A Lightweight Alternating Direction Method of Multipliers for
Decentralized Event Detection

Qing Ling, Chun Shi, Anhong He

Department of Automation, University of Science and Technology of China, Hefei, Anhui, 230027
E-mail: gingling@mail.ustc.edu.cn, cshi@mail.ustc.edu.cn, heanhong@mail.ustc.edu.cn

Abstract: In this paper we address the problem of decentralized event detection in a large-scale wireless sensor network (WSN).
Comparing with existing centralized solutions, decentralized algorithms are superior in energy efficiency and network scalability,
and thus fit for the distributed nature of a WSN. We formulate the event detection problem as a linear program, and solve it with
the alternating direction method of multipliers (ADMM). Under mild conditions, this iterative algorithm is shown to be fully
decentralized. Further, in view of the fact that the communication burden per iteration directly decides the energy consumption
of sensor nodes, we simplify the classic ADMM to a lightweight one, which requires much lower communication burden while
keeps the global convergence of the classic ADMM. Effectiveness of the proposed algorithm is validated with simulation results.
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1 INTRODUCTION signal recovery problem. Under some mild conditions it has
L ) L the form of a separable linear program and can be solved
Eyent detection is one of the most |mpor_tant appllcatlons. OfWith the classic ADMM. Considering that in the algorithm
W|rele§s Sensor netyvorks (WSNS): TYP'Ca' event detectiony, o ¢ommunication burden per iteration directly decides the
tasks include detecting nuclear radioactive sources [1], MONgergy consumption of sensor nodes, we further simplify the
itoring structural health conditions [2], discovering the pres- .|, <<ic ADMM to a lightweight one, which requires much
ence of contaminants [3], etc. Generally speaking, these SCqwer amount of exchanged data while keeps the global con-
narios have the following common characteristics: i) multi- vergence of the classic ADMM. Simulation results demon-

ple events may occur in the sensing area, ii) one event Onhétrate the effectiveness of the proposed algorithm.
influences sensory measurements of its neighboring region;

and iii) measurement of one sensor node is the linear supe2 PROBLEM FORMULATION
position of the influences of multiple events. The objective

of event detection is to locate the events and estimate theit€! us consider a large-scale W_SN In Wh_'Ch sensor nodes
amplitudes from the sensory measurements. are uniformly randomly deployed in a two-dimensional sens-
Different from the traditional centralized event detection ap—mg area. The WSN has a setbfsensor nodes, denoted as

. Sensor nodes have a common communication rapge
proaches which process collected sensory measurementsgtach sensor node can only communicate with its neiaghbors
a fusion center, this paper focuses on decentralized event de- y 9

tection algorithms in large-scale WSNs. By decentralizedg'tg'enctsn(;?:ggﬂz'g::'?hner;?gsee'nT:(fmnrﬁLV\r’]?g;t:anlr"ppojed
event detection we mean that, without any fusion center ang

sensor nodes autonomously exchange information with theip—he event d_etecthn task IS performed perlod|cal_ly. Within
each sampling period, multiple events may occur in the sens-

neighbors an llaborativel he events. The mai . ) L
eighbors and collaboratively detect the events € main g area. We make the following assumptions in this paper:

advantage of this decentralized scheme, over the centralize} 1) Event | ¢ d i
one, is that the distributed sensor nodes do not need to trans- ): Events only occur at some Sensor node positions.
hen the position of one event coincides with the position

mit data to a faraway fusion center in a large-scale WSN. . .

Therefore, the communication burden is limited and the en—Of sensor.nod@, we denote the amplitude of the event by a
ergy consumption is scalable with the network size. nonnegative scala;. . . . . .

In a nutshell, a decentralized event detection task can béAz): Each event.onlym_fluences Its ne|ght_)c.)'r|ng region. The
formulated as an optimization problem and solved with de-'_n.fluence of a unlt—amplltud_e event' at positipon position
centralized optimization algorithms, which have attracted” 'Sdfi-j_ _ g(d”)d whered; is the c.ilstefmce 'betWV?/en sensor
much attention for implementing large-scale WSNs [4, 5, 6]. nho es af j.fa; f>|s a nonlﬂcrgfazlngiunctlgn._ _ f suppose
Among these decentralized algorithms, the alternating githatfyy =0 di > re, fij = 1 dy = 0and fi; = fji. .
rection method of multipliers (ADMM) [7] is a promising (A3): The measurement of one sensor node is the superposi-

one due to its ability of efficiently handling a large class of tion of the influences of all events plus random noise. Since

separable constrained convex programs. Successful applicafij = 0ford;; > rc, the measuremen; of sensor node
tions can be found in, for example, decentralized least-mean. Can be written a$; = 5,7, fijc; + ei, wheree; is the
square estimation [8], spectrum sensing [9], and structurafa.ndpm noise, and; denotes the set of sensor nodsiong
health monitoring [10], etc. with its neighbors.

