; . . . ;mþ 1Þ:
Meanwhile, when a = d1/B, (17) only has two roots 0 (m-multiple) and e�csh < 1. From Lemma 2, we see that every jkj(a)j
(j = 1, . . . ,s) is monotone decreasing for a 2 (0,d1/B). Hence, by the intermediate value theorem, there exist some
a�j 2 ð0; d1=BÞ such that jkjða�j Þj ¼ 1 and jkj(a)j < 1 for a 2 ða�j ; d1=BÞ. Denote a� ¼ max16j6sa�j . Then if a 2 (a⁄,d1/B) all of the roots
satisfy jkj(a)j < 1.

On the other hand, djkj2/dajjkj=1 < 0 for any a 2 (0,d1/B). So the roots inside the unit circle will not pass through the unit
circle. Hence, if a 2 (a⁄,d1/B) all of the characteristic roots will be in the unit circle. The assertion of the theorem follows
immediately. h
Remark 2. The proof shows that with the increasing of a, the roots outside the unit circle will come into the unit circle in
turn and the others will still stay in the unit circle. To describe this clearly, the routes of the characteristic roots are traced in
Fig. 1. The left figure implies that the system will undergo a subcritical Neimark–Sacker bifurcation, and the right infers a
supercritical fold bifurcation.

In order to find the bifurcation points of a, we have to calculate the eigenvalues on the unit circle. Suppose that the root on
the unit circle is eix for x 2 (�p,p]. It is easily to solve that a = (c + d1)/B for x = 0 and a = [c + d1 + (c � d1)e�csh]/B(1 � e�csh)
(when m is an odd number) or a = [d1 � c � (d1 + c)e�csh]/B(1 � e�csh) (when m is an even number) for x = p. Moreover, con-
sidered the characteristic equation is a real polynomial equation, it only needs to look for x in (0,p).

eix is a root of characteristic Eq. (17) if and only if
exi � e�csh � 1
c
ð1� e�cshÞðBa� d1Þe�mxi ¼ 0: ð20Þ
By separating the real and the imaginary parts of equality (20), it yields
cos x� 1
c ð1� e�cshÞðBa� d1Þ cos mx ¼ e�csh;

sinxþ 1
c ð1� e�cshÞðBa� d1Þ sin mx ¼ 0:

(
ð21Þ
Multiply the both sides of the first equation by sinmx and the second equation by cosmx, and add them together, then we
get
sinðmþ 1Þx� e�csh sin mx ¼ 0: ð22Þ
For the sake of simplicity, we divide the discussion into two cases, m is an even number and an odd number. At first, let us
consider the former case.

Lemma 3. In each interval ((i � 1)p/m, ip/m), (22) has a unique root xi (i = 1,2, . . . ,m).
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Routes of the characteristic roots when a varies from 0 to d1/B (left) and from d1/B to 2d1/B > (d1 + c)/B (right) for m = 8, b = 0.2, c = 0.1, n = 10, s = 30
= 4.41861.
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Proof. Define a function F(x) =: sin (m + 1)x � e�cshsin mx for x 2 (0,p). Then
F
kp
m

� 	
¼

� sin kp
m < 0; k ¼ 1;3; . . . ;m� 1;

sin kp
m > 0; k ¼ 2;4; . . . ;m� 2:

(

By the intermediate value theorem, it infers that (22) has a root at least in each interval Ii = ((i � 1)p/m, ip/m) (i = 2,3, . . . ,
m � 1). In addition, since
F 0ðxÞ ¼ ðmþ 1Þ cosðmþ 1Þx�me�csh cos mx;
it follows that F0(0+) = m(1 � e�csh) + 1 > 0 and F0(p�) = �(m + 1) �me�csh < 0. As a consequence, F(�) > 0 and F(p � �) > 0 for
sufficiently small � > 0. Hence, by the intermediate value theorem again, there exist roots in the intervals (0,p/m) and
((m � 1)p/m,p). Thus (22) has a root at least in each interval Ii (i = 1,2, . . . , m).

Moreover, from the direct computation and (22), there is
F 00ðxÞ ¼ �ðmþ 1Þ2 sinðmþ 1Þxþm2e�csh sin mx ¼ �ð2mþ 1Þe�csh sin mx:
So
F 00ðxÞ < 0; x 2 2ip
m ; ð2iþ1Þp

m

� �
;

F 00ðxÞ > 0; x 2 ð2iþ1Þp
m ; ð2iþ2Þp

m

� �
;

8><>: i ¼ 0;1; . . . ;
m
2
� 1:
This indicates that F0(x) is decreasing on (2ip/m, (2i + 1)p/m) and increasing on ((2i + 1)p/m, (2i + 2)p/m), which infers that
F0(x) = 0 has one root at most. That is, function F(x) has an extreme point at most in each interval ((i � 1)p/m, ip/m). There-
fore (22) has a unique root, denoted by xi, in each interval Ii. The graph of function F(x) is sketched in Fig. 2. This completes
the proof. h

