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Abstract: In this paper we address the problem of decentralized event detection in a large-scale wireless sensor network (WSN).
Comparing with existing centralized solutions, decentralized algorithms are superior in energy efficiency and network scalability,
and thus fit for the distributed nature of a WSN. We formulate the event detection problem as a linear program, and solve it with
the alternating direction method of multipliers (ADMM). Under mild conditions, this iterative algorithm is shown to be fully
decentralized. Further, in view of the fact that the communication burden per iteration directly decides the energy consumption
of sensor nodes, we simplify the classic ADMM to a lightweight one, which requires much lower communication burden while
keeps the global convergence of the classic ADMM. Effectiveness of the proposed algorithm is validated with simulation results.
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1 INTRODUCTION

Event detection is one of the most important applications of
wireless sensor networks (WSNs). Typical event detection
tasks include detecting nuclear radioactive sources [1], mon-
itoring structural health conditions [2], discovering the pres-
ence of contaminants [3], etc. Generally speaking, these sce-
narios have the following common characteristics: i) multi-
ple events may occur in the sensing area; ii) one event only
influences sensory measurements of its neighboring region;
and iii) measurement of one sensor node is the linear super-
position of the influences of multiple events. The objective
of event detection is to locate the events and estimate their
amplitudes from the sensory measurements.
Different from the traditional centralized event detection ap-
proaches which process collected sensory measurements at
a fusion center, this paper focuses on decentralized event de-
tection algorithms in large-scale WSNs. By decentralized
event detection we mean that, without any fusion center,
sensor nodes autonomously exchange information with their
neighbors and collaboratively detect the events. The main
advantage of this decentralized scheme, over the centralized
one, is that the distributed sensor nodes do not need to trans-
mit data to a faraway fusion center in a large-scale WSN.
Therefore, the communication burden is limited and the en-
ergy consumption is scalable with the network size.
In a nutshell, a decentralized event detection task can be
formulated as an optimization problem and solved with de-
centralized optimization algorithms, which have attracted
much attention for implementing large-scale WSNs [4, 5, 6].
Among these decentralized algorithms, the alternating di-
rection method of multipliers (ADMM) [7] is a promising
one due to its ability of efficiently handling a large class of
separable constrained convex programs. Successful applica-
tions can be found in, for example, decentralized least-mean-
square estimation [8], spectrum sensing [9], and structural
health monitoring [10], etc.
This paper formulates the event detection task as a sparse
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signal recovery problem. Under some mild conditions it has
the form of a separable linear program and can be solved
with the classic ADMM. Considering that in the algorithm
the communication burden per iteration directly decides the
energy consumption of sensor nodes, we further simplify the
classic ADMM to a lightweight one, which requires much
lower amount of exchanged data while keeps the global con-
vergence of the classic ADMM. Simulation results demon-
strate the effectiveness of the proposed algorithm.

2 PROBLEM FORMULATION

Let us consider a large-scale WSN in which sensor nodes
are uniformly randomly deployed in a two-dimensional sens-
ing area. The WSN has a set ofL sensor nodes, denoted as
L. Sensor nodes have a common communication rangerC .
Each sensor node can only communicate with its neighbors
within the communication range. The network is supposed
to be connected under the chosen communication rangerC .
The event detection task is performed periodically. Within
each sampling period, multiple events may occur in the sens-
ing area. We make the following assumptions in this paper:
(A1): Events only occur at some sensor node positions.
When the position of one event coincides with the position
of sensor nodei, we denote the amplitude of the event by a
nonnegative scalarci.
(A2): Each event only influences its neighboring region. The
influence of a unit-amplitude event at positionj on position
i is fij = f(dij), wheredij is the distance between sensor
nodesi andj andf is a nonincreasing function. We suppose
thatfij = 0 if dij ≥ rC , fij = 1 if dij = 0 andfij = fji.
(A3): The measurement of one sensor node is the superposi-
tion of the influences of all events plus random noise. Since
fij = 0 for dij ≥ rC , the measurementbi of sensor node
i can be written asbi =

∑
j∈Ii

fijcj + ei, whereei is the
random noise, andIi denotes the set of sensor nodei along
with its neighbors.

2.1 Justification of the Assumptions

The assumption(A1) selects positions of the sensor nodes
as candidate positions of the sensing area and confines the
events on these candidate positions [11]. This way, the oth-



erwise highly nonlinear and nonconvex event detection prob-
lem turns to be tractable. The resolution of event detection is
now directly decided by the density of sensor nodes. Based
on (A1), we can formulate the event detection problem as re-
covering the vectorc = [c1, ..., cL]T from the sensory mea-
surements. Ifci is nonzero, then there is an event detected at
the position of sensor nodei.
The assumption(A2) describes the phenomenon oflimited
influenceof a single event on the whole sensing area [12].
For example, in nuclear radioactive detection, the influence
of a radioactive source varies polynomially with distance.
Similar distance-dependent influence can be observed from
events in many practical scenarios such as fire sources and
structural damages. Therefore, by carefully setting the com-
munication rangerC , it is possible to makefij ' 0 when
dij ≥ rC . In the ensuring paper we will show that thelimited
influencephenomena greatly facilitates the implementation
of energy efficient and scalable decentralized algorithms.

2.2 A Linear Program Model

We now introduce a key observation that the optimization
vectorc is sparse, namely, the number of nonzero elements
in c is much smaller than the vector sizeL. This prior knowl-
edge holds since the WSN is large-scale while events gener-
ally occur sparsely. Nevertheless, we do allow the influence
of these sparse events to span over the large sensing area.
Hence, recovery ofc boils down to minimizing a sparsity-
imposing metric||c||1 that is thè 1 norm ofc [13], subject
to measurement constraints. Note that(A1) assumesc ≥ 0,
thus ||c||1 =

∑L
i=1 |ci| =

∑L
i=1 ci. Further, we consider

the case that the measurement error is within[−θ, θ] where
θ is a known positive constant. From(A3), a linear program
formulation for the sparse signal recovery problem arises:

min
∑L

i=1 ci,
s.t.

∑
i∈Ij

fjici ≥ bj − θ, j = 1, ..., L,∑
i∈Ij

fjici ≤ bj + θ, j = 1, ..., L,

cj ≥ 0, j = 1, ..., L.

(1)

Written in a matrix form, (1) turns to:

min 1T c,
s.t. Fc ≥ b− θ1,

Fc ≤ b + θ1,
c ≥ 0,

(2)

where1 and0 are twoL×1 vectors with all ones and zeros,
b = [b1, ..., bL]T is theL× 1 measurement vector, andF is
theL×L measurement matrix with its entry oni-th column
andj-th row asfji. In the following paper we will focus on
solving this linear program in a decentralized way.

2.3 Extensions of the Linear Program Model

The linear program model (2) can be extended to many other
formulations according to practical settings.
First, for the case that the total energy of the measurement
error is bounded with a known positive constantδ, the math-
ematical model can be:

min 1T c,
s.t. ||Fc− b||22 ≤ δ,

c ≥ 0,
(3)

which is a second-order cone program and called as the basis
pursuit denoising (BPDN) [14]. The BPDN has two equiva-
lent formulations, the least absolute shrinkage and selection
operator (LASSO) [15] and thè1 regularized least squares
(`1-LS) [16]. Intuitively, (2) handles uniform noise while (3)
handles Gaussian noise; though both of them indeed exploit
the signal sparsity. This paper focuses on (2) which takes the
advantage of a separable linear program and can be solved
by the ADMM efficiently.
It should be noted that there has already been a linear pro-
gram formulation available for this kind of sparse signal re-
covery problem, known as the Dantzig selector (DS) [17]:

min 1T c,
s.t. FT Fc ≥ FT b− ε1,

FT Fc ≤ FT b + ε1,
c ≥ 0,

(4)

whereε is a known positive constant. Despite the similarity
between (2) and (4), the latter cannot be solved easily with a
decentralized algorithm.
Second, though(A1) confine the amplitudes of the events to
be nonnegative, this assumption can be relaxed easily. For an
arbitrary optimization vectorc, we can definec = c+ − c−,
c+ ≥ 0 andc− ≥ 0. This way,

min ||c||1,
s.t. Fc ≥ b− θ1,

Fc ≤ b + θ1,
(5)

is equivalent to

min 1T c+ + 1T c−,
s.t. Fc+ − Fc− ≥ b− θ1,

Fc+ − Fc− ≤ b + θ1,
c+ ≥ 0, c− ≥ 0,

(6)

which has the same form as (2) [18].
Third, (A1) chooses the positions of sensor nodes as candi-
date positions for the events in the sensing area. An alterna-
tive way is to draw a grid in the sensing field and choose the
K grid points as candidate positions [9, 19, 20]. Supposing
that the number of events is much smaller than the number
of grid points, a similar sparse signal recovery problem ap-
pears. Therein aK × 1 sparse signal, saỹc, represents the
positions and magnitudes of the events. By reformulating it
as a consensus optimization problem which is solvable by
the ADMM, [9] considers the decentralized optimization of
this formulation, where each sensor node optimizes the local
copy of c̃. This approach can handle the case that the events
are with global influences; however, the side effect is that
each sensor node needs to recover the whole sensing field,
namely the whole optimization vector̃c, and the resulting
communication burden is high. Contrarily, in our proposed
algorithms each sensor only needs to recover the correspond-
ing element ofc with much lower communication burden.

3 THE CLASSIC ADMM

The classic ADMM is able to solve a large class of separable
constrained convex programs. In this paper we apply it in the
separable linear program (2) and obtain a neat solution.



Consider a linear program [7] (see pp. 249–253):

min hT x,
s.t. Ax = y,

xi ∈ Xi, i = 1, ..., M,
(7)

whereh is anM × 1 coefficient vector,x is anM × 1 opti-
mization vector,A is anN×M matrix,y is anN×1 vector,
andyi ∈ Xi denotes a polyhedral constraint such asyi ≥ 0.
The entry oni-th column andj-th row of A is aji. Let Jj

be the set{i|aji 6= 0}, j = 1, ..., N . Reformulate (7) as:

min
∑M

i=1 hixi,
s.t. ajixi = zji, j = 1, ..., N, i ∈ Jj ,∑

i∈Jj
zji = yi, j = 1, ..., N,

xi ∈ Xi, i = 1, ..., M.

(8)

For eachj = 1, ..., N , we consider Lagrange multiplierspji

for the equality constraintsajixi = zji, i ∈ Jj . According
to the method of multipliers, at timet, pji is updated with:

pji(t + 1) = pji(t) + d (ajixi(t + 1)− zji(t + 1)) ,
j = 1, ..., N, i ∈ Jj ,

(9)
where the parameterd is a positive constant. The optimiza-
tion variablesxi(t+1) and the auxiliary variableszji(t+1)
minimize the augmented Lagrangian function:

∑M
i=1 hixi +

∑N
j=1

∑
i∈Jj

pji(t)(ajixi − zji)
+d

2

∑N
j=1

∑
i∈Jj

(ajixi − zji)2
(10)

under the constraints
∑

i∈Jj
zji = yi, j = 1, ..., N andxi ∈

Xi, i = 1, ..., M .
In the ADMM, the augmented Lagrangian function in (10) is
optimized in an alternating direction manner, first for the op-
timization variablesxi and second for the auxiliary variables
zji. The closed-form solutions are:

xi(t + 1) =

[∑
j|i∈Jj

dajizji(t)−
∑

j|i∈Jj
ajipji(t)−hi∑

j|i∈Jj
da2

ji

]Xi

,

i = 1, ..., M,
(11)

and

zji(t + 1) = ajixi(t + 1) + 1
dpji(t) + yj

|Jj |
−∑

k∈Jj

ajkxk(t+1)
|Jj | −∑

k∈Jj

pjk(t)
d|Jj | ,

j = 1, ..., N, i ∈ Jj .