This paper formulates the event detection task as a sparse1 Justification of the Assumptions

This work is supported in part by National Nature Science FoundationThe assumptiofAl) selects positions of the sensor nodes

under Grant 61004137 and in part by the Fundamental Research Funds f@S candidate position§ of the §gnsing area E'md confines the
the Central Universities. events on these candidate positions [11]. This way, the oth-




erwise highly nonlinear and nonconvex event detection probwhich is a second-order cone program and called as the basis
lem turns to be tractable. The resolution of event detection igursuit denoising (BPDN) [14]. The BPDN has two equiva-
now directly decided by the density of sensor nodes. Basedent formulations, the least absolute shrinkage and selection
on(Al), we can formulate the event detection problem as re-operator (LASSO) [15] and th& regularized least squares

covering the vectoe = [cy, ...,cz]T from the sensory mea-

(¢1-LS) [16]. Intuitively, (2) handles uniform noise while (3)

surements. I&; is nonzero, then there is an event detected athandles Gaussian noise; though both of them indeed exploit

the position of sensor node
The assumptioifA2) describes the phenomenonlwhited

the signal sparsity. This paper focuses on (2) which takes the
advantage of a separable linear program and can be solved

influenceof a single event on the whole sensing area [12]. by the ADMM efficiently.

For example, in nuclear radioactive detection, the influencet should be noted that there has already been a linear pro-
of a radioactive source varies polynomially with distance. gram formulation available for this kind of sparse signal re-
Similar distance-dependent influence can be observed fromsovery problem, known as the Dantzig selector (DS) [17]:
events in many practical scenarios such as fire sources and

structural damages. Therefore, by carefully setting the com-

munication range, it is possible to makg;; ~ 0 when
d;; > rc. Inthe ensuring paper we will show that tiraited

influencephenomena greatly facilitates the implementation

of energy efficient and scalable decentralized algorithms.

2.2 A Linear Program Model

17c,

F'Fc>FTb — €1,
FTFc < FTb + el,
c>0,

min
s.t.
(4)

wheree is a known positive constant. Despite the similarity
between (2) and (4), the latter cannot be solved easily with a

We now introduce a key observation that the optimizationdecentralized algorithm.
vectorc is sparse, namely, the number of nonzero elementsecond, thouglAl) confine the amplitudes of the events to

in ¢ is much smaller than the vector size This prior knowl-

be nonnegative, this assumption can be relaxed easily. For an

edge holds since the WSN is large-scale while events genemrbitrary optimization vectoe, we can define = ct —c™,
ally occur sparsely. Nevertheless, we do allow the influencect > 0 andc= > 0. This way,
of these sparse events to span over the large sensing area.

Hence, recovery o€ boils down to minimizing a sparsity-
imposing metrid|c||; that is the?; norm ofc [13], subject
to measurement constraints. Note tf@t) assumeg > 0,
thus||c||; = Zle lei] = Zle ¢;. Further, we consider
the case that the measurement error is withifi, 8] where

# is a known positive constant. FrofA3), a linear program
formulation for the sparse signal recovery problem arises:

min ZiL=1 ¢,

s.t. Zielj fjici > bj — 0, ] = ].7
Zite fjici < bj + 0, j=1, S
c; >0, j7=1,..,L.

Written in a matrix form, (1) turns to:

min 17c,

st. Fc>b—01,
Fc<b+01,
c>0,

)

wherel and0 are twoL x 1 vectors with all ones and zeros,
b = [b1,...,br]T istheL x 1 measurement vector, aitlis
the L x L measurement matrix with its entry éfh column
andj-th row asf;;. In the following paper we will focus on
solving this linear program in a decentralized way.

2.3 Extensions of the Linear Program Model

min ||c||1,
sit. Fc>b-—01, (5)
Fc<b+01,
is equivalent to
min 1T¢t +17c¢™,
st. Fct —Fc™ >b-01,
- (6)

Fct —Fe < b+ 01,
ct>0,c >0,

which has the same form as (2) [18].

Third, (A1) chooses the positions of sensor nodes as candi-
date positions for the events in the sensing area. An alterna-
tive way is to draw a grid in the sensing field and choose the
K grid points as candidate positions [9, 19, 20]. Supposing
that the number of events is much smaller than the number
of grid points, a similar sparse signal recovery problem ap-
pears. Therein & x 1 sparse signal, say, represents the
positions and magnitudes of the events. By reformulating it
as a consensus optimization problem which is solvable by
the ADMM, [9] considers the decentralized optimization of
this formulation, where each sensor node optimizes the local
copy ofé. This approach can handle the case that the events
are with global influenceshowever, the side effect is that
each sensor node needs to recover the whole sensing field,
namely the whole optimization vect@r;, and the resulting

The linear program model (2) can be extended to many othegommunication burden is high. Contrarily, