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Abstract—Coverage is an important issue in many wireless networks. In this paper, we address the problem of node placement for

ensuring complete coverage in a long belt scenario and propose a novel placement approach to minimize the number of nodes

needed. In our work, each node is assumed to be able to cover a disk area centered at itself with a fixed radius, then a divide-and-cover

node placement method is proposed. In the proposed method, a long belt is divided into some sub-belts (if necessary), and then a

string of nodes are placed parallel to the long side of each sub-belt to completely cover the sub-belt. We then determine the optimal

distance between two adjacent nodes in a string and the number of such strings to minimize the number of nodes for complete belt

coverage. Theoretical proofs and analysis show that compared with other node placement including the well-known regular triangular-

lattice placement, the proposed method can achieve lower node density in some cases when the belt height is not very large. A

combination of the proposed method and the triangular-lattice placement is then proposed, and the optimal ranges of the belt height for

their respective applications to achieve the lowest node density are computed.

Index Terms—Belt coverage, divide-and-cover placement, node placement, wireless networks

Ç

1 INTRODUCTION

COVERAGE is an important issue in many wireless
networks, including cellular mobile networks, wireless

local access networks (WLANs), and wireless sensor
networks (WSNs) [1]. In these wireless networks, each
node is often assumed to be able to cover a disk area
centered at itself with a radius r. For example, a base station
in cellular mobile networks can transmit or receive radio
signals for those mobile phones within a disk centered at
itself with the radius of its transmission range. A wireless
sensor node in WSNs can sense and process environmental
information from those points within a disk centered at
itself with radius of its sensing range.

Network coverage is a collective measure about how an
area of interests is covered by nodes within the area but
with different geographical locations. An area is said
completely covered if any of the space points within the
area is covered by at least one node. Deterministic network
deployment is to place nodes at planned, predetermined
locations. When using deterministic deployment, it is often
desirable to find a placement pattern such that the nodes’
locations can be easily found for placing nodes. Further-
more, it is also desirable that such a placement pattern can
achieve the lowest node density (the number of nodes per
unit area) for complete coverage.

In this paper, we consider a network coverage problem
in the long bounded belt scenario. In practice, placing

transceivers to provide radio coverage for a long-distance
tunnel is not uncommon in cellular mobile networks.
A tunnel for transceiver placement is often abstracted as a
bounded long belt from the engineering viewpoint. For
example, the New York City subway is of around 337-km
long, and about half of its routes are underground tunnels.
Another famous example is the Channel Tunnel between
Britain and French, which is the longest undersea rail tunnel
(50.5 km) in the world. In China, the high-speed railway
between Wuhan and Guangzhou contains 226 tunnels with
the total length of 177.2 km or 16 percent of the total rail
length. Moreover, underground mine is also a typical long
bounded belt area. Sensors and transmitters can be placed
within such scenarios for disaster (gas, fire or other
disasters) monitoring and communication.

In this paper, we study how to place nodes as few as
possible for completely covering a bounded long belt.
Generally, the distance of a tunnel is much larger than the
diameter of the tunnel. For example, the length of Channel
Tunnel is 50.5 km, but the diameter of the tunnel is only
7.6 m. Thus, in our problem, we consider such a long
bounded belt scenario with width D and height H, where
D� H and D� r and r is the coverage radius of each
node. The problem of node placement for complete cover-
age has been studied for scenarios of very large (or infinite)
regions or small bounded rectangles. However, to the best
of our knowledge, the problem of placing minimal number
of nodes (disks1) in a bounded long belt to guarantee
complete coverage has not been studied before.

In our work, we first propose a novel divide-and-cover
disk placement method. In the proposed method, we divide
a belt with height H into some sub-belts each with height
H=k, k ¼ 1; 2; . . . , and then place a string of disks with
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interdisk distance d parallel to the long side of each sub-belt
to completely cover the sub-belt. We first prove what is the
optimal interdisk distance, i.e., the optimal d, if k sub-belts
are needed for complete belt coverage. For different values
of belt height H, we then determine the optimal number of
such strings to minimize the node density for complete belt
coverage, i.e., the optimal k. Compared with the regular
triangular-lattice placement [2], [3], [4] that is the optimal
placement in an unbounded region, we prove that the
proposed method can achieve a lower node density in some
cases when the belt height is not very large. The key idea
behind the improvement is that the interdisk distance
should be properly determined according to the belt height,
other than using a fixed one. In the long bounded belt
scenario, the interdisk distance in the triangular-lattice
placement might not be the optimal one for some values of
the belt height. We then propose to use a combination of the
proposed method and the regular triangular-lattice place-
ment to provide complete belt coverage, where the optimal
belt height ranges for their respective applications (divide-
and-cover placement or triangular-lattice placement) to
achieve the lowest node density are also computed. We
compare its coverage performance with two other com-
monly used placement schemes, and the results prove its
superiority in terms of lower node density for complete belt
coverage. We also discuss the optimality factor, the impacts
of left and right-boundary effects, and higher degree
coverage issues for the combined placement scheme.

The rest of the paper is organized as follows: We discuss
the related work in Section 2, present our method and
performance analysis in Section 3, and provide some
discussions in Section 4. The paper is concluded in Section 5.

2 RELATED WORK

How to find an optimal node placement pattern in wireless
networks has been widely studied in the literature [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. A well-
known result is that the regular triangular-lattice pattern
achieves the minimum node density to completely cover a
very large region [2], [3]. In this pattern, each disk overlaps
with six others, and the locations of the disks form a grid
in which the nearest pair of disks are

ffiffiffi
3
p

r apart, where r is
the radius of the disks. Brown et al. [5] propose a disk
placement for 2-coverage, i.e., each point is covered at least
by two disks. In their placement, starting with a single disk
being placed within the region, three disks are then added,
one centered at the 0 degree point on its circumference, the
next at 120 degrees, and another at 240 degrees. And for
each newly added disk, add three another disks centered at
their circumference (if there are no such disks), at the 180,
�60, and 60 degrees point. By this way, the whole region
can achieve 2-coverage.

Recently, some researchers have proposed new place-
ment patterns for guaranteeing both coverage and con-
nectivity [7], [9], [10], [13]. For example, Kar and Banerjee
[7] propose a strip pattern where nodes are first placed as
horizontal strips to provide complete coverage, and then a
vertical strip is added to guarantee network connectivity.
Bai et al. [9] propose a strip-based pattern. In this pattern,
some nodes are first placed as horizontal strips separated by

ffiffiffi
3
p

r apart, where r is the sensing radius, then two vertical
strips are placed at the left and right boundary of horizontal
strips, respectively, to connect the horizontal strips. Thus,
both complete coverage and network connectivity are
achieved. In [10], Bai et al. extend their study of optimal
node placement pattern to higher connectivity requirement
(up to 6-connectivity).

All of the above mentioned studies have assumed an
unbounded region scenario when determining placement
patterns. However, in many practical placements, nodes are
often needed to be placed in some bounded area. For
example, in cellular networks and WLANs, with the
requirement for high quality of services, transmitters are
required to be placed within buildings to increase indoor
radio coverage [14], [15]. In WSNs, sensor nodes are widely
deployed within buildings for fire monitoring or other
applications [16]. For covering a bounded field, in [4] the
field is partitioned into single-row regions and multirow
regions: A single row of nodes are placed along the bisector
of the single-row region; In multirow regions, nodes are
first placed according to a regular triangular-lattice pattern,
then some extra nodes are placed along the boundaries of
each multirow region to ensure complete coverage.

The problem of barrier coverage [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26] has a similar placement scenario to
the belt coverage problem, but there are some distinct
differences in the two problems. The main purpose of the
belt coverage is to cover all the points within the belt.
Barrier coverage aims at constructing a chain of sensors
connecting two points or enclosing a protected region, with
the sensing areas of any two adjacent sensors overlapping
with each other’s. For a given deployment field, barrier
coverage normally does not require that all points of the
field to be covered. For example, Chen et al. [21] develop a
novel sleep-wake up algorithm to construct barriers that can
maximize the network barrier lifetime.

From the viewpoint of geometry [27], [28], [29], our belt
coverage problem resembles the problem of placing disks to
completely cover a rectangle [30], [31], [32], [33]. The
objective is to minimize the radius of disks for completely
covering a small rectangle, when a fixed number of disks
are used. In [30], based on a graph theoretic approach, a
locally optimal circle placement pattern for a square with
up to 10 equal circles has been found. In [31], when the
width and the length of the rectangle are comparable,
several deterministic disk placements have been proposed,
and an optimal placement with the minimal radius can be
obtained with less than or equal to 5 and 7 disks. Melissen
and Schuur [33] show the optimal placement of six and
eight disks with the minimal radius. Based on the simulated
annealing method, a new optimal placement with eleven
disks is also presented. Nurmela and Ostergard [32] use a
quasi-Newton method to minimize the uncovered area by
moving the disks, and the radii of the disks are further
adapted to find locally optimal placement. They present the
best placement of a unit-area square with up to 30 disks.
However, the above-mentioned exact solutions for small
number of disks do not provide guidance for covering a
long belt scenario, since the aims of the two problems are
different.
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3 A NOVEL DISK PLACEMENT FOR COMPLETE BELT

COVERAGE

In this section, we introduce a novel disk placement for
complete belt coverage. In our method, we place strings of
disks parallel to the long side of the belt region. We then
determine the optimal distance between two adjacent disks
in a string and the number of such strings to guarantee
complete belt coverage. In determining the placement, we
assume that the length of the belt is much larger than
the height of the belt such that the left and right-boundary
effect can be neglected. In this section, we consider to
provide 1-coverage, i.e., each point in the belt should be
covered by at least one disk. The left and right-boundary
effect and the k-coverage problem will be discussed in the
next section.

3.1 Preliminary

Definition 1 ((d, r)-strip). A ðd; rÞ-strip is a string of identical
disks each with radius r placed along a line such that the
distance between the centers of any two adjacent disks is d.

We call such a line the strip center line and d the strip disk
distance. The maximal effective coverage region of a ðd; rÞ-strip
depends on the critical height of the strip, which is the
distance between the two intersections of two adjacent
disks. The critical height can be computed by

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � d2
p

: ð1Þ

Thus, the maximal effective coverage region of a ðd; rÞ-strip is

a rectangular region with the same height
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � d2
p

.

Obviously, a ðd; rÞ-strip can only provide complete coverage

for a belt with height less than 2r.
A divide-and-cover method to provide complete cover-

age for a belt is to divide the belt into many sub-belts
parallel to its long side such that the height of each sub-
belt is less than 2r and each sub-belt can be completely
covered by a single ðd; rÞ-strip. Suppose that a belt with
height H < 2kr is to be divided into k sub-belts or more.
There are many potential partitions satisfying that the
height of each sub-belt is less than 2r. Among many
potential partitions, we consider an equipartition such that
all sub-belts have the same height. Correspondingly, we
call other potential partitions as nonequipartition.

Definition 2 (Equipartition (d; r)-strip placement). Given a
belt with height H, divide this belt into k equal sub-belts by
k� 1 lines parallel to the longer side of the belt, and place one
ðd; rÞ-strip in each sub-belt such that the strip center line is on
the bisector of this sub-belt and the strip disk distance is

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=kÞ2

q
: ð2Þ

Here, H meets the condition H < 2kr.

Fig. 1a shows the disk placement when k ¼ 1. Fig. 1b
shows the disk placement when k ¼ 2, where the belt is
divided into two equal parts. The maximal effective coverage
region of such an equipartition (dk; r)-strip is a rectangular
region with height

ffiffiffiffiffiffiffiffiffiffiffi
4r2�d2

k

p
. According to (2), we have

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � d2

k

q
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=kÞ

p �2
q

¼ H:

That is, k equipartition (dk, r)-strip placement can provide
complete belt coverage. The total number of disks used in
equipartition ðd; rÞ-strip placement is given by

N
ðeÞ
k ¼

kD

dk
¼ kDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � ðH=kÞ2
q : ð3Þ

Fig. 2 shows the normalized number of disks used in
equipartition ðd; rÞ-strip placement ðk ¼ 1; 2; 3; 4; 5Þ with
respect to different values of the normalized belt height H.

Another commonly used placement is the triangle
tessellation, where the centers of disks form an equal
triangular-lattice with side length

ffiffiffi
3
p

r. It is well known that
such a triangle tessellation achieves the minimum number
of disks to provide complete coverage for a very large plane
[2]. In our context of long belt region, we consider the
following adapted triangular-lattice placement.

Definition 3 (Triangular-lattice placement). Case 1: 0 <
H � r, place disks on the bisector of the belt area separated by a
distance of

ffiffiffi
3
p

r.
Case 2: r < H, place an initial disk in the belt area such

that the distance between the center of the disk and one of the
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Fig. 1. Equipartition (d; r)-strip placement. (a) k ¼ 1. (b) k ¼ 2.

Fig. 2. The normalized number of disks used in equipartition ðd; rÞ-strip
placement (k ¼ 1; 2; 3; 4; 5) versus the normalized height H of the long
belt area.



longer side of the belt area is 0:5r, as shown in Fig. 3. Suppose
that the coordinates of the center of the initial disk are ðx; yÞ.
Then, the points ðx�

ffiffiffi
3
p

mr; y� 3nrÞ and

xþ
ffiffiffi
3
p 1

2
�m

� �
r; yþ 3

1

2
� n

� �
r

� �

ðm ¼ 0; 1; 2; . . . ; n ¼ 0; 1; 2; . . .Þ

are the locations of other disks’ centers if these points are inside
the belt area. If the distance � between the last row of disks and
the other longer side of the belt area is no larger than 0:5r, as
shown in Fig. 3a, the given placement can provide complete belt
coverage. Otherwise, when 0:5r < � < 1:5r, for complete belt
coverage, we place extra disks along the longer side at the
intersection points of the side and the mid-perpendiculars of any
two adjacent disks in the adjacent strip. Thus, extra disks are
separated by a distance of

ffiffiffi
3
p

r, as shown in Fig. 3b.

The number of disks used in the triangular-lattice
placement can be computed by

N
ðtÞ
k ¼

Dffiffiffi
3
p

r
; 0 < H � r

kDffiffiffi
3
p

r
; ð1:5k� 2Þr < H � ð1:5k� 0:5Þr; k ¼ 2; 3; . . .

8>><
>>:

ð4Þ

Fig. 4 plots the normalized number of disks used in the
triangular-lattice placement with respect to different values
of the normalized belt height.

Definition 4 (Coverage density, Node (disk) density). Given
a belt to be covered by disks, the coverage density � of a
placement of disks is defined as the ratio of the union of the
coverage area of all disks to the area of the region to be covered;
the node (disk) density � is defined as the number of nodes
(disks) per unit area.

Suppose that the area of a given region is A and there are
m disks that can completely cover the region. According to
Definition 4, we have

� ¼ m�r2=A; � ¼ m=A; � ¼ ��r2:

Since A, �, and r are constant, thus minimizing m is
equivalent to minimizing � and �.

Below, Lemma 1 and Lemma 2 show the minimum
number of disk strips with respect to different belt heights
to guarantee complete belt coverage for the equipartition
placement and triangular-lattice placement, respectively.
Lemma 3 states what is the optimal placement pattern if a
belt is only covered by a single ðd; rÞ-strip.

Lemma 1. If the equipartition ðd; rÞ-strip placement is used, then

for a belt with height H > 0, at least

K
ðeÞ
min ¼ bH=2rc þ 1 ð5Þ

rows of ðd; rÞ-strips are needed to provide complete belt

coverage.

Proof of lemma 1. According to Definition 1, the maximal
effective coverage region of a ðd; rÞ-strip is a rectangular
area with height

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � d2
p

. Thus, when the height of the
belt is H, the number of ðd; rÞ-strip is

KðeÞ ¼
�
H=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � d2
p �

þ 1:

Since d > 0, when d! 0, we can get

K
ðeÞ
min ¼ lim

d!0
KðeÞ ¼ bH=2rc þ 1:

ut

Lemma 2. If the triangular-lattice placement is used, then for a

belt with height H, if 0 < H � r, at least K
ðtÞ
min ¼ 1 row of

disks is needed. And if

ð1:5k� 2Þr < H � ð1:5k� 0:5Þr; k ¼ 2; 3; . . . ; ð6Þ

at least K
ðtÞ
min ¼ k rows of disks are needed to provide complete

belt coverage.

Proof of Lemma 2. In the triangular-lattice placement, the
maximal effective coverage region of using only a row of
sensors is a rectangular area with height
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Fig. 3. Triangular-lattice placement.

Fig. 4. The number of disks used in triangular-lattice placement change
with height H of the long belt area.



h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � d2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ð

ffiffiffi
3
p

rÞ2
q

¼ r: ð7Þ

Therefore, when 0 < H � r, only one row of disks is
needed.

When r < H, it is evident that we need more than
one row of (d; r)-strip. If there are k ðk � 2Þ rows of
disks in the triangular-lattice placement, then the
maximal completely covered region is a rectangular
area with height

hk ¼ ð1:5k� 0:5Þr: ð8Þ

Substitute k ¼ k� 1 into (8), we have

hk�1 ¼ ð1:5k� 2Þr: ð9Þ

To provide complete belt coverage with at least k rows of
ðd; rÞ-strips, the following condition must be satisfied:

hk�1 < H � hk: ð10Þ

That is, if

ð1:5k� 2Þr < H � ð1:5k� 0:5Þr; k ¼ 2; 3; . . . ;

at least k rows of disks are needed. tu

Lemma 3. For a belt with width D and height H < 2r, if only
one ðd; rÞ-strip is used to completely cover the belt, placing the
strip on the bisector of the belt with d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 �H2
p

minimizes
the number of disks for complete belt coverage.

Proof of Lemma 3. As shown in Fig. 5, there are n disks in a
(d; r)-strip and the angle contained by the bisector of the
belt and the center line of the strip is �. M and N are two
intersection points of two adjacent disks.

According to Definition 1, we have MNj j < 2r. To
cover the belt area completely, the following conditions
must be satisfied:

jMNj cos � � H ð11Þ

nd cos � � D: ð12Þ

According to (12), we have n � D=d cos �. Since

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � MNj j2

q
;

we can get

n � D

cos �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � jMNj2

q � Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 cos2 ��H2
p :

Thus, the minimal number of disks is obtained when
� ¼ 0 and jMN j ¼ H. In this case,

nmin ¼
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 �H2
p :

From this equation, we know, to minimize n, the center

line of the strip should coincide with the bisector of the

given belt area and the strip disk distance should beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 �H2
p

. Therefore, Lemma 3 is true. tu
The following lemma states that in the divide-and-cover

method, the equipartition placement needs the minimum
number of disks, compared with all other nonequipartition
placements.

Lemma 4. Given a belt with height H < 2kr, if the belt is to be

divided into k sub-belts such that each sub-belt should be

completely covered by one (d; r)-strip, then the equipartition
(d; r)-strip placement with

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=kÞ2

q

needs the minimum number of disks for complete belt coverage.

In this case, the coverage density is

�
ðeÞ
k ¼

k2�r2

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2r2 �H2
p : ð13Þ

The minimum coverage density is �=2 when H ¼
ffiffiffi
2
p

kr.