(12)

Here[·]Xi denotes the mapping to the polyhedronXi.
The classic ADMM iteratively updates the optimization vari-
ablesxi, auxiliary variableszji, and Lagrange multipliers
pji with (11), (12), and (9), respectively. It has been proved
to converge to the globally optimal solution of (7) [7].

3.1 The Classic ADMM for Event Detection

To apply the classic ADMM in (2), we now rewrite (2) to its
equivalent form:

min 1T c,
s.t. Fc− s1 = b− θ1,

Fc + s2 = b + θ1,
c ≥ 0, s1 ≥ 0, s2 ≥ 0,

(13)

wheres1 ands2 are twoL× 1 slack vectors. Comparing (7)
and (17), we can readily obtainh = [1;0;0], x = [c; s1; s2],
y = [b− θ1;b + θ1], Xi = {xi ≥ 0}, and

A =
(

F −IL 0L

F 0L IL

)
.

HereIL and0L areL × L identity matrix and zero matrix,
respectively.
Hence at timet, the classic ADMM procedures for the event
detection problem are:

ci(t + 1) =
[∑

j∈Ii
fji(dz1ji(t)+dz2ji(t)−p1ji(t)−p2ji(t))−1∑

j∈Ii
2df2

ji

]+

,

i = 1, ..., L,
(14)

s1i(t + 1) =
[

1
dλ1i(t)− ξ1i(t)

]+
,

s2i(t + 1) =
[
ξ2i(t)− 1

dλ2i(t)
]+

,
i = 1, ..., L,

(15)

τ1j(t + 1) =
∑

k∈Ij

dfjkck(t+1)+p1jk(t)
|Ij |+1

+λ1j(t)−ds1j(t+1)−d(bj−θ)
|Ij |+1 ,

τ2j(t + 1) =
∑

k∈Ij

dfjkck(t+1)+p2jk(t)
|Ij |+1

+λ2j(t)+ds2j(t+1)−d(bj+θ)
|Ij |+1 ,

j = 1, ..., L,

(16)

ξ1i(t + 1) = −s1i(t + 1) + λ1i(t)
d − τ1i(t+1)

d ,

ξ2i(t + 1) = s2i(t + 1) + λ2i(t)
d − τ2i(t+1)

d ,
i = 1, ..., L,

(17)

z1ji(t + 1) = fjici(t + 1) + 1
dp1ji(t)− τ1j(t+1)

d ,

z2ji(t + 1) = fjici(t + 1) + 1
dp2ji(t)− τ2j(t+1)

d ,
j = 1, ..., L, i ∈ Ij ,

(18)

λ1i(t + 1) = λ1i(t) + d(−s1i(t + 1)− ξ1i(t + 1)),
λ2i(t + 1) = λ2i(t) + d(s2i(t + 1)− ξ2i(t + 1)),

i = 1, ..., L,
(19)

p1ji(t + 1) = p1ji(t) + d(fjici(t + 1)− z1ji(t + 1)),
p2ji(t + 1) = p2ji(t) + d(fjici(t + 1)− z2ji(t + 1)),

j = 1, ..., L, i ∈ Ii.
(20)

Here[·]+ denotes the nonnegative mapping,ξ1i, ξ2i, z1ji and
z2ji are auxiliary variables,τ1j andτ2j are intermediate vari-
ables to calculate the auxiliary variables, andλ1i, λ2i, p1ji,
andp1ji are Lagrange multipliers.

3.2 The Decentralized Algorithm

From the derivation above, the decentralized algorithm with
the classic ADMM is outlined as follows.
We first indicate that the algorithm has a nice decentralized
implementation since for sensor nodei, it only needs to com-
municate with its neighbors inIi. The enabling factor is that
we have assumedfij = 0 if dij ≥ rC in (A1). Therefore,
fij 6= 0 only whenj ∈ Ii.
Second, the algorithm is robust to varying network topolo-
gies. Network reconfiguration is done in Step 1 upon having
new sensory measurements. Further, the algorithm is robust
to the network asynchronization. Though we update the vari-
ables here in a Gauss-Seidel manner, namely using the most
up-to-date information, it is also workable to update the vari-
ables in a Jaccobi manner, namely using out-dated informa-
tion. Readers of interest are referred to [7].



————————————————————————
Decentralized Algorithm with the Classic ADMM
————————————————————————
Step 0: Setting.Settings of the communication rangerC ,

the distance-dependent influence functionf(·), and
the measurement error rangeθ are known in advance
to all sensor nodes.

Step 1: Initializing.In each event detection period, sensor
nodei initializes after having obtained the sensory
measurementbi, i = 1, ..., L. Sensor nodei broad-
casts a pilot message to all of its neighbors. Sensor
nodej, which is one of the neighbors ofi, answers
upon receiving the pilot message. Theni estimates
the distancedji with the TOA or RSSI technologies
[21] and calculatesfji as well asIi which contains
itself and its neighbors.

Step 2: Updating Optimization and Slack Variables.At time
t, sensor nodei calculatesci(t + 1), s1i(t + 1), and
s2i(t+1) with (14) and (15) by usingz1ji(t), z2ji(t),
p1ji(t), p2ji(t), λ1i(t), λ2i(t), ξ1i(t), andξ2i(t)
stored in itself, forj ∈ Ii, i = 1, ..., L.

Step 3: Updating Intermediate Variables.At time t, sensor
nodei requestscj(t + 1), p1ij(t), andp2ij(t) from
j ∈ Ii, then calculatesτ1i(t + 1) andτ2i(t + 1) with
(16), i = 1, ..., L.

Step 4: Updating Auxiliary Variables and Lagrange Multi-
pliers. At time t, sensor nodei requestsτ1j(t + 1)
andτ2j(t+1) from j ∈ Ii, and calculatesξ1i(t+1),
ξ2i(t + 1), z1ji(t + 1), z2ji(t + 1), λ1i(t + 1),
λ2i(t + 1), p1ji(t + 1), andp2ji(t + 1) with (17),
(18), (19), and (20),i = 1, ..., L.

Step 5: Iteratively Optimizing.Repeat from Step 2 to Step 4
iteratively until satisfying the stopping criterion.

Step 6: Alarming.Sensor nodei alarms when the optimized
ci exceeds a certain threshold.

————————————————————————
Third, we discuss the energy efficiency of the decentralized
algorithm. Since the main source of energy consumption in
a WSN is communication, we investigate the communica-
tion burden alternatively. Supposing that the iteration num-
ber isT , in each iteration, sensor nodei needs to broadcast
ci, τ1i, andτ2i, and transmitp1ji andp2ji to its neighborj.
Hence the overall communication burden per sensor node is
T + 2T |Ii|, which is irrelevant to the network sizeL and
hence scalable. As a comparison, in centralized algorithms,
sensors nodes need to transmit all sensory measurements to
a fusion center, and the average communication burden can
be as high as∼ L

1
2 . Further, considering the method of

using grid points as candidate positions, the decentralized
algorithm in [9] requires an average communication burden
per iteration as∼ K. Recalling thatK is the number of grid
points, this method is also unscalable when the sensing field
is large andor the expected spatial resolution is high.
From the analysis above, we can find that the communication
burden of the decentralized algorithm is proportional to the
amount of exchanged data per iteration. This fact motivates
us to improve the energy efficiency by reducing the amount
of exchanged data, which leads to a lightweight ADMM.

4 THE LIGHTWEIGHT ADMM

Revisiting the classic ADMM and substituting (17) to (19)
and (18) to (20), we haveλ1i(t) = τ1i(t), λ2i(t) = τ2i(t),
i = 1, ..., L, as well asp1ji(t) = τ1j(t), p2ji(t) = τ2j(t),
j = 1, ..., L, i ∈ Ij . It means that in the classic ADMM, the
intermediate variablesτ1j andτ2j actually serve as Lagrange
multipliers. Applying this conclusion in (14)-(18), introduc-
ing new intermediate variablesw1j andw2j , and eliminating
ξ1i, ξ2i, z1ji, andz2ji, the ADMM procedures turn to:

ci(t + 1) =
[∑

j∈Ii
fji(2dfji(t)ci(t)−dw1j(t)−dw2j(t))∑

j∈Ii
2df2

ji

−
∑

j∈Ii
fji(τ1j(t)+τ2j(t))+1∑

j∈Ii
2df2

ji

]+

,

i = 1, ..., L,
(21)

s1i(t + 1) =
[

1
dτ1i(t) + s1i(t) + w1i(t)

]+
,

s2i(t + 1) =
[
s2i(t)− w2i(t)− 1

dτ2i(t)
]+

,
i = 1, ..., L,

(22)

w1j(t + 1) =

∑
k∈Ij

fjkck(t+1)−s1j(t+1)−(bj−θ)

|Ij |+1 ,

w2j(t + 1) =

∑
k∈Ij

fjkck(t+1)+s2j(t+1)−(bj+θ)

|Ij |+1 ,

j = 1, ..., L,

(23)

τ1j(t + 1) = τ1j(t) + dw1j(t + 1),
τ2j(t + 1) = τ2j(t) + dw2j(t + 1),

j = 1, ..., L,
(24)

Note that we are just simplifying the classic ADMM; thus
the global convergence still keeps. The lightweight ADMM
is outlined as follows.
In the lightweight ADMM, in each iteration, sensor nodei
needs to broadcastci, τ1i, andτ2i to its neighbors. When the
iteration number isT , the overall communication burden is
3T . Bring to mind the fact that the average node degree in
a connected random graph is much larger than 1, obviously
|Ii| − 1 À 1, i = 1, ..., L. Therefore, for sensor nodei, the
communication burden of the lightweight ADMM, namely
3T , is significantly reduced from that of the classic ADMM,
namelyT + 2T |Ii|.
————————————————————————
Decentralized Algorithm with the Lightweight ADMM
————————————————————————
Step 0: Setting.Same to that in the classic ADMM.
Step 1: Initializing.Same to that in the classic ADMM.
Step 2: Updating Optimization and Slack Variables.At time

t, sensor nodei calculatesci(t + 1), s1i(t + 1), and
s2i(t + 1) with (21) and (22).

Step 3: Updating Intermediate Variables.At time t, sensor
nodei requestscj(t+1) from j ∈ Ii, then calculates
w1i(t + 1) andw2i(t + 1) with (23), i = 1, ..., L.

Step 4: Updating Lagrange Multipliers.At time t, sensor
nodei calculatesτ1i(t+1), τ2i(t+1) with (24), and
broadcasts them to its neighbors,i = 1, ..., L.

Step 5: Iteratively Optimizing.Repeat from Step 2 to Step 4
iteratively until satisfying the stopping criterion.

Step 6: Alarming.Sensor nodei alarms when the optimized
ci exceeds a certain threshold.