Solve xi from (22) and insert it into the second equation of (21), thus we have
Bai � d1 ¼ �
c sinxi

ð1� e�cshÞ sin mxi
:

It follows that ai < d1/B for i = 1,3, . . . ,m � 1, and ai > d1/B for i = 2,4, . . . , m. On the other hand, squaring both sides of (21) and
adding them together, we deduce that
Ba� d1 ¼ �
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�2csh � 2e�csh cos x
p

1� e�csh
; x 2 ð0;pÞ;
which implies that
ai ¼
1
B
� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�2csh � 2e�csh cos xi

p
1� e�csh

þ d1

 !
<

d1

B
; i ¼ 1;3; . . . ;m� 1;
and
0 ω1 ωi ωi+1 ωm
π

π/m
(i−1)π/m

iπ/m
(i+1)π/m

(m−1)π/m ω

F(ω)

Fig. 2. The graph of function F(x).
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ai ¼
1
B

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�2csh � 2e�csh cos xi

p
1� e�csh

þ d1

 !
P

cþ d1

B
; i ¼ 2;4; . . . ;m:
So [d1 � c � (d1 + c)e�csh]/[B(1 � e�csh)] = am+1 < am�1< � � �<a3 < a1 < d1/B < (c + d1)/B = a0 < a2 < � � �<am, which means a⁄ = a1

by Theorem 1.
The result of the second case can be studied easily in a similar fashion. We could obtain that am< � � �<a3 < a1 < d1/

B < [c + d1]/B = a0 < a2 < � � �<am� 1 < am+1 = [c + d1 + (c � d1)e�csh]/[B(1 � e�csh)] when m is an odd number.

Theorem 2. Suppose that b/c > n/(n � 2) and s > s0. Then system (16) undergoes a Hopf bifurcation at the origin when a = a1, and
a fold bifurcation when a = a0. Furthermore, there exists a closed invariant curve when a 2 [0,a1), and the origin is asymptotically
stable for a 2 (a1,a0) and unstable for a 2 (a0,+1).
Proof. From the above analysis we see that there is a pair of characteristic roots k ¼ e�ix1 when a = a1 and, from Lemma 2,
djkj2/dajjkj=1 < 0 for a = a1 < d1/B. Applying the Neimark–Sacker bifurcation theorem (Theorem 3.2.3 in [11]), it is proved that
a = a1 is a Neimark–Sacker bifurcation point. Similarly, when a = a0, k = 1 is a simple characteristic root and djkj2/dajjkj=1 > 0
for a = a0 > d1/B. Therefore a = a0 is a fold bifurcation point [10].

Hence all roots of characteristic Eq. (17) have model less than one for a 2 (a1,a0) and there exists a characteristic root
having model more than one for a > a0. Thus for system (16) the origin is asymptotically stable for a 2 (a1,a0) and unstable
for a > a0. h
Remark 3. This theorem shows that system (16) could be stabilized by choosing a 2 (a1,a0).
3.3. Nonlinear delay control

Now we consider NLDC (6). Under transformations (T), system (3) is equivalent to
_yðtÞ ¼ �sc yðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
b
c
� 1n

s !
þ

sb yðt � 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �
1þ yðt � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �n þ sB½ayðt � 1Þ þ bhy2ðt � 1Þ þ ch2y3ðt � 1Þ�: ð23Þ
By using NSFD scheme (2) to system (23), we have numerical discrete system
ykþ1 ¼ e�cshyk þ
ð1� e�cshÞ

c
�c

ffiffiffiffiffiffiffiffiffiffiffiffi
b
c
� 1n

s
þ

b yk�m þ
ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �
1þ yk�m þ

ffiffiffiffiffiffiffiffiffiffiffi
b
c� 1n

q� �n þ B ayk�m þ bhy2
k�m þ ch2y3

k�m


 �264
375: ð24Þ
Clearly, the origin is a fixed point.
By the comparison between systems (24) and (16), we see that they have the same linearization at the origin. Hence, the

asymptotical stability of the origin of systems (24) and (16) is completely same. This determines that the origin could be
stabilized by choosing parameter a 2 (a1,a0). Besides that, parameters b and c could decide another dynamics of system
(24) e.g. the direction of the bifurcation, the stability and the amplitude of the closed invariant curve (see [4,12,13,9]). Fol-
lowed the similar way in [4,6], the explicit formula of a critical value which decides the direction of the bifurcation and the
stability of the closed invariant curve could be gotten.