Proof. Lemma 4 will be proved by Mathematical Induction.
Initial step. We first verify that Lemma 4 is true when

k ¼ 2. Note that the case of k ¼ 1 is proven in Lemma 3.
If k ¼ 2, the belt is divided into two sub-belts, as shown
in Fig. 6. Suppose that the height of the first sub-belt
is h2. Thus, the height of the second sub-belt is H � h2.
To completely cover the belt with a minimal number of
disks, the strip disk distance in the first sub-belt isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � h2
2

p
. So the strip disk distance in the second sub-

belt is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2�ðH�h2Þ2
p

.
Suppose D is large enough; thus, the numbers of disks

in the first and second part can be computed by

N
ð2Þ
1 ¼ D

d1
¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � h2
2

p ;

and

N
ð2Þ
2 ¼ D

d2
¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � ðH � h2Þ2
q :

Thus, the total number of nodes is

N ð2Þ ¼ N ð2Þ1 þN
ð2Þ
2

¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � h2

2

p þ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH � h2Þ2

q : ð14Þ
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Fig. 6. A subdomain of the belt area when k ¼ 2.

Fig. 5. Using one (d; r)- strip to cover a long belt area.



To minimize Nð2Þ, we let dNð2Þ

dh2
¼ 0. Thus, we have

�
4r2 � h2

2

��3
2h2 ¼ ð4r2 � ðH � h2Þ2Þ�

3
2ðH � h2Þ:

With some algebra calculation, we have

h2 ¼
H

2
:

Therefore, Lemma 4 is true, when k ¼ 2. We are done

with the initial step.
Inductive Step. Here, we must prove the following

assertion: If Lemma 4 is true when k ¼ n; n � 2, then (for
this same k) when k ¼ nþ 1, Lemma 4 is also true.

When k ¼ nþ 1, the belt area is divided into nþ 1
parts. Suppose that the height of the first part is hnþ1.
Thus, hnþ1 meets the condition hnþ1 < 2r. To completely
cover the area with minimal number of disks, we should
divide the rest part into n equal parts. Thus, the height of
each rest part is ðH � hnþ1Þ=n. In this case, the minimal
numbers of disks used in the first part and in the rest
parts are

N
ðnþ1Þ
1 ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � h2
nþ1

q ;

and

N
ðnþ1Þ
2 ¼ N ðnþ1Þ

3 ¼ � � � ¼ Nðnþ1Þ
nþ1 ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 �
�
H�hnþ1

n

�2
q :

The total number of nodes Nðnþ1Þ is

Nðnþ1Þ ¼ Nðnþ1Þ
1 þ

Xnþ1

m¼2

N ðnþ1Þ
m :

To minimize Nðnþ1Þ, we let dNðnþ1Þ

dhnþ1 ¼ 0. Thus, we get

�
4r2 � h2

nþ1

��3
2hnþ1

¼
�

4r2 �
��

H � hnþ1

n

�2��3
2 ðH � hnþ1Þ

n
:

With some algebra calculation, we have

hnþ1 ¼
H

nþ 1
:

Therefore, Lemma 4 is true, when k ¼ nþ 1. We are done

with the inductive step.
Next, we compute the coverage density. Suppose

there are m disks in a strip. According to Definition 4, the
coverage density is

�
ðeÞ
k ¼

mk�r2

mkHk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � H

k

� �2
q ¼ k2�r2

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2r2 �H2
p :

To minimize �
ðeÞ
k , we need to maximize ð4r2 � ðHk Þ

2ÞðHk Þ
2.

We let

d
�
4r2 �

�
H
k

�2��H
k

�2

dH
¼ 0:

Thus, we have

H ¼
ffiffiffi
2
p

kr;

and

�
ðeÞ
min ¼

�r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4r2 � 2r2Þ2r2

p ¼ �
2
: ð15Þ

Therefore, Lemma 4 is true. tu
Given a belt with height H < 2kr, we can equally

partition the belt into k; kþ 1; . . . sub-belts. The following
lemma states the relation between the belt height and the
optimal equipartition placement.

Lemma 5. Given a belt with height

�2kþ 2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kþ 2k2
p r � H � 2kþ 2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2kþ 2k2
p r; k ¼ 1; 2; . . . ; ð16Þ

the number of disks used to completely cover the area by
k-equipartition placement is always no more than by
m-equipartition placement (m 6¼ k).

Proof. We first consider the case that only one strip is
enough to completely cover a belt. In this case, we have

N
ðeÞ
1 ¼ D=d

ðeÞ
1 ¼ D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 �H2
p

N
ðeÞ
2 ¼ 2D=d

ðeÞ
2 ¼ 2D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=2Þ2

q

N
ðeÞ
1 � N

ðeÞ
2 ) H � 4

ffiffiffi
5
p

5
r:

Thus, Lemma 5 is true when k ¼ 1.
For k ¼ 2; 3; . . . , we have

N
ðeÞ
k�1 ¼ ðk� 1ÞD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=ðk� 1ÞÞ2

q

N
ðeÞ
k ¼ kD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=kÞ2

q

N
ðeÞ
kþ1 ¼ ðkþ 1ÞD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=ðkþ 1ÞÞ2

q
:

N
ðeÞ
k � N

ðeÞ
k�1 )

�2kþ 2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kþ 2k2
p r � H;

and

N
ðeÞ
k � N

ðeÞ
kþ1 ) H � 2kþ 2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2kþ 2k2
p r:

Let

fðkÞ ¼ 2kþ 2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2kþ 2k2
p r; k ¼ 1; 2; . . . ð17Þ

When H meets the condition in (16), i.e.,

fðk� 1Þ � H � fðkÞ; ð18Þ

we can get

N
ðeÞ
k � N

ðeÞ
kþ1; ð19Þ

and

N
ðeÞ
k � N

ðeÞ
k�1: ð20Þ
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Since

f 0ðkÞ ¼ 2ð2kþ 1Þð1þ 2kþ 2k2Þ�
1
2

1

2
þ 1

1þ 2kþ 2k2

� �
> 0;

thus fðkÞ is monotonic increasing. We have

fðkþmÞ < fðkþmþ 1Þ;m ¼ 0; 1; 2; . . . ;

and

fðk� nÞ > fðk� ðnþ 1ÞÞ; n ¼ 0; 1; 2; . . .

According to (18), (19), and (20) we can get

N
ðeÞ
kþm � N

ðeÞ
kþmþ1;m ¼ 0; 1; 2; . . . ; ð21Þ

and

N
ðeÞ
k�n � N

ðeÞ
k�ðnþ1Þ; n ¼ 0; 1; 2; . . . ð22Þ

According to (21) and (22), we show that for any m 6¼ k,

if H meets the condition in (16), then N
ðeÞ
k � N ðeÞm . This

completes the proof. tu

Lemma 6. Given a belt with width D and height H with very

large D and D� H, if k rows of disks are used in the

triangular-lattice placement to completely cover the belt, the

coverage density is

�
ðtÞ
k ¼

k�rffiffiffi
3
p

H
; k ¼ 1; 2; . . . ð23Þ

Proof. Suppose there are mk disks in kth strips. For a very

largeD, we can compute the number of nodes in a row by

mk ¼ D=dðtÞ ¼ D=
ffiffiffi
3
p

r: ð24Þ

Thus, the coverage density is

�
ðtÞ
k ¼

mk�r
2k

HD
¼ mk�r

2k

Hmk

ffiffiffi
3
p

r
¼ k�rffiffiffi

3
p

H
; k ¼ 1; 2; . . .

ut

Lemma 7. Given a belt with width D and height H, if D!1,

H !1, the triangular-lattice placement can completely cover

the area with the minimal number of disks. In this case, the

coverage density �ðT Þ meets �ðT Þ ¼ 2�
3
ffiffi
3
p .

Proof. The first part has been proved in [2], [3]. Here, we

provide another approach to prove the second part of

Lemma 7. According to (6) in Lemma 2, we can get

1:5� 2

k

� �
r <

H

k
� 1:5� 0:5

k

� �
r: ð25Þ

Since H !1; k!1 and

lim
k!1

1:5r� 2r

k

� �
¼ 1:5r; lim

k!1
1:5r� 0:5r

k

� �
¼ 1:5r:

According to the Squeeze Theorem [34], from (25) we

have

lim
k!1

H

k
¼ 1:5r: ð26Þ

Substitute (26) into (23), we can get

�ðT Þ ¼ lim
H!1;D!1

� ¼ 2�

3
ffiffiffi
3
p : ð27Þ

tu

3.2 The Proposed Placement

According to Lemma 7, we know that if H is large enough,
the triangular-lattice placement is an optimal disk place-
ment, because it achieves the lowest disk density for
complete coverage. However, if H is not large enough,
the triangular-lattice placement may be suboptimal due to
the boundary effect of the belt longer sides. Recall that the
strip disk distance d in the triangular-lattice placement is
fixed as

ffiffiffi
3
p

r. When H is not very large, we can stretch d a
little bit to use fewer disks for complete belt coverage. In
other words, when H is not large enough, the equiparti-
tion placement may be better than the triangular-lattice
placement. In what follows, we study which is the optimal
placement for different values of H.

We first determine the optimal equipartition ðd; rÞ-strip
placement. Table 1 summarizes different ranges of H
and the corresponding k according to (16) in lemma 5
for k � 8.

We next propose a placement scheme combining both
the optimal equipartition ðd; rÞ-strip placement and the
triangular-lattice placement. According to the belt height
range, which one of them (equipartition or triangular-
lattice) should be used is determined, and the results are
summarized in the following theorem.

Theorem 1. Consider a long belt with width D much larger
than its height H, D� H, such that the left and right-
boundary effects can be neglected. The node deployment
shown in Table 2 combines both the equipartition ðd; rÞ-strip
placement in Definition 2 and the triangular-lattice place-
ment in Definition 3 for complete belt coverage. The optimal
applications of which of them have also been computed as in
Table 2 for different belt height H.

Proof. According to (4), we know that the number of
disks in the triangular-lattice placement is a step
function. Fig. 7 shows the number of disks used in
the optimal equipartition ðd; rÞ-strip placement and in
the triangular-lattice placement. From the figure, we can
see there are eight intersections between the two curves.

Now, we compare the optimal equipartition ðd; rÞ-strip
placement and the triangular-lattice placement for differ-
ent ranges of H:
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TABLE 1
Range of H and Corresponding k in the Equipartition Placement



1. When 0 < H � r, the equipartition placement
with k ¼ 1 and the triangular-lattice placement
with one row of disks can be used, and we have

N
ðeÞ
1 ¼

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 �H2
p ; N

ðtÞ
1 ¼

Dffiffiffi
3
p

r
:

Since 0 < H � r, we can get N
ðeÞ
1 � N

ðtÞ
1 . Thus in

this range, we always choose the equipartition

placement with k ¼ 1.
2. When r < H � 4

ffiffi
5
p

5 r, the equipartition placement
with k ¼ 1 and triangular-lattice placement with
two rows of disks can be used as

N
ðtÞ
2 ¼

2Dffiffiffi
3
p

r
:

Since r < H � 4
ffiffi
5
p

5 r, we can get N
ðeÞ
1 � N

ðtÞ
2 . Thus

in this range, we always choose the equipartition

placement with k ¼ 1.
3. When 4

ffiffi
5
p

5 r < H � 2:5r, the equipartition place-
ment with k ¼ 2 and the triangular-lattice place-
ment with two rows of disks can be used as

N
ðeÞ
2 ¼

2Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=2Þ2

q :

If N
ðeÞ
2 � N

ðtÞ
2 , we can get

2Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=2Þ2

q � 2Dffiffiffi
3
p

r
) H � 2r:

Thus, if 4
ffiffi
5
p

5 r < H � 2r, we choose the equiparti-

tion placement with k ¼ 2. If 2r < H � 2:5r, we

choose the triangular-lattice placement with two

rows of disks.

4. When 2:5r < H � 12
ffiffiffiffi
13
p

13 r, the equipartition place-
ment with k ¼ 2 and the triangular-lattice place-
ment with three rows of disks can be used as

N
ðtÞ
3 ¼

3Dffiffiffi
3
p

r
:

If N
ðeÞ
2 � N

ðtÞ
3 , we can get

2Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=2Þ2

q � 3Dffiffiffi
3
p

r
) H � 4

ffiffiffi
6
p

3
r:

Therefore, if 2:5r < H � 4
ffiffi
6
p

3 r, we choose the
equipartition placement with k ¼ 2. If 4

ffiffi
6
p

3 r <
H � 12

ffiffiffiffi
13
p

13 r, we choose the triangular-lattice place-
ment with three rows of disks.

5. When 12
ffiffiffiffi
13
p

13 r < H � 4r, the equipartition place-
ment with k ¼ 3 and the triangular-lattice place-
ment with three rows of disks can be used as

N
ðeÞ
3 ¼

3Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=3Þ2

q :

Since 12
ffiffiffiffi
13
p

13 r < H � 4r, we can get N
ðtÞ
3 � N

ðeÞ
3 .