————————————————————————



5 SIMULATION RESULTS

In the simulation we uniformly randomly deploy 100 sensor
nodes in a100×100 sensing area. The communication range
rC varies in different experiments, with a minimal value of
20 which guarantees network connectivity. At the snapshot
of interest, two events occur, one with magnitude0.7142 at
sensor node#001 and another with magnitude#0.1413 at
sensor node#066. The influence functionf(dij) is set as
exp(−d2

ij/σ2) with σ = 10, which makesf(dij) ' 0 when
dij ≥ rC , and thus satisfies the assumption(A2). Sensory
measurement error is uniformly randomly distributed within
[−θ, θ] andθ = 0.01. The network topology withrC = 20
and the events occurring are depicted in Fig. 1.
The parameterd of the ADMM is chosen as 2. In the first
experiment, we setrC = 20 and compare the performance
of the classic ADMM and the lightweight ADMM. Fig. 2
shows the estimated magnitudes by the sensor nodes. Sensor
nodes#001 and#066 provides nearly accurate estimates
which are close to the true values, while all of other sensor
nodes report zero after a number of iterations. Squared error
between the estimates and the true values and the squared
error between the estimates and the optimal solution to (2)
are shown in Fig. 3. The simulation experiment validates the
effectiveness of the linear program formulation (2) as well as
the algorithms using the ADMM.
Unsurprisingly we can find that the classic ADMM and the
lightweight ADMM have the same convergence property
from Fig. 2 and Fig. 3. Indeed, as we have indicated, the
lightweight ADMM is simplified from the classic ADMM.
Nevertheless, the two algorithms do imply totally different
communication burden. Both of them nearly converge for
T = 80; however, considering that the average node degree
is∼ 10.7 in this case, the the average communication burden
is 22.4T for the classic ADMM, which is much higher than
that of3T for the lightweight ADMM.
Note that in practical applications, it is not necessary to wait
for optimization variables converging to the optimal values
since in the event detection task, existence and position of an
event are of rather more importance than its magnitude.
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Fig. 1: Network topology withrC = 20 is depicted; herein
black dots denote sensor nodes and blue lines denote edges.
Two events denoted as red pentagrams occur at sensor nodes
#001 (northwest) and#066 (southeast), respectively.

In the second experiment, we vary the communication range
rC as20, 30, and40. As shown in Fig. 4, the convergence
rates are similar and the energy consumptions are hence also
similar for the lightweight ADMM. However, the average
node degrees for these communication ranges are∼ 10.7,
21.3, and34.3, respectively, and thus the energy consump-
tions for the classic ADMM are quite different; the larger the
communication range, the worse the energy efficiency.

0 50 100 150 200
0

0.5

1

M
ag

ni
tu

de

The Lightweight ADMM

 

 

0 50 100 150 200
0

0.5

1
The Classic ADMM

Iteration
M

ag
ni

tu
de

 

 

Event at #001
Event at #066

Event at #001
Event at #066

Fig. 2: Estimated event magnitudes.
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Fig. 3: Squared errors.
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ent settings of the communication rangerC .



6 CONCLUSIONS

In this paper we address the problem of decentralized event
detection in a large-scale WSN. In the existing centralized
scheme, sensory measurements are all collected by a fusion
center which processes the information thereafter. This cen-
tralized scheme is inefficient with regard to energy consump-
tion and unscalable to network size. Contrarily, we propose
a fully decentralized information processing scheme, where
each sensor node makes decision by itself via only limited
communication with its neighbors. In consequence, energy
efficiency and network scalability are greatly strengthened.
To enable decentralized event detection, we formulate the
event detection task as a linear program which can be solved
by the classic ADMM. Under mild conditions, this iterative
algorithm is fully decentralized. Considering that the energy
consumption is proportional to communication burden, we
further simplify the classic ADMM to a lightweight ADMM,
which requires much fewer amount of exchanged data per
iteration without affecting the convergence property. Exten-
sive simulation results validate effectiveness of the proposed
lightweight ADMM.
The discussions in this paper also imply that the energy con-
sumption of a decentralized algorithm is proportional to the
iteration number. Therefore, how to accelerate the algorithm
will be an important future research direction.

REFERENCES

[1] A. Sundaresan, P. Varshney, and N. Rao, “Distributed detec-
tion of a nuclear radioactive source using fusion of correlated
decisions,” In: Proceedings of FUSION, 2007.

[2] J. Lynch, “An overview of wireless structural health moni-
toring for civil strucutres,” Philosophical Transactions of the
Royal Society A, vol. 365, pp. 345–372, 2007.

[3] X. Sun and E. Coyle, “Low-complexity algorithms for event
detection in wireless sensor networks,” IEEE Journal on Se-
lected Areas in Communications, vol. 28, pp. 1138–1148,
2010.

[4] M. Cetin, L. Chen, J. Fisher III, A. Ihler, R. Moss, M. Wain-
wright, and A. Willsky, “Distributed fusion in sensor net-
works,” IEEE Signal Processing Magazine, vol. 23, pp. 42–55,
2006.

[5] J. Predd, S. Kulkarni, and H. Poor, “A collaborative training
algorithm for distributed learning,” IEEE Transactions on In-
formation Theory, vol. 55, pp. 1856–1871, 2009.

[6] M. Rabbat and R. Nowak, “Distributed optimization in sensor
networks,” In: Proceedings of IPSN, 2004.

[7] D. Bertsekas and J. Tsitsiklis,Parallel and Distributed Com-
putation: Numerical Methods, Athena Scientific, 1997.

[8] I. Schizas, G. Mateos, and G. Giannakis, “Distributed LMS
for consensus-based in-network adaptive processing,” IEEE
Transactions on Signal Processing, vol. 57, pp. 2365–2381,
2009.

[9] J. Bazerque and G. Giannakis, “Distributed spectrum sens-
ing for cognitive radio networks by exploiting sparsity,” IEEE
Transactions on Signal Processing, vol. 58, pp. 1847–1862,
2010.

[10] Q. Ling, Z. Tian, Y. Yin, and Y. Li, “Localized structural
health monitoring using energy-efficient wireless sensor net-
works,” IEEE Sensors Journal, vol.9, pp. 1596–1604, 2009.

[11] Q. Ling and Z. Tian, “Decentralized sparse signal recovery for
compressive sleeping wireless sensor networks,” IEEE Trans-
actions on Signal Processing, vol. 58, pp. 3816–3827, 2010.

[12] M. Lucchi and M. Chiani, “Distributed detection of local phe-
nomena with wireless sensor networks,” In: Proceedings of
ICC, 2010.

[13] D. Donoho,“Compressed sensing,” IEEE Transactions on In-
formation Theory, vol. 52, pp. 1289–1306, 2006.

[14] S. Chen, D. Donoho, and M. Saunders, “Atomic decompos-
tion by basis pursuit,” SIAM Journal on Scientific Computing,
vol. 20, pp. 33–61, 1998.

[15] R. Tibshirani, “Regression shrinkage and selection via the
Lasso,” Journal of Royal Statistical Society B, vol. 58, pp.
267–288, 1996.

[16] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projec-
tion for sparse reconstruction: application to compressed sens-
ing and other inverse problems,” IEEE Journal of Selected Top-
ics in Signal Processing, vol. 1, pp. 586–597, 2007.

[17] E. Candes and T. Tao, “The Dantzig selector: statistical esti-
mation when p is much larger than n,” Annals of Statistics, vol.
35, pp. 2313–2351, 2007.

[18] S. Boyd and L. Vandenberghe,Convex Optimization, Cam-
bridge University Press, 2004.

[19] V. Cevher, M. Duarte, and R. Baraniuk, “Distributed target lo-
calization via spartial sparsity,” In: Proceedings of EUSIPCO,
2008.

[20] A. Schmidt and J. Moura, “Field inversion by consensus and
compressed sensing,” In: Proceedings of ICASSP, 2009.

[21] K. Ssu, C. Ou, and H. Jiau, “Localization with mobile anchor
points in wireless sensor networks,” IEEE Transactions on Ve-
hicular Technology, vol. 54, pp. 1187–1197, 2005.


