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A fully discrete two-grid finite-volume method (FVM) for a nonlinear parabolic problem is studied in this
paper. This method involves solving a nonlinear parabolic equation on coarse mesh space and a linearized
parabolic equation on fine grid. Both L2 and H 1 norm error estimates of the standard FVM for the nonlinear
parabolic problem are derived. Compared with the standard FVM, the two-level method is of the same
order as the one-level method in the H 1-norm as long as the mesh sizes satisfy h = O(H 3/2). However,
the two-level method involves much less work than the standard method. Numerical results are provided
to demonstrate the effectiveness of our algorithm.
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1. Introduction

Many processes in science and technology are described by parabolic equations, for example, the
processes of fluid dynamics, hydrology and environmental protection [22,28]. There are extensive
works devoted to the linear parabolic problem represented by monographs [31]. For nonlinear
cases, we mention only [3,12,29] and their references. In this work, we consider the following
nonlinear parabolic problem in R

2:

ut + ∇ · (a(u)∇u) + b(u)∇u = f (u) in � × (0, T ],
u(x, t) = 0 on ∂� × (0, T ],
u(·, 0) = u0 on � × {0},

(1)
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where � is a bounded convex polygonal domain with boundary ∂�, ∇ = (∂/∂x1, ∂/∂x2)
T, and

b(u) = (b1(u), b2(u))T is a vector function.
We define a bounded set on R

2 as

G = {u : |u| ≤ K0},
where K0 is a positive constant.

Supposing the coefficients of problem (1) satisfy the following conditions:
(C1): a(u), f (u) and bi(u)(i = 1, 2) are Lipschitz continuous with respect to the variable u, i.e.

|g(u) − g(v)| ≤ L|u − v|, ∀u, v ∈ G,

where L is a Lipschitz constant related to K0, g(u) can take a(u), f (u) or bi(u)(i = 1, 2). And
||b(u) − b(v)||0 is defined by

||b(u) − b(v)||0 =
{

2∑
i=1

|bi(u) − bi(v)|2
}1/2

.

(C2): a(u), b(u) are bounded smooth functions with positive upper and lower bounds,

0 < a∗ ≤ a(u) ≤ a∗, 0 < b∗ ≤ ||b(u)||L∞ ≤ b∗, −div(b(u)) > σ > 0, ∀u ∈ G.

(C3): f (u) is a given real-valued function on � and there is a constant M such that

|f ′(u)| + |f ′′(u)| ≤ M, ∀u ∈ G,

where σ is a constant, and f ′(u) = df (u)/du. Under the conditions above, problem (1) has a
unique solution in a certain Sobolev space [31].

Finite-volume method (FVM), as one of the numerical discretization techniques, has been
widely employed to solve the fluid dynamics problems [7,16,25]. It is developed as an attempt
to use the finite-element idea in the finite-difference setting. The basic idea is to approximate
discrete fluxes of a partial differential equation using a finite-element procedure based on volumes
or control volumes, so the FVM is also called the box scheme [2,6,21]. FVM has many advantages
that belong to finite-difference or finite-element method, such as, it is easy to set up and implement,
conserve mass locally and it also can treat the complicated geometry and general boundary
conditions flexibility [17,35]. However, the analysis of FVM lags far behind that of finite-element
and finite-difference methods, for more recent developments about the FVM, readers can refer
to [13–15,20,27,32].

On the other hand, the two-grid method is an efficient numerical scheme for partial differential
equations based on two spaces with different mesh sizes. This kind of discretization technique
for linear and nonlinear elliptic partial differential equations was first introduced by Xu [33,34].
After that, this discrete scheme has been studied by many researchers, for example, Dawson and
Wheeler [10] and Dawson et al. [11] studied the nonlinear parabolic equations by using the finite-
element or finite-difference method, respectively. Layton and Lenferink [23] for Navier–Stokes
equations, Marion and Xu [26] for evolution equations and Bi and Ginting [4] have expanded a
two-grid method combined with the FVM for linear and nonlinear elliptic problems.

Recently, Chen et al. [8] studied a class of nonlinear parabolic equations by using the two-grid
FVM and presented the convergence analysis under some assumptions. With the help of the Taylor
expansion and the relationship between the mesh size and time step, they obtained the optimal
error estimates of the two-level FVM. Here, we continuously consider the two-grid FVM for the
nonlinear parabolic problem. The difference between [8] and this work lies in some cases: (i) the
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1646 T. Zhang et al.

equations are different, the problem investigated in [8] can be considered as a special case of our
studied problem; (ii) the difficulties which encountered are different, we mainly handle with the
nonlinear diffusion and convection terms; (iii) we not only present the error estimates in L2 and H 1

norms of both the standard FVM and the two-level method, but also give the stability and existence
uniqueness of discrete solution. In this work, two conforming spaces VH and Vh with mesh sizes
H and h, respectively, are chosen and h 	 H . On the coarse grid space, we solve the nonlinear
problem (1) directly, then, use this known solution to find the fine grid solution. Error estimates
indicate that the two-level finite-volume algorithm gives the same order of approximation as the
standard FVM if we choose h = O(H 3/2). However, in our algorithm, the nonlinear problem is
only treated on the coarse grid space, in this way, a large amount of computational cost are saved.

In this work, based on some techniques that one used in [8], we study the nonlinear parabolic
problem (1) systematically. An outline of this paper is as follows: In Section 2, the basic results
about the FVM are stated, stability and existence uniqueness of discrete solution to nonlinear
problem (1) are derived. A two-level full discrete finite-volume algorithm for nonlinear problem
(1) is presented in Section 3. We, in Section 4, give the L2-norm and H 1-norm error estimates
for the standard FVM. Section 5 is devoted to the H 1-norm error estimate of the approximation
solution for the two-grid algorithm. Finally, some numerical results are presented to verify the
performance of our algorithm.

2. Preliminaries

In this section, firstly, we describe some notations and results which will be frequently used in this
article. Standard notations are used for the Sobolev spaces Ws,p(�) with the norm ‖ · ‖s,p,� and
the seminorms | · |s,p,� [1]. We denote Ws,2(�) by Hs(�) and skip the index p = 2 for simplicity.
For all T > 0 and integer number n ≥ 0, we define

Hn(0, T ; Ws,p(�)) =
{

v ∈ Ws,p(�);
∑

0≤i≤n

∫ T

0

(
di

dt i
‖v‖s,p,�

)2

dt < ∞
}

,

and the corresponding norm of Hn(0, T ; Ws,p(�)) is denoted by

‖v‖Hn(Ws,p(�)) =
∑

0≤i≤n

[∫ T

0

(
di

dt i
‖v‖s,p,�

)2
]1/2

.

Especially, as n = 0, we denote the norm as

‖v‖L2(Ws,p(�)) =
(∫ T

0
‖v‖2

s,p,� dt

)1/2

.

Let

L∞(0, T ; Ws,p(�)) =
{
v ∈ Ws,p(�); ess sup

0≤t≤T

‖v‖s,p,� < ∞
}

and the corresponding norm is marked as

‖v‖L∞(Ws,p(�)) = ess sup
0≤t≤T

‖v‖s,p,�.

Set Th (h > 0) denotes a regular partition of the closure �̄ of the domain � into a finite number
of triangulations K , hk = diam(K), h = maxK∈Th

hK . All elements of Th will be numbered, so
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that Th = {Ki}i∈I , where I ⊂ Z+ = {0, 1, 2, . . .} such that �̄ = ∪Ki∈Th
Ki , Nh denotes the set of

all nodes Th.
Based on the partition Th, we introduce the corresponding dual partition T ∗

h . Here, we choose
the circumcentre Q of an element K ∈ Th, and the midpoints M on the edges of K , then connect
Q to M by a straight line. For an arbitrary vertex xi ∈ K , let Vi be the polygonal which is called
a control volume. Then, we have �̄ = ∪xi∈Nh

Vi , the dual mesh T ∗
h is the set of these control

volumes. We call the control volume mesh T ∗
h is regular, i.e. there exists a positive constant

C > 0 such that

C−1h2 ≤ meas(Vi) ≤ Ch2, ∀Vi ∈ T ∗
h .

We introduce a Lagrange interpolation operator Ih from H 2(�) into H 1
0 (�), such that

‖u − Ihu‖i ≤ Ch2−i‖u‖2, i = 0, 1, ∀u ∈ H 2(�). (2)

Let the trial function space Uh ⊂ H 1
0 (�), whose basis functions are {φi(x)}, be a linear space

based on Th and the test function space Vh ⊂ L2(�) be a piecewise constant space on the dual
partition T ∗

h , whose basis functions are {φ∗
i (x)}, defined by

φ∗
i (x) =

{
1, x ∈ Vi,

0, otherwise ∪ x ∈ ∂�.

Let I ∗
h be an interpolation operator from H 1

0 (�) to Vh satisfying

I ∗
h v =

∑
xi∈Nh

v(xi)φ
∗
i (x).

The weak form of the FVM for nonlinear problem (1) reads:

(ut , I
∗
h v) + a(u, u, I ∗

h v) + (b(u)∇u, I ∗
h v) = (f (u), I ∗

h v), ∀ v ∈ H 1
0 (�), (3)

where a(·, ·, I ∗
h ·) is defined by

a(w, u, I ∗
h v) =

∫
∂�

(a(w)∇u) · nI ∗
h v ds, ∀w, u, v ∈ H 1

0 (�).

Assume that the solution u of problem (1) satisfies the following regularities:

(C4) : u, ut ∈ L∞(H 3(�) ∩ W 1,∞(�)); utt ∈ L2(H 1(�));
|u(x, t)| ≤ K0, ∀(x, t) ∈ � × (0, T ].

For any vh ∈ Vh, a full discrete finite-volume formulation is defined for the solution un
h ∈ Uh

with time step �t as(
un

h − un−1
h

�t
, vh

)
+ a(un

h, u
n
h, vh) + (b(un

h)∇un
h, vh) = (f (un

h), vh), (4)

where un
h = uh(tn), tn = n�t, n = 1, 2, . . . , N,�t = (T /N). Then Equation (4) can be rewrit-

ten as

(un
h, vh) + �ta(un

h, u
n
h, vh) + �t (b(un

h)∇un
h, vh) = (un−1

h + �tf (un
h), vh), (4′)

where

a(uh, uh, vh) =
∑

xi∈Nh

∫
∂Vi

(a(uh)∇uh) · nvh ds =
∑

xi∈Nh

vh(xi)

∫
∂Vi

(a(uh)∇uh) · n ds.
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1648 T. Zhang et al.

Define the discrete norm

|||uh|||20 = (uh, I
∗
h uh), ∀ uh ∈ Uh.

This norm is equivalent to the standard L2-norm [25], namely, there exist two positive constants
C∗, C∗, independent of h, such that

C∗||uh||0 ≤ |||uh|||0 ≤ C∗||uh||0, ∀ uh ∈ Uh. (5)

In order to proceed the theoretical analysis to Equation (4), the following Gronwall lemma
need to be recalled [5].

Lemma 2.1 Let C0 and ak, bk, ck, dk, for integers k ≥ 0, be non-negative numbers such that

an + �t

n∑
k=0

bk ≤ �t

n∑
k=0

dkak + �t

n∑
k=0

ck + C0, ∀n ≥ 1.

Then,

an + �t

n∑
k=0

bk ≤
(

�t

n∑
k=0

ck + C0

)
exp

(
�t

n∑
k=0

dk

)
, ∀ n ≥ 1.

The following two important lemmas can be found in [9,19,24].

Lemma 2.2 For all uh, vh ∈ Uh, there exists a positive constant C, independent of h, such that

(uh, I
∗
h vh) = (vh, I

∗
h uh), (uh, I

∗
h vh) ≤ C||uh||0||vh||0.

Lemma 2.3 Suppose that the partition Th is regular, and T ∗
h is the corresponding dual partition.

For all wh, uh, vh ∈ Uh, there exist two positive constants α, C independent of h, such that

α||uh||21 ≤ a(wh, uh, I
∗
h uh); a(wh, uh, I

∗
h vh) ≤ C||uh||1||vh||1,

|a(wh, uh, I
∗
h vh) − a(wh, vh, I

∗
h uh)| ≤ Ch||uh||1||vh||1.

Theorem 2.4 (Trace theorem) Suppose that � has a Lipschitz boundary, p is a real number in
the range 1 ≤ p ≤ ∞. Then there is a constant C, such that

||v||Lp(∂�) ≤ C||v||1−1/p

Lp(�) ||v||1/p

W 1,p(�)
, ∀v ∈ W 1,p(�).

Lemma 2.5 Under the assumptions of Lemma 2.3, u ∈ H 2(�), and w ∈ W 1,∞(�), there exists
a positive constant C independent of h, such that

|a(u − uh, w, I ∗
h vh)| ≤ C(h2||u||2 + ||u − uh||0)||w||1,∞||vh||1, ∀uh, vh ∈ Uh.

Proof Introducing a discrete H 1-seminorm on a triangular element K , we obtain

|uh|1,h,K :=
{[(

∂uh

∂x1
(Q)

)2

+
(

∂uh

∂x2
(Q)

)2
]

SQ

}1/2

,

where SQ is the area of the element K with Q as its circumcentre. Chou and Li [9] have proved the
equivalence of the norms |uh|1,h and |uh|1. Denote by Kv the collection of vertex in the element
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K , xl(l = 1, 2, 3), x4 = x1. With the definition of a(·, ·, I ∗
h ·), we have

a(u, w, I ∗
h vh) − a(uh, w, I ∗

h vh) =
∑

xi∈Nh

∫
∂Vi

(a(u) − a(uh))∇w · nI ∗
h vh ds

=
∑
K∈Th

∑
xi∈Kv

∫
Vi∩K

(a(u) − a(uh))∇w · nI ∗
h vh ds

=
∑
K∈Th

3∑
l=1

∫
MlQ

(a(u) − a(uh))∇w · n ds[vh(xl) − vh(xl+1)],

where Ml is the midpoints of the edges of K . The above equalities are obtained by noticing that
each line segment MlQ is travelling twice but in opposite orientations (once as MlQ, once as
QMl), and then collecting the like-terms. Using Taylor’s expansion and the fact that Uh is linear
in K , we have

|vh(xl) − vh(xl+1)| =
∣∣∣∣∣

2∑
i=1

∂vh

∂xi

(xl − xl+1)

∣∣∣∣∣ ≤ Ch

(∣∣∣∣∂vh

∂x1

∣∣∣∣ +
∣∣∣∣∂vh

∂x2

∣∣∣∣
)

≤ C|vh|1,h,K ≤ C|vh|1,K .

Combining the condition (C1), Equation (2), triangular inequality and Theorem 2.4, we obtain

|a(u, w, I ∗
h vh) − a(uh, w, I ∗

h vh)|

≤
∑
K∈Th

3∑
l=1

∫
MlQ

|a(u) − a(uh)||∇w| ds · |vh(xl) − vh(xl+1)|

≤ C
∑
K∈Th

|∇w|L∞(K̄)|vh|1,K

3∑
l=1

∫
MlQ

|a(u) − a(uh)| ds

≤ C
∑
K∈Th

|∇w|L∞(K̄)|vh|1,K ·
3∑

l=1

∫
MlQ

|u − uh| ds

≤ C
∑
K∈Th

‖vh‖H 1(K)|∇w|L∞(K)

3∑
l=1

·
[
‖u − Ihu‖1/2

0 ‖u − Ihu‖1/2
1

(∫
MlQ

1 ds

)1/2

+‖Ihu − uh‖1/2
0 ‖Ihu − uh‖1/2

1

(∫
MlQ

1 ds

)1/2
]

≤ C
∑
K∈Th

‖vh‖H 1(K)|∇w|L∞(K) ·
[
h2‖u‖2 +‖Ihu − uh‖1/2

0 h−1/2‖Ihu−uh‖1/2
0

(∫
MlQ

1 ds

)1/2
]

≤ C
∑
K∈Th

‖vh‖H 1(K)|∇w|L∞(K̄) · (h2‖u‖2 + ‖Ihu − uh‖0)

= C(h2‖u‖2 + ‖u − uh‖0)‖vh‖H 1(�)‖w‖1,∞. �

Lemma 2.6 [18] Suppose Phu ∈ Uh satisfies

a(u, Phu − u, vh) = 0, ∀vh ∈ Vh, 0 < t ≤ T .
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1650 T. Zhang et al.

Then there exists a constant C > 0, such that

‖∇Phu‖∞ ≤ C, ‖u − Phu‖1 ≤ Ch‖u‖2, ‖u − Phu‖0 ≤ Ch2‖u‖3,

‖(u − Phu)t‖1 ≤ Ch{‖u‖2 + ‖ut‖2}, ‖(u − Phu)t‖0 ≤ Ch2{‖u‖3 + ‖ut‖3}.
Lemma 2.7 Under the conditions of Lemma 2.3 and (C2), suppose un

h ∈ Uh, then problem (4)

admits a uniqueness solution.

Proof Choosing vh = I ∗
h un

h in Equation (4′), combining with Equation (5) and Lemma 2.3,
we get

1

�t
(un

h, I
∗
h un

h) + a(un
h, u

n
h, I

∗
h un

h) + (b(un
h)∇un

h, I
∗
h un

h)

≥ C∗
�t

‖un
h‖2

0 + α‖un
h‖2

1 +
∑

xi∈Nh

∫
∂Vi

b(un
h) · nI ∗

h un
h · un

h ds −
∫

�

un
h · div(b(un

h)I
∗
h un

h) dx. (6)

Denote �ij = ∂Vi ∩ ∂Vj , nij is the unit outer normal direction of �ij , and define

βij =
∫

�ij

b(u) · nij ds.

Then, ∂Vi can be divided into a flow in part and a flow out part according to the sign of βij :{
(∂Vi)− = ∪βij ≤0�ij , (flow in),

(∂Vi)+ = ∪βij ≥0�ij , (flow out).

Write {
β+

ij = max(βij , 0),

β−
ij = max(−βij , 0).

u+
h =

{
limx ′→x,x ′ /∈Vi

uh(x
′), when x ∈ (∂Vi)−,

limx ′→x,x ′∈Vi
uh(x

′), when x ∈ (∂Vi)+.

u−
h =

{
limx ′→x,x ′∈Vi

uh(x
′), when x ∈ (∂Vi)−,

limx ′→x,x ′ /∈Vi
uh(x

′), when x ∈ (∂Vi)+.

The above values lead to the following approximation:∫
∂Vi

(b(un
h) · n)I ∗

h un
h · un

h ds ≈ (β+
ij un

h(xi) − β−
ij un

h(xj ))I
∗
h un

h

=
∫

∂Vi

(I ∗
h un

h)
+I ∗

h un
h(b(un

h) · nij ) ds. (7)

It follows from the Green formulation that

−
∑

xi∈Nh

∫
Vi

un
h · div(b(un

h)I
∗
h un

h) dx

=
∑

xi∈Nh

[∫
Vi

(b(un
h) · ∇un

h)I
∗
h un

h dx −
∫

∂Vi

(b(un
h) · n)un

hI
∗
h uh ds

]
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=
∑

xi∈Nh

[∫
Vi

(b(un
h) · ∇un

h)I
∗
h un

h dx −
∫

(∂Vi )+
(b(un

h) · n)(I ∗
h un

h)
+I ∗

h uh ds

−
∫

(∂Vi )−
(b(un

h) · n)(I ∗
h un

h)
−I ∗

h uh ds

]
. (8)

Combining Equations (7) and (8), we arrive at

∑
xi∈Nh

∫
∂Vi

b(un
h) · nI ∗

h un
h · un

h ds −
∫

�

un
h · div(b(un

h)I
∗
h un

h) dx

=
∑

xi∈Nh

∫
Vi

(b(un
h) · ∇un

h)I
∗
h un

h dx +
∫

(∂Vi )−
(b(un

h) · n)[I ∗
h un

h]I ∗
h uh ds, (9)

where [I ∗
h un

h] = I ∗
h un+

h − I ∗
h un−

h is the jump of un
h across (∂Vi)−. Applying the results presented

in Sections 6.2 and 7.2 of the book [25] about Equation (9), we have

(b(un
h)∇un

h, I
∗
h un

h) ≥ γ0(‖un
h‖2

0 + ‖un
h‖2

∂�), γ0 = min

(
σ,

1

2

)
, (10)

where σ > 0 is a constant, which is defined in condition (C2).
It follows from Equations (6) and (10) and condition (C2) that

1

�t
(un

h, I
∗
h un

h) + a(un
h, u

n
h, I

∗
h un

h) + (b(un
h)∇un

h, I
∗
h un

h)

≥
(

C∗
�t

+ γ0

)
‖un

h‖2
0 + α‖un

h‖2
1 + γ0‖un

h‖2
∂�.

This guarantees the unique existence of the solution to problem (4′) for a given un−1
h , i.e. the

problem (4) has a unique solution un
h for a given un−1

h .
Now, we state the stability of the standard finite-volume formulation (4) for nonlinear

problem (1). �

Theorem 2.8 Let un
h be the solution of Equation (4), and u0

h = u0, f ∈ L2(�) are valid, then
we have

||ul
h||20 + α

l∑
n=1

||un
h||21�t ≤ ||u0||20 + C

l∑
n=1

||f (un
h)||20�t, 1 ≤ l ≤ N,

where α > 0 is a constant.

Proof Taking vh = I ∗
h un

h in Equation (4), we have(
un

h − un−1
h

�t
, I ∗

h un
h

)
+ a(un

h, u
n
h, I

∗
h un

h) + (b(un
h)∇un

h, I
∗
h un

h) = (f (un
h), I

∗
h un

h). (11)

With the help of the definition of (·, I ∗
h ·) and Lemma 2.2, we get(

un
h − un−1

h

�t
, I ∗

h un
h

)
= 1

2�t
[(un

h − un−1
h , I ∗

h (un
h + un−1

h )) + (un
h − un−1

h , I ∗
h (un

h − un−1
h ))]

≥ 1

2�t
(un

h − un−1
h , I ∗

h (un
h + un−1

h )) = 1

2�t
(|||un

h|||20 − |||un−1
h |||20). (12)
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Substituting Equation (12) into (11), multiplying by 2�t , summing Equation (11) from n = 1
to n = l (1 ≤ l ≤ N) and employing the condition (C2), Lemma 2.3, Hölder inequality and
Equation (5), we have

||ul
h||20 − ||u0

h||20 + 2α

l∑
n=1

||un
h||21�t ≤ 2

l∑
n=1

(||f (un
h)||0 + ‖b(un

h)‖L∞‖∇un
h‖0)‖un

h‖0�t

≤ C1

l∑
n=1

||f (un
h)||20�t + C2

l∑
n=1

||un
h||20�t + α

l∑
n=1

||un
h||21�t.

Applying Lemma 2.1, we complete the proof. �

From Theorem 2.8, we can see that the fully discrete finite-volume scheme (4) is stable.

3. Two-grid finite-volume algorithm

In this section, we present a two-level finite-volume algorithm for the nonlinear parabolic prob-
lem (1). First of all, we introduce two regular triangulations of �, denoting as TH and Th with
mesh sizes H and h (h 	 H). Based on the partitions TH and Th, we define two finite-element
spaces UH and Uh which satisfy UH ⊂ Uh, they are called the coarse-grid and fine-grid spaces,
respectively. The idea to solve problem (1) using the two-grid finite-volume algorithm is presented
as follows:

Algorithm Step I. Find un
H ∈ UH (n = 1, 2, . . .) on coarse grid TH , such that, for all vH ∈ VH{

(∂tu
n
H , vH ) + a(un

H , un
H , vH ) + (b(un

H )∇un
H , vH ) = (f (un

H ), vH ),

u0
H = u0.

Step II. On the fine grid Th, ∀ vh ∈ Vh, find un
h ∈ Uh (n = 1, 2, . . .), such that{

(∂tu
n
h, vh) + a(un

H , un
h, vh) + (b(un

H )∇un
h, vh) = (f (un

H ) + f ′(un
H )(un

h − un
H ), vh),

u0
h = u0,

(13)

where ∂tu
n
k = (un

k − un−1
k )/�t (k takes h or H ). By using the known solution, which is obtained

in Step I and by the Taylor expansion, nonlinear problem (4) transforms into a linear problem in
Step II, which is much easier to solve than solving problem (4) on a fine grid space directly.

4. Error estimates of the standard FVM

This section is devoted to the error estimates of the approximate solution for the standard finite-
volume scheme (4). As usual, we write the error e(t) = un(t) − un

h(t) as a sum of two terms

un − un
h = (un − Phu

n) + (Phu
n − un

h) = ηn + ξn,

where un = u(tn) and Ph is defined in Lemma 2.6. Firstly, we present the L2-norm error estimate
of standard FVM for problem (1).

Theorem 4.1 Under the conditions (C1)–(C4) and u0
h = Phu0, the numerical solution un

h of
problem (4) satisfies the following error estimate for 0 ≤ tn ≤ T :

||u − un
h||0 ≤ C(h3/2 + �t).
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where C is a constant, which depends on ||u||L∞(H 3(�)), ||ut ||L2(H 3(�)), ||utt ||L2(L2(�)), but is
independent of h and �t .

Proof Denote ∂t ξ
n = (ξn − ξn−1)/�t , subtracting Equation (4) from Equation (3), choosing

v = ξn in Equation (3) and vh = I ∗
h ξn in Equation (4), we have

(∂t ξ
n, I ∗

h ξn) + a(un
h, ξ

n, I ∗
h ξn) = (∂tu

n − un
t , I

∗
h ξn) − (∂tη

n, I ∗
h ξn) − a(un − un

h, Phu
n, I ∗

h ξn)

− ((b(un) − b(un
h))∇un, I ∗

h ξn) − (b(un
h)∇(un − un

h), I
∗
h ξn)

+ (f (un) − f (un
h), I

∗
h ξn). (14)

By virtue of the definition of ||| · |||0, Lemma 2.2 and the estimate skill of (12), we get

(∂t ξ
n, I ∗

h ξn) ≥ 1

2�t
(|||ξn|||20 − |||ξn−1|||20). (15)

Combining Equation (15) with Equation (14), multiplying by 2�t and summing Equation (14)
from n = 1 to n = l (1 ≤ l ≤ N), thanks to Equation (5) and Lemma 2.3, we have

||ξ l||20 + 2α

l∑
n=1

||ξn||21�t ≤ 2
l∑

n=1

(∂tu
n − un

t , I
∗
h ξn)�t − 2

l∑
n=1

(∂tη
n, I ∗

h ξn)�t

− 2
l∑

n=1

((b(un) − b(un
h))∇un, I ∗

h ξn)�t

− 2
l∑

n=1

(b(un
h)∇(un − un

h), I
∗
h ξn)�t

+ 2
l∑

n=1

(f (un) − f (un
h), I

∗
h ξn)�t

− 2
l∑

n=1

a(un − un
h, Phu

n, I ∗
h ξn)�t =

6∑
i=1

Ei. (16)

Now, we estimate the right-hand side terms of Equation (16). For E1 and E2, with Poincáre
inequality, Lemma 2.6 and the results given in [30], we have

|E1| ≤ C1

l∑
n=1

(∫ tn

tn−1
||un

tt ||0 dt

)2

�t + C2

l∑
n=1

||ξn||20�t

≤ C1

(∫ t l

0
||un

tt ||20 dt

)
(�t)2 + C2

l∑
n=1

||ξn||20�t.

|E2| ≤ C1

l∑
n=1

∫ tn

tn−1
||ηn

t ||20 dt + C2

l∑
n=1

||ξn||20�t

≤ C1h
4

(∫ t l

0
(‖un‖3 + ||un

t ||3)2 dt

)
+ C2

l∑
n=1

||ξn||20�t.
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For E3 and E4, under the conditions of (C1)–(C2), by Lemma 2.6 and Theorem 2.4, we have

|E3| =
∣∣∣∣∣

l∑
n=1

((b(un) − b(un
h))∇un, I ∗

h ξn)�t

∣∣∣∣∣
≤

l∑
n=1

||b(un) − b(un
h)||0||∇un||L∞||I ∗

h ξn||0�t

≤
l∑

n=1

L||un − un
h||0||∇un||L∞||ξn||0�t

≤ C

l∑
n=1

||ξn + ηn||0||∇un||L∞||ξn||0�t

≤ C1

l∑
n=1

||ξn||20||un||1,∞�t + C2

l∑
n=1

||ηn||0||un||1,∞||ξn||0�t

≤ C1

l∑
n=1

||ξn||20�t + C2

l∑
n=1

h4(||un||23 + ||un
t ||23)�t.

|E4| =
∣∣∣∣∣

l∑
n=1

(b(un
h)∇(un − un

h), I
∗
h ξn)�t

∣∣∣∣∣ =
∣∣∣∣∣

l∑
n=1

(b(un
h)∇(ξn + ηn), I ∗

h ξn)�t

∣∣∣∣∣
≤

l∑
n=1

||b(un
h)||L∞||∇ξn||0||I ∗

h ξn||0�t +
l∑

n=1

||b(un
h)||L∞|(div ηn, I ∗

h ξn)|�t

≤
l∑

n=1

b∗||ξn||1||ξn||0�t +
l∑

n=1

b∗|
∫

∂�

(un − Phu
n) · I ∗

h ξnn ds|�t

≤
l∑

n=1

b∗||ξn||1||ξn||0�t +
l∑

n=1

b∗||un − Phu
n||L2(∂�)||ξn||L2(∂�)�t

≤
l∑

n=1

b∗||ξn||1||ξn||0�t +
l∑

n=1

C||un − Phu
n||1/2

0 ||un − Phu
n||1/2

1 ||ξn||1/2
0 ||ξn||1/2

1 �t

≤
l∑

n=1

b∗||ξn||1||ξn||0�t +
l∑

n=1

Ch3/2(||un||3 + ‖un
t ‖3)||ξn||1�t

≤ ε

l∑
n=1

||ξn||21�t + C(ε)

l∑
n=1

||ξn||20�t + Ch3
l∑

n=1

(||un||3 + ‖un
t ‖3)

2�t.

For (E5)–(E6), by (C1) and Lemma 2.5, we get

|E5| =
∣∣∣∣∣

l∑
n=1

(f (un) − f (un
h), I

∗
h ξn)�t

∣∣∣∣∣
≤ C1

l∑
n=1

(||ξn||20 + ||ηn||20)�t + C2

l∑
n=1

||ξn||20�t
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≤ C1h
4

l∑
n=1

(||un||3 + ||un
t ||3)2�t + C2

l∑
n=1

||ξn||20�t.

|T6| = |
l∑

n=1

a(un − un
h, Phu

n, I ∗
h ξn)�t |

≤
l∑

n=1

C(h2||un||2 + ||un − un
h||0)||un||1,∞||ξn||1�t

≤ C1

l∑
n=1

h2(‖un‖3 + ‖un
t ‖3)||un||1,∞||ξn||1�t + C2

l∑
n=1

||ξn||0||un||1,∞||ξn||1�t

≤ C(ε)h4
l∑

n=1

�t + ε

l∑
n=1

||ξn||21�t + C

l∑
n=1

||ξn||20�t.