Thus in this range, we always choose the
triangular-lattice placement with k ¼ 3.

6. When 4r < H � 4:8r, the equipartition placement
with k ¼ 3 and the triangular-lattice placement
with four rows of disks can be used as

N
ðtÞ
4 ¼

4Dffiffiffi
3
p

r
:

If N
ðeÞ
3 � N

ðtÞ
4 , we can get

3Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=3Þ2

q � 4Dffiffiffi
3
p

r
) H � 3

ffiffiffiffiffi
37
p

4
r:

Therefore, if 4r < H � 3
ffiffiffiffi
37
p

4 r, we choose the equi-
partition placement with k ¼ 3. If 3

ffiffiffiffi
37
p

4 r <H � 4:8r,
we choose the triangular-lattice placement with
four rows of disks.
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Fig. 7. The number of disks used in optimal equipartition ðd; rÞ-strip
placement and in triangular-lattice placement. The filled dots are
intersection points of the two curves.

TABLE 2
Belt Height Ranges, Methods, and Coverage Densities



7. When 4:8r < H � 5:5r, the equipartition place-
ment with k ¼ 4 and the triangular-lattice place-
ment with four rows of disks can be used as

N
ðeÞ
4 ¼

4Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=4Þ2

q :

Since 4:8r < H � 5:5r, we can getN
ðtÞ
3 � N

ðeÞ
4 . Thus

in this range, we always choose the triangular-
lattice placement with k ¼ 4.

8. When 5:5r < H � 40
ffiffiffiffi
41
p

41 r, the equipartition place-
ment with k ¼ 4 and the triangular-lattice place-
ment with five rows of disks can be used as

N
ðtÞ
5 ¼

5Dffiffiffi
3
p

r
:

If N
ðeÞ
4 � N

ðtÞ
5 , we can get

4Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=4Þ2

q � 5Dffiffiffi
3
p

r
) H � 8

ffiffiffiffiffi
13
p

5
r:

Therefore, if 5:5r < H � 8
ffiffiffiffi
13
p

5 r, we choose the
equipartition placement with k ¼ 4. If 8

ffiffiffiffi
13
p

5 r <
H � 40

ffiffiffiffi
41
p

41 r, we choose the triangular-lattice
placement.

9. When 40
ffiffiffiffi
41
p

41 r < H � 7r, the equipartition place-
ment with k ¼ 5 and the triangular-lattice place-
ment with five rows of disks can be used as

N
ðeÞ
5 ¼

5Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=5Þ2

q :

In this range, N
ðeÞ
5 > N

ðtÞ
5 , and we choose the

triangular-lattice placement.
10. When 7r < H, according to Lemma 2, we know

that if ð1:5k� 2Þr < H � ð1:5k� 0:5Þr; k ¼ 2; 3; . . . ,
at least k rows of disks are needed in the triangular-
lattice placement. Since 7r < H, we can get k � 6.
According to Lemma 1, we know that if H is with
the same range, at least

m ¼ bð1:5k� 2Þ=2c þ 1

rows of strips are needed in the equipartition
placement.

Thus, we can get

0:75k� 1 � m � 0:75k:

Note that m can take the only one integer value in
between 0:75k� 1 and 0:75k, k ¼ 6; 7; . . . For simplicity,
we use the subscript 0:75k� 1 and 0:75k to denote the
possible integer within such a range. We have

N
ðtÞ
k ¼

kDffiffiffi
3
p

r
; N ðeÞm min ¼ min

�
N
ðeÞ
0:75k;N

ðeÞ
0:75k�1

�
:

Here,

N
ðeÞ
0:75k ¼

0:75kDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � H

0:75k

� �2
q ; N

ðeÞ
0:75k�1 ¼

ð0:75k� 1ÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � H

0:75k�1

� �2
q :

Since k � 6, we can get

3
ffiffiffiffiffi
37
p

16
kr < ð1:5k� 2Þr:

Thus, if ð1:5k� 2Þr < H, we have 3
ffiffiffiffi
37
p

16 kr < H. Since

3
ffiffiffiffiffi
37
p

16
kr < H ) kDffiffiffi

3
p

r
<

0:75kDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � ðH=0:75kÞ2

q ;

we can get N
ðtÞ
k < N

ðeÞ
0:75k.

Similarly, if k � 6, we can get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � 3ð0:75k� 1Þ2

q
k

ð0:75k� 1Þ < 1:5k� 2:

If ð1:5k� 2Þr < H, we have

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � 3ð0:75k� 1Þ2

q
< kH=ð0:75k� 1Þ

¼) kffiffiffi
3
p

r
<

ð0:75k� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � H2

ð0:75k�1Þ2
	 
r :

Thus, N
ðtÞ
k < N

ðeÞ
0:75k�1.

So when 7r < H, N
ðtÞ
k < N ðeÞm , the number of disks

used in the triangular-lattice placement is always less
than in the equipartition placement.

In conclusion, we always choose the placement which
uses the fewer disks with different ranges of H, and the
results are summarized in Table 2. tu

3.3 Performance Evaluation and Analysis

We compare our node deployment scheme with some
common placement schemes, including Kar’s placement [7],
the very popular regular square deployment pattern [9] and
the triangular-lattice placement [2], [4].

In the Kar’s placement pattern, a string of disks are
placed along a line such that the distance between the
centers of any two adjacent disks is r, then the whole plane
are tiled with these strips. Here, the strip distance is
ð1þ

ffiffi
3
p

2 Þr. Note that for every even integer k, the kth strip
should be translated by distance r=2 along the strip line, as
shown in Fig. 8a. In addition, some extra disks should be
placed along the direction perpendicular to the strip line

WANG ET AL.: A NOVEL NODE PLACEMENT FOR LONG BELT COVERAGE IN WIRELESS NETWORKS 2349

Fig. 8. Two common placements: (a) Kar’s deployment pattern,
(b) Square deployment pattern.



with specific distance, as the shaded disks shown in
the figure. Here, the extra strip of nodes are not for
complete coverage, but for connectivity. When the belt is
long enough, the number of disks added by this extra
vertical strip can be neglected.

In the regular square deployment pattern, disks are
placed such that the centers of any four neighbor disks can
form a regular square with side length

ffiffiffi
2
p

r, as shown
in Fig. 8b. The triangular-lattice placement has been
introduced in Definition 3. Moreover, in some schemes
the relationship between the communication range rc and
sensing range rs will impact the nodes’ pattern. For fairness,
here we assume that rc �

ffiffiffi
3
p

rs. In this case, node density is
determined by ensuring complete coverage and the cover-
age density of such placements will be smaller than in the
other cases where rc <

ffiffiffi
3
p

rs. Under this assumption of
rc �

ffiffiffi
3
p

rs, the node placement pattern in [9] and the
Diamond pattern [10] both coincide with the triangular-
lattice placement pattern.

The comparison results are shown in Fig. 9. From the

figure, we have the following observations: First, the

number of nodes needed by the proposed combination

deployment requires the smallest number of nodes. Note

that when H=r belongs to the following four open intervals

ð2; 2:5Þ, ð4
ffiffi
6
p

3 ; 4Þ, ð3
ffiffi
3
p

7
4 ; 5:5Þ, and ð8

ffiffi
1
p

3
5 ;þ1Þ, the proposed

deployment coincides with the triangular-lattice placement.

Second, the number of nodes needed by regular square

deployment is always more than by the triangular-lattice

placement, except when H=r belongs to the intervals

ð1;
ffiffiffi
2
p
Þ, ð2:5; 2

ffiffiffi
2
p
Þ, ð4; 3

ffiffiffi
2
p
Þ, and ð5:5; 4

ffiffiffi
2
p
Þ. Third, the

number of nodes needed by Kar’s placement is more than

other placements except when H=r belongs to the intervals

ð
ffiffiffi
2
p

;
ffiffiffi
3
p
Þ and ð2

ffiffiffi
2
p

; 2
ffiffiffi
3
p
Þ. In these two intervals, the Kar’s

placement is better than the square deployment. Moreover,

in the first interval, the Kar’s placement is even better than

the triangular-lattice placement.
We next provide the analytical results that compare the

number of nodes for complete belt coverage by the four
deployments, when the belt height is in different ranges.
For the Kar’s placement, as shown in Fig. 8a, the disk

distance is dKar ¼ r, and the distance between two adjacent

strips is ð1þ
ffiffi
3
p

2 Þr. Thus, the number of nodes used by

this scheme can be computed by

N
ðKarÞ
k ¼ kD

r
þ k� 1; ðk� 1Þ

ffiffiffi
3
p

r < H � k
ffiffiffi
3
p

r; k ¼ 1; 2; . . .

ð28Þ

For the regular square deployment, as shown in Fig. 8b, the

disk distance is dsquare ¼
ffiffiffi
2
p

r, and the distance between two

adjacent strips is also
ffiffiffi
2
p

r. In this case, the nodes used by

this scheme is given by

N
ðsÞ
k ¼

kDffiffiffi
2
p

r
; ðk� 1Þ

ffiffiffi
2
p

r < H � k
ffiffiffi
2
p

r; k ¼ 1; 2; . . . ð29Þ

In summary, according to (3), (4), (28), and (29), we can get

the following comparison results:

1. 0 < H � r;N ðeÞ � N ðtÞ < N ðsÞ < NðKarÞ

2. r < H �
ffiffiffi
2
p

r;N ðeÞ � N ðsÞ < NðKarÞ < NðtÞ

3.
ffiffiffi
2
p

r < H �
ffiffiffi
3
p

r;NðeÞ � N ðKarÞ < N ðtÞ < N ðsÞ

4.
ffiffiffi
3
p

r < H � 2r;NðeÞ � NðtÞ < NðsÞ < NðKarÞ

5. 2r < H � 2:5r;NðtÞ � NðeÞ < N ðsÞ < N ðKarÞ

6. 2:5r < H � 2
ffiffiffi
2
p

r;NðeÞ � NðsÞ < N ðtÞ < N ðKarÞ

7. 2
ffiffiffi
2
p

r < H � 4
ffiffi
6
p

3 r;N ðeÞ � NðtÞ < NðKarÞ < NðsÞ

8. 4
ffiffi
6
p

3 r < H � 2
ffiffiffi
3
p

r;N ðtÞ � N ðeÞ < NðKarÞ < NðsÞ

9. 2
ffiffiffi
3
p

r < H � 4r;N ðtÞ � N ðeÞ < N ðsÞ < N ðKarÞ

10. 4r < H � 3
ffiffiffi
2
p

r;N ðeÞ � N ðsÞ < N ðtÞ < N ðKarÞ

11. 3
ffiffiffi
2
p

r < H � 3
ffiffi
3
p

7
4 r;NðeÞ � NðtÞ < NðsÞ < N ðKarÞ

12. 3
ffiffi
3
p

7
4 r < H � 5:5r;NðtÞ � NðeÞ < NðsÞ < NðKarÞ

13. 5:5r < H � 4
ffiffiffi
2
p

r;NðeÞ � NðsÞ < N ðtÞ < N ðKarÞ

14. 4
ffiffiffi
2
p

r < H � 8
ffiffi
1
p

3
5 r;NðeÞ � NðtÞ < NðsÞ < N ðKarÞ

15. 8
ffiffi
1
p

3
5 r < H;NðtÞ < NðeÞ � NðsÞ < NðKarÞ.

4 DISCUSSION

4.1 Optimality Factor of the Solution

In this section, we discuss the approximation factor of our

scheme to the optimal one. It is well known that given an

unbounded area, the triangular-lattice placement achieves

the minimum node density to completely cover the area. In

this case, according to Definition 4, the critical node density

is 2
ffiffi
3
p

9 � 1
r2 , and the coverage density (simply written as

� 	 Adisks

Acovered
) is given by 2

ffiffi
3
p

�
9 . Note that this is the lowest bound

(the optimal one) for all the coverage problems of 1-coverage

and with disk model, in an unbounded scenario with the

number of sensors tending to infinity. However, this may not

be the optimal one in the bounded belt scenario, because

Acovered � Abelt in all possible deployments, even with the

triangular-lattice placement; while our coverage density

defined in belt scenario is as � 	 Adisks

Abelt
. So in this case, we

consider using an optimality scaling factor � 	 Abelt

Acovered
to infer

the optimal coverage density in a bounded belt scenario.

That is, suppose that k rows of disks are used in the

triangular-lattice placement, we can compute an optimal

density as �o ¼ �� 2
ffiffi
3
p

�
9 .

For k rows of disks in the triangular-lattice deployment,

the area covered by these disks are given by
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Fig. 9. The number of nodes needed in the proposed scheme and in
other placements. Here the length of the belt is 300 m, and the belt width
H varies from 1 to 80 m. The coverage radius of each node is 10 m.