Set a = a1 + l, l 2 R. Then l = 0 is a Neimark–Sacker bifurcation value for system (24). The expansion of system (24) at the
origin is
ykþ1 ¼ ~amyk þ ~a0yk�m þ
~b
2

y2
k�m þ

~c
6

y3
k�m þ O y4

k�m

�� ��
 �
; ð25Þ
in which
~am ¼ e�csh;

~a0 ¼
1
c
ð1� e�cshÞðBa� d1Þ;

~b ¼ ð1� e�cshÞ 1
u�b

2 nðb� cÞ½ðn� 1Þb� 2nc� þ 2
c

Bbh

� 

;

~c ¼ ð1� e�cshÞ � 1
u2
�b

3 nðb� cÞ½ðn2 � 1Þb2 � 6n2bcþ 6n2c2� þ 6
c

Bch2

( )
;

where u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=c� 1n

p
. By introducing a new variable Yk = (yk,yk�1, . . . , yk�m)T, system (25) is equivalently rewritten as



Table 1
The roo

k

xk

ak(10
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Ykþ1 ¼ eAYk þ
1
2
eBðYk; YkÞ þ

1
6
eCðYk; Yk;YkÞ þ OðkYkk4Þ;
where
eA ¼
~am 0 � � � 0 ~a0

1 0
. .

. . .
.

1 0

0BBBB@
1CCCCA;
and
 eBðYk;YkÞ ¼ ðb0ðYk; YkÞ;0; . . . ;0ÞT ;eCðYk;Yk;YkÞ ¼ ðc0ðYk; Yk;YkÞ; 0; . . . ; 0ÞT :
Here for vectors / = (/0, . . . , /m)T, w = (w0, . . . , wm)T and g ¼ ðg0; . . . ;gmÞ
T
; b0ð/;wÞ ¼ ~b/mwm and c0ð/;w;gÞ ¼ ~c/mwmgm.

Let q = q(a1) 2 Cm+1 be an eigenvector of eA corresponding to eix1 , then eAq ¼ eix1 q and eA�q ¼ e�ix1 �q: We also introduce an
adjoint eigenvector q⁄ = q⁄(s) 2 Cm+1, which satisfies eAT q� ¼ e�ix1 q�; eAT �q� ¼ eix1 �q� and hq⁄,qi = 1, where hq�; qi ¼

Pm
i¼0�q�i qi.

Lemma 4 [4]. Define a vector valued function p(n) = (nm,nm�1, . . ., 1)T. If n is an eigenvalue of eA, then eApðnÞ ¼ npðnÞ.
In view of Lemma 4, we have
q ¼ pðeix1 Þ ¼ ðeimx1 ; eiðm�1Þx1 ; . . . ; eix1 ;1ÞT : ð26Þ
Lemma 5. Suppose q� ¼ ðq�0; q�1; � � � ; q�mÞ
T is the eigenvector of eAT corresponding to eigenvalue e�ix1 , and hq⁄, qi = 1. Then
q� ¼ Kð1; ~a0eimx1 ; ~a0eiðm�1Þx1 ; . . . ; ~a0ei2x1 ; ~a0eix1 ÞT ; ð27Þ
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Fig. 3. Unstable solutions of LNDC (3).

ts of Eq. (21) for x 2 [0,p] when s = 5.

0 1 2 3 4 5 6 7 8 9

0 0.217 0.566 0.931 1.29 1.66 2.03 2.40 2.77 3.14
�10) 0.3125 0.0241 0.813 �0.650 1.46 �1.23 1.95 �1.62 2.22 �1.75
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where
K ¼ 1
eimx1 þm~a0e�ix1

: ð28Þ
1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

pk−1 (×1010)

p k (×
10

10
)

a=0.02×10−10

Fig. 4. Unstable solution of LDC system for a = 0.02 � 10�10.
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Fig. 5. Stable solution of LDC system for a = 0.025 � 10�10.
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Proof. From the assumption for q⁄, there is eAT q� ¼ e�ix1 q�. As a consequence,
~amq�0 þ q�1 ¼ e�ix1 q�0;

q�k ¼ e�ix1 q�k�1; k ¼ 2; . . . ;m
~a0q�0 ¼ e�ix1 q�m;

8><>: ; ð29Þ
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Fig. 6. Stable solutions of LDC system for a = 0.25 � 10�10 and 0.30 � 10�10.
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Fig. 7. Exploding solution of LDC system for a = 0.32 � 10�10.



3470 H. Su et al. / Applied Mathematical Modelling 35 (2011) 3460–3472
Let q�m ¼ ~a0Keix1 , then q�j ¼ ~a0Keix1ðm�jþ1Þðj ¼ 1;2; . . . ;m� 1Þ and q�0 ¼ K. Therefore, we get (27). From normalization hq⁄, qi = 1
and direct computation, equality (28) follows. h

Denote k� ¼ eix1 . On the basis of the algorithms and the computation process in [4,10], we can compute
g20 ¼ hq�; eBðq; qÞi;
g11 ¼ hq�; eBðq; �qÞi;
g02 ¼ hq�; eBð�q; �qÞi;
g21 ¼ hq�; eBð�q;x20Þi þ 2hq�; eBðq;x11Þi þ hq�; eCðq; q; �qÞi;
in which
x20 ¼
b0ðq; qÞ
dðk�2Þ

pðk�2Þ � hq
�; eBðq; qÞi
k�2 � k�

q� h
�q�; eBðq; qÞi
k�2 � �k�

�q;

x11 ¼
b0ðq; �qÞ

dð1Þ pð1Þ � hq
�; eBðq; �qÞi
1� k�

q� h
�q�; eBðq; �qÞi

1� �k�
�q:
Substituting these into
c1ða1Þ ¼
g20g11ð1� 2k�Þ

2ðk�2 � k�Þ
þ jg11j

2

1� �k�
þ jg02j

2

2ðk�2 � �k�Þ
þ g21

2
; ð30Þ
yields an expression of the critical coefficient c1(a1).
Lemma 2 shows that dr(a1)/da < 0. Therefore, by a straightforward application of the Naimark–Sacker bifurcation theorem

and Theorem 2, we have the following result.

Theorem 3. For system (24),

(i) when a 2 [0,a1) there exists a unique closed invariant curve, which is attracting if R½e�ix1 c1ða1Þ� < 0 and repelling if
R½e�ix1 c1ða1Þ� > 0;

(ii) the origin is asymptotically stable for a 2 (a1,a0) and unstable for a 2 (a0,+1).
Remark 4. From this theorem, we see that although it is enough to use linear delay control to stabilize the positive fixed
point, it is more effective to exploit the NLDC to get the expected property of bifurcation.
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Fig. 8. A large and a small amplitude solutions of NLDC system when a = 0 and c = 0.
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Fig. 9. A large and a small amplitude solutions of NLDC system when a = 0 and b = 0.
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4. Numerical test

In this section, we present some numerical results to verify the analytical predictions obtained in the previous sections.
Here we choose parameters as: b = 0.2/day, c = 0.1/day, n = 10, h = 1.6 � 1010cells/kg, and the density of mature cells in blood
bag B = 1.6 � 1010cells/kg. So the steady-state circulating levels of granulocytes is p⁄ = 1.6 � 1010cells/kg. We fix m = 8 in
method (2). From Lemma 1 and [6], we know that for system (1) there exists a Hopf bifurcation point s0 = 4.41861 and a
bifurcation periodic solution occurs for s > s0. In the following, we always choose s = 5.

Firstly, let us see the LNDC. The dynamical behaviors of the model with LNDC (k = 0.1) and without control (k = 0) are
illustrated in Fig. 3, which shows that with the increasing of k the amplitude of the closed invariant curve is more and more
large, that is, LNDC can not stabilize the fixed point.

Secondly, go to test the LDC. By solving Eq. (21), we compute the following values in Table 1. Table 1 and Theorem 2
infer that there exists closed invariant curve for a 2 [0,0.0241 � 10�10) (see Fig. 4); positive fixed point p⁄ is asymptot-
ically stable for a 2 (0.0241 � 10�10,0.3125 � 10�10) (see Figs. 5 and 6); and p⁄ is unstable for a > 0.32 � 10�10 (see
Fig. 7).

Finally, in order to obtain attracting closed invariant curve, it only needs R½e�ix1 c1ða�Þ� < 0. By formula (30), we calculate
the critical coefficient R½e�ix1 c1ða1Þ� ¼ �3:196þ 2:926� 1020b� 1:498� 1041b2

< 0 when c = 0; and R½e�ix1 c1ða�Þ� ¼
�3:196� 2:943� 1030c < 0 when c > �1.086 � 10�30 and b = 0 (see Figs. 8 and 9). On the other hand, Figs. 8 and 9 suggest
that the amplitude of the close invariant curve could be eliminated by choosing appropriate b and c.
5. Conclusion

In this paper, the problem of numerical bifurcation control for a physiological system is studied. To treat the disease
of CGL, three types of feedback controls are proposed. We have shown that the LDC and the NLDC can not only delay the
normal time between the production of immature cells in the bone marrow and their maturation for release in
circulating bloodstreams, but also stabilize the density of mature cells in blood circulation. In addition, the NLDC also
can change the amplitude of periodic solution. Numerical simulations have shown that the analytical predictions are
correct.

Here we provide a reasonable therapy of CGL only based on mathematical consideration. From this point of view, the pa-
tient should make periodic blood tests and be transfused blood frequently according to the rule given in the paper. However,
the study on the prophylaxis and treatment of CGL is a extremely complex work. This needs the mathematicians, medical
scientists and other experts work hard together.
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