Combining the above inequalities with Equation (16), we get

||ξ l||20 +
l∑

n=1

||ξn||21�t ≤ C1h
3

l∑
n=1

(||un||23 + ||un
t ||23)�t + C2(�t)2

∫ t l

0
||un

tt ||20 dt

+ C3h
4

[∫ t l

0
(||un||3 + ||un

t ||3)2 dt + T +
l∑

n=1

(||un||3 + ||un
t ||3)2�t

]

+ C4

l∑
n=1

||ξn||20�t + ε

l∑
n=1

||ξn||21�t. (17)

Choosing proper ε and kicking the last term to the left side of Equation (17), applying Lemma 2.1,
we arrive at

||ξ l||20 +
l∑

n=1

||ξn||21�t ≤ C1h
3

l∑
n=1

(||un||23 + ||un
t ||23)�t + C2(�t)2

∫ t l

0
||un

tt ||20 dt

+ C3h
4

[∫ t l

0
(||un||3 + ||un

t ||3)2 dt + T +
l∑

n=1

(||un||3 + ||un
t ||3)2�t

]
.

This, along with triangular inequality and Lemma 2.6, yields the desired result. �

Remark 4.1 From Theorem 4.1, we can see that the backward Euler scheme is only first order
in �t . To balance the spatial and temporal errors, one would choose �t = O(h3/2), which is a
restriction to the backward Euler method. Therefore, in the proof of the following theorems, we
choose �t = O(h3/2) is reasonable.

Next, we present the H 1-norm error estimate for problem (1) in the standard FVM.

Theorem 4.2 Under the conditions of Theorem 4.1 and u0
h = Phu0, �t = O(h3/2), for

0 ≤ tn ≤ T , the solution un
h of problem (4) satisfies

||u − un
h||1 ≤ C(h1/2 + �t),

where C is a constant, independent of h and �t .
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Proof We get the following error equation by choosing v = ∂t ξ
n in Equation (3) and vh = I ∗

h ∂t ξ
n

in Equation (4), respectively:

(∂t ξ
n, I ∗

h ∂t ξ
n) + a(un

h, ξ
n, I ∗

h ∂t ξ
n)

= (∂tu
n − un

t , I
∗
h ∂t ξ

n) − (∂tη
n, I ∗

h ∂t ξ
n)

− ((b(un) − b(un
h))∇un, I ∗

h ∂t ξ
n) − (b(un

h)∇(un − un
h), I

∗
h ∂t ξ

n)

− a(un − un
h, Phu

n, I ∗
h ∂t ξ

n) + (f (un) − f (un
h), I

∗
h ∂t ξ

n). (18)

Thanks to Lemma 2.3, using the trick used in [8] yields

a(un
h, ξ

n, I ∗
h ∂t ξ

n) ≥ 1

2�t
[a(un

h, ξ
n, I ∗

h ξn) − a(un
h, ξ

n−1, I ∗
h ξn−1)]

− 1

2�t
[a(un

h, ∂t ξ
n, I ∗

h ξn) − a(un
h, ξ

n, I ∗
h ∂t ξ

n)]. (19)

Combining Equation (18) with Equation (19), testing Equation (18) against �t and summing over
n from 1 to l (1 ≤ l ≤ N), with the help of Equation (5) and Lemma 2.3, we have

C

l∑
n=1

||∂t ξ
n||20�t + α

2
||ξ l||21

≤
l∑

n=1

(∂tu
n − un

t , I
∗
h ∂t ξ

n)�t −
l∑

n=1

(∂tη
n, I ∗

h ∂t ξ
n)�t

−
l∑

n=1

a(un − un
h, Phu

n, I ∗
h ∂t ξ

n)�t + 1

2

l∑
n=1

[a(un
h, ∂t ξ

n, I ∗
h ξn) − a(un

h, ξ
n, I ∗

h ∂t ξ
n)]�t

−
l∑

n=1

((b(un) − b(un
h))∇un, I ∗

h ∂t ξ
n)�t −

l∑
n=1

(b(un
h)∇(un − un

h), I
∗
h ∂t ξ

n)�t

+
l∑

n=1

(f (un) − f (un
h), I

∗
h ∂t ξ

n)�t =
7∑

i=1

Ei. (20)

Now, we estimate the terms of the right-hand side of Equation (20), for E1, E2, similar estimates
of Ei(i = 1, 2) in Theorem 4.1, we have

|E1| ≤ C(ε)

(∫ t l

0
||un

tt ||20 dt

)
(�t)2 + ε

l∑
n=1

||∂t ξ
n||20�t.

|E2| ≤ C(ε)h4

(∫ t l

0
(||un

t ||3 + ‖un‖3)
2 dt

)
+ ε

l∑
n=1

||∂t ξ
n||20�t.

For E3 and E4, by Lemmas 2.3, 2.5, 2.6, Theorem 4.1, inverse and Cauchy inequalities, we
deduce that

|E3| ≤ C

l∑
n=1

(h2||un||2 + ||un − un
h||0)||Phu

n||1,∞||∂t ξ
n||1�t

≤ C(h2||un||2 + h3/2 + �t)

l∑
n=1

||Phu
n||1,∞||∂t ξ

n||1�t
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≤ C(h1/2 + h−1�t)

l∑
n=1

||Phu
n||1,∞||∂t ξ

n||0�t

≤ C(ε)(h1/2 + h−1�t)2
l∑

n=1

||Phu
n||21,∞�t + ε

l∑
n=1

||∂t ξ
n||20�t.

|E4| ≤ Ch

2

l∑
n=1

||ξn||1||∂t ξ
n||1�t ≤ C(ε)

l∑
n=1

||ξn||21�t + ε

l∑
n=1

||∂t ξ
n||20�t.

For E5 and E6, Theorem 4.1 and conditions (C1) and (C2) yield

|E5| =
∣∣∣∣∣

l∑
n=1

((b(un) − b(un
h))∇un, I ∗

h ∂t ξ
n)�t

∣∣∣∣∣
≤

l∑
n=1

||b(un) − b(un
h)||0||∇un||L∞||∂t ξ

n||0�t

≤
l∑

n=1

L||un − un
h||0||∇un||L∞||∂t ξ

n||0�t

≤ C(h3/2 + �t)

l∑
n=1

||un||1,∞||∂t ξ
n||0�t

≤ C(ε)(h3 + �t2)

l∑
n=1

||un||21,∞�t + ε

l∑
n=1

||∂t ξ
n||20�t.

|E6| = |
l∑

n=1

(b(un
h)∇(un − un

h), I
∗
h ∂t ξ

n)�t |

≤
l∑

n=1

||b(un
h)||L∞||∇(un − un

h)||0||I ∗
h ∂t ξ

n||0�t

≤ b∗
l∑

n=1

||∇(ξn + ηn)||0||I ∗
h ∂t ξ

n||0�t

≤ b∗
l∑

n=1

||ξn||1||∂t ξ
n||0�t + b∗

l∑
n=1

||un − Phu
n||1||∂t ξ

n||0�t

≤ ε

l∑
n=1

||∂t ξ
n||20�t + C1(ε)

l∑
n=1

||ξn||21�t + C2(ε)h
2

l∑
n=1

||un||22�t.

For E7, thanks to Theorem 4.1, condition (C1) and Young inequality, we have

|E7| ≤ C(ε)

l∑
n=1

(||un − un
h||20)�t + ε

l∑
n=1

||∂t ξ
n||20�t ≤ C(ε)T (h3 + �t2) + ε

l∑
n=1

||∂t ξ
n||20�t.
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Combining the above inequalities with Equation (20), one gets

C1

l∑
n=1

||∂t ξ
n||20�t + ||ξ l||21 ≤ C2h

2

[∫ t l

0
(||ut ||3 + ‖u‖3)

2 dt +
l∑

n=1

||un||22�t + T

]

+ C3(ε)(�t)2

(∫ t l

0
||utt ||20 dt + T

)
+ C4(ε)

×
l∑

n=1

||ξn||21�t + C5(ε)

l∑
n=1

(h + h−2�t2)�t + ε

l∑
n=1

||∂t ξ
n||20�t.

(21)

Under the condition �t = O(h3/2), choosing proper ε and kicking the last term to the left side of
Equation (21), applying Lemma 2.1, we have

C1

l∑
n=1

||∂t ξ
n||20�t + ||ξ l||21 ≤ C2h

2

[∫ t l

0
(||ut ||3 + ‖u‖3)

2 dt +
l∑

n=1

||un||22�t

]

+ C1(ε)(�t)2
∫ t l

0
||utt ||20 dt + C2(ε)T h.

Combining triangular inequality and Lemma 2.6, we complete the proof. �

5. Error estimate of the two-level finite-volume algorithm

This section is devoted to the convergence analysis of the approximate solution in the H 1-norm
for the two-level finite-volume algorithm.

Theorem 5.1 Under the conditions (C1)–(C4) and u0
h = Phu0, un

h be the solution of the two-grid
finite-volume algorithm (13), for 0 ≤ tn < T , we have

||u − un
h||1 ≤ C[h1/2 + H 3/4(1 + (H 3/2h−1)1/2) + �t], (22)

where C is a constant, independent of h and �t .

Proof We get the following error equation by choosing v = ∂t ξ
n in Equation (3) and vh = I ∗

h ∂t ξ
n

in Equation (13), respectively:

(∂t ξ
n, I ∗

h ∂t ξ
n) + a(un

H , ξn, I ∗
h ∂t ξ

n)

= (∂tu
n − un

t , I
∗
h ∂t ξ

n) − (∂tη
n, I ∗

h ∂t ξ
n) − ((b(un) − b(un

H ))∇un, I ∗
h ∂t ξ

n)

− (b(un
H )∇(un − un

h), I
∗
h ∂t ξ

n) − a(un − un
H , Phu

n, I ∗
h ∂t ξ

n)

+ (f (un) − f (un
H ) − f ′(un

H )(un
h − un

H ), I ∗
h ∂t ξ

n). (23)

Using the proof as Equation (19), we have

(∂t ξ
n, I ∗

h ∂t ξ
n) + 1

2�t
(a(un

H , ξn, I ∗
h ξn) − a(un

H , ξn−1, I ∗
h ξn−1))

≤ (∂tu
n − un

t , I
∗
h ∂t ξ

n) − (∂tη
n, I ∗

h ∂t ξ
n) + 1

2�t
[a(un

H , ∂t ξ
n, I ∗

h ξn) − a(un
H , ξn, I ∗

h ∂t ξ
n)]
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− ((b(un) − b(un
H ))∇un, I ∗

h ∂t ξ
n) − (b(un

H )∇(un − un
h), I

∗
h ∂t ξ

n)

+ (f (un) − f (un
H ) − f ′(un

H )(un
h − un

H ), I ∗
h ∂t ξ

n)

− a(un − un
H , Phu

n, I ∗
h ∂t ξ

n) =
7∑

i=1

Ei. (24)

Multiplying (24) with �t and summing from n = 1 to n = l, 1 ≤ l ≤ N . For E1–E3 and E5,
under the condition of (C2), by Lemma 2.3, 2.5, 2.6 and the Cauchy inequality, we can estimate
them as in Theorem 4.2. For E4 and E7, under the conditions of (C1), we have

|E4| = |
l∑

n=1

((b(un) − b(un
H ))∇un, I ∗

h ∂t ξ
n)�t |

≤
l∑

n=1

L||un − un
H ||L2 ||∇un||L∞||I ∗

h ∂t ξ
n||L2�t

≤ C(ε)

l∑
n=1

||un − un
H ||20||un||21,∞�t + ε

l∑
n=1

||∂t ξ
n||20�t.

|E7| ≤
l∑

n=1

C(H 2||un||2 + ||un − un
H ||0)||Phu

n||1,∞||∂t ξ
n||1�t

≤
l∑

n=1

C(H 2||un||2 + ||un − un
H ||0)||Phu

n||1,∞||∂t ξ
n||0h1/2

≤ C(H 3/2 + �t)

l∑
n=1

||∂t ξ
n||0h1/2 ≤ C(ε)(H 3/2 + �t)2 h

�t
+ ε

l∑
n=1

||∂t ξ
n||20�t

≤ C(ε)(H 3/2 + h)(h−1H 3/2 + 1) + ε

l∑
n=1

||∂t ξ
n||20�t.

For T6, thanks to the condition (C3), using the proofs presented in [8] and Lemma 2.6, we have

(f (un) − f (un
H ) − f ′(un

H )(un
h − un

H ), I ∗
h ∂t ξ

n)�t

≤ C(ε)(||ξn||20 + ||ηn||20)�t + C(ε)(H 3/2 + �t)2�t + ε||∂t ξ
n||20�t.

With the above estimates and Equation (24), we arrive at

C

l∑
n=1

||∂t ξ
n||20�t + ||ξ l||21 ≤ Ch2

[∫ t l

0
(||ut ||3 + ||u||3)2 dt +

l∑
n=1

||un||22�t

]
+ C(ε)(�t)2

×
∫ t l

0
||utt ||20 dt + C(ε)

l∑
n=1

||ξn||21�t + ε

l∑
n=1

||∂t ξ
n||20�t

+ C(ε)

l∑
n=1

(H 3/2 + �t)2�t + C(ε)(H 3/2 + h)(h−1H 3/2 + 1).