Adisks ¼ kDrþ ðk� 1ÞDr
2
¼ 3k� 1

2
Dr; k ¼ 1; 2; . . . ;

where D is the belt length (very large).
Note that this computation is consistent with the optimal

one. That is, the coverage density of using k-strips of
triangulation-lattice is given by

�k ¼
Dffiffi
3
p

r
�r2k

3k�1
2 Dr

¼ 2
ffiffiffi
3
p

�

9

3k

3k� 1
: ð30Þ

Therefore, as k!1, we have �k ! �opt ¼ 2
ffiffi
3
p

9 �. In this case,
we get

� ¼ Abelt

Acovered
¼ DH

3k�1
2 Dr

¼ 2H

ð3k� 1Þr ð31Þ

�o ¼ �
2
ffiffiffi
3
p

�

9
¼ 4

ffiffiffi
3
p

H

9ð3k� 1Þr : ð32Þ

According to Table 2, we can get the coverage density �p for
our proposed scheme. When k � 5; �p ¼ k�rffiffi

3
p

H
, and we have

�p
�o
¼ 3kð3k� 1Þr2

4H2
: ð33Þ

From Lemma 2, we have 1:5k� 2 < H
r < 1:5k� 0:5. Thus,

we get when k � 5,

1

2:25k2 � 6kþ 4
>
r2

H2
>

1

2:25k2 � 1:5kþ 0:25
: ð34Þ

Substitute (34) into (33), we get

9k2 � 3k

9k2 � 24kþ 16
>
�p
�o
>

9k2 � 3k

9k2 � 6kþ 1
¼ 1þ 1

3k� 1
: ð35Þ

Apparently, we have
�p
�o
> 1; �p > �o.

We next consider the limit of �p. Substitute (26) into (32),
we can get

lim
k!1

�o ¼
2
ffiffiffi
3
p

�

9
; lim

k!1
� ¼ 1;

When k!1; �p ! �o ! 2
ffiffi
3
p

�
9 . That is to say, coverage

density of the proposed combined scheme tends to the

optimal one in unbounded scenario (convergence and
consistence), as shown in Fig. 10.

4.2 Left and Right-Boundary Effect

In this section, we discuss the left and right-boundary

effect. As we mentioned in Section 3, if the left and right-

boundary effects are not considered, the number of disk in

the kth strip, mk, can be computed by

mk ¼ D=d:

Here, d ¼ dðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2�ðH=kÞ2
p

for the equipartition placement

and d ¼ dðtÞ ¼
ffiffiffi
3
p

r for the triangular-lattice placement.
Now, we consider the left and right-boundaries. Fig. 11

shows that a (d; r)-strip is placed in a bounded belt. In this
case, to minimize the number of disks in the strip, no matter
which placement we choose, we need to find an initial point
where the first disk in the strip should be placed. To
maximize the coverage region of a strip, an initial disk
should be placed that the distance between the center of the
disk and one boundary is 0:5d. As shown in Fig. 11, after
placing the initial disk, the locations of other disks in a strip
are then determined. If the distance � between the last disk
and the other boundary is not larger than 0:5d, as shown in
Fig. 11a, the given placement can provide complete belt
coverage. Otherwise, when 0:5d < � < d, for complete belt
coverage, we place an extra disk at the intersection point of
the other side boundary and the bisector, as shown in
Fig. 11b. Thus, the number of disks in a strip meets the
following condition:

m0k ¼
D=d;D=d 2 Zþ
bD=dc þ 1; others:

�
ð36Þ

Note that in (36) if D=d is not an integer, the number of
disks is bD=dc þ 1.

Let

	 ¼ m
0
k �mk

mk
ð37Þ

denote the normalized number of additional disks for belt
coverage with left and right-boundary. The value of 	 is
plotted in Fig. 12. From this figure, we can see that when
D=d is not very large, 	 is close to 1. Thus, there is a sensible
difference between mk and m0k. But when D=d > 15; 	 < 0:1.
In this case, the difference between mk and m0k is very slight.
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Fig. 10. The value of �p; �o, and �.

Fig. 11. A (d; r)-strip is placed when left and right-boundaries are

considered.



All the discussions in the paper assume that D� d. We
can get 	! 0 and m0k 
 mk. That is, when D is large
enough, even there exists left and right boundaries in the
belt, the conclusion in this paper is still valid. If D is not
very large and comparable to H, an exhaustive search or a
heuristic method can be used to obtain an optimal disk
placement. For example, as mentioned in Section 2, a
simulated annealing method [33] or a quasi-Newton
method [32] can be used to find an optimal placement with
a given number of disks for a small rectangle.

4.3 K-Coverage

Providing K-coverage for a region means that every point of
this region is covered by at least K disks. The proposed
scheme in our work can be easily extended to provide
K-coverage. For example, we can simply superimpose
K copies of the 1-coverage placement, one on top of
another, and K-coverage can be achieved. Apparently, this
is the simplest way to provide K-coverage. However, it may
not be a good scheme, because many nodes would have to
be piled at exactly the same location. An alternative way is
to put extra K � 1 strips on each existing strip line and set
the offset distance between any two strips by d=K, where d
is given by (2). Moreover, in the proposed equipartition
scheme, each (d; r)-strip can be placed independently.
Therefore, we can easily change the coverage degree of
different parts of the belt. For example, given a belt with
height H, if 2-equipartition placement can be used, then the
strip distance is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16r2 �H2
p

=2. If we want to achieve
2-coverage on the left half (top half) and 1-coverage on the
right half (bottom half) of the belt, we can place two extra
strips on the strip line of left half of the belt (one extra strip
on the strip line of bottom half of the belt), and make the
new left half (top half) strip distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16r2 �H2
p

=4, as
shown in Fig. 13. By this way, each point in the left half
(top half) of the belt can be covered by at least two disks.

5 CONCLUSION

In this paper, we have proposed a novel solution to the long
belt node coverage problem in wireless networks. In our
work, the belt is divided into some sub-belts, and then a

string of nodes (disks) are placed parallel to the long side of
each sub-belt to completely cover the sub-belt. The optimal
distance between two adjacent disks in a string and the
number of such strings to minimize the number of disks for
complete belt coverage are then determined. Theoretical
analysis and numerical results show that the proposed
placement scheme requires fewer nodes to ensure complete
belt coverage as compared with the well-known regular
triangular-lattice pattern placement scheme, when the
height of the belt H is less than 8

5

ffiffiffiffiffi
13
p

r, where r is the disk
radius. A combination of the proposed method and the
triangular-lattice placement has been proposed, and
the optimal ranges of the belt height for their respective
applications have computed.
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