(25)
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Applying the Lemma 2.1, we get that

||ξ l||1 ≤ C[h1/2 + H 3/4(1 + (H 3/2h−1)1/2) + �t],
where C is a constant, dependent on ||u||L∞(H 3(�)), ||ut ||L2(H 3(�)), ||utt ||L2(L2(�)), but independent
of h and �t . We finish the proof by combining the triangular inequality with Lemma 2.6. �

Remark 5.1 Comparing with the H 1-norm error estimates between the standard FVM and the
two-level method for the nonlinear parabolic problem (1), the theoretical rate of convergence for
u are

||u(t) − uone(t)||1 ≤ C(h1/2 + �t),

||u(t) − utwo(t)||1 ≤ C
[
h1/2 + H 3/4(1 + (H 3/2h−1)1/2) + �t

]
, (26)

where uone(t) and utwo(t) are the approximation solutions which were obtained by using the
standard FVM and the two-level method, respectively. From the expression of Equation (26), one
should choose h = O(H 3/2), then Equation (22) can be rewritten as

||u(tn) − utwo(tn)||1 ≤ C(h1/2 + H 3/4 + �t) ≈ C(h1/2 + �t). (27)

From Equation (27), we can see that the two-level method has the same order of approximation
as that of the standard method. However, the nonlinear problem is only treated on the coarse grid
space in the two-level algorithm, in this way, a large amount of computational cost can be saved.

6. Numerical validation

In order to gain insights on the theoretical results established in previous sections, we present
some numerical experiments in this section. Our main interest is to verify the performances of the
two-level finite-volume algorithm. In all experiments, � × [0, T ] = [0, 1]2 × [0, 1]. The mesh
consists of triangular elements and the backward Euler scheme is used for the time discretization.
In order to show the prominent features of the two-level method, we compare this method with
the standard FVM for nonlinear parabolic equations. In each time iterative interval [tm−1, tm], the
stopping criterion ⎡

⎣(N+1)2∑
i=1

(um
h,i − um−1

h,i )2

⎤
⎦

1/2

≤ 10−4

is employed, where N is the number of nodes in each orientation, m is the step of the iterative and
initial value u0

h = uh(0). Let uone
h (tn) and utwo

h (tn) be the numerical solutions which were obtained
by using the standard FVM and the two-level method at tn. The experimental rates of convergence
with respect to the mesh size h are calculated by the formula log(Ei/Ei+1)/log(hi/hi+1), where
Ei and Ei+1 are the relative errors corresponding to the mesh of sizes hi and hi+1, respectively.

Firstly, We choose the coefficients of nonlinear problem (1) are a(u) = 1, b1(u) = b2(u) =
u. The initial-boundary values and f (u) are determined by the exact solution u = e−t x

(1 − x)y(1 − y). The CPU time, H 1-norm relative errors and convergence rates at t = tn are listed
in Tables 1 and 2 for the standard FVM and two-level method with some h, �t and H values.

From Tables 1 and 2, we can see that the numerical results coincide with the theoretical analysis,
and the two-level method spends less time than the standard method, that is to say, our algorithm
is effective for saving a large amount of computational time and still keeping good precise.
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Table 1. CPU(s), relative errors and convergence rates on [0,T] for
standard FVM.

1

h

1

�t
CPU (s)

‖u(tn) − uone
h (tn)‖1

‖u(tn)‖1
uH 1 rate

8 2√8 0.156 0.252386 –
16 4 0.953 0.134916 0.936
27 2√27 4.453 0.0898215 0.7775
36 6 9.969 0.0751895 0.6181
49 7 27.937 0.0649899 0.4728

Table 2. CPU(s), relative errors and convergence rates on [0,T] for
two-level FVM.

1

h

1

H

1

�t
CPU (s)

‖u(tn) − uone
h (tn)‖1

‖u(tn)‖1
uH 1 rate

8 4 2√8 0.063 0.249555 –
16 7 4 0.437 0.129116 1.0670
27 9 2√27 1.141 0.0870843 0.7527
36 11 6 2.469 0.0724002 0.6419
49 14 7 6.672 0.0611606 0.5472

Table 3. CPU(s), relative errors and convergence rates on [0,T] for
standard FVM.

1

h

1

�t
CPU (s)

‖u(tn) − uone
h (tn)‖1

‖u(tn)‖1
uH 1 rate

8 2√8 0.788 0.338136 –
16 4 4.694 0.170966 0.9839
27 2√27 16.252 0.112245 0.8044
36 6 33.431 0.092745 0.6633
49 7 71.887 0.0794112 0.5035

Table 4. CPU(s), relative errors and convergence rates on [0,T] for
two-level method.

1

h

1

H

1

�t
CPU (s)

‖u(tn) − uone
h (tn)‖1

‖u(tn)‖1
uH 1 rate

8 4 2√8 0.163 0.409151 –
16 7 4 0.940 0.191356 1.0964
27 9 2√27 1.882 0.129294 0.7493
36 11 6 3.754 0.1048564 0.7282
49 14 7 9.411 0.0862658 0.6330

On the other hand, we present some numerical results by setting the exact solution u = e−t x(1 −
x)y(1 − y) and the coefficients are a(u) = u, b1(u) = b2(u) = u. We compare the CPU time,
H 1-norm relative errors and convergence rates at t = tn between the standard FVM and the
two-level method with the some parameter values.

From Tables 3 and 4, we can see that although the H 1-norm relative errors between two methods
are closed, the two-level method spends less time than the standard method. That is to say, our
algorithm is effective to solve the nonlinear parabolic problem.
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7. Conclusion

In this work, we have provided the convergence analysis for nonlinear parabolic equations (1)
by using the two-level FVM. The analysis has extended the work in [8] to a more interest-
ing and meaningful case. In fact, the nonlinear convection and diffusion terms are contained
in many fluid dynamics problems, such as the nonlinear convection–diffusion-reaction equa-
tions, conduction–convection problem and Navier–Stokes equations, and how to deal with them
effectively is a research focus. Here, we have provided a generalized theoretical analysis for the
nonlinear parabolic problem, which contains those nonlinear terms, by using a two-level FVM.
In this sense, we have pushed forward the existing knowledge. Numerical tests have revealed that
the two-level FVM is highly efficient for the nonlinear parabolic problem.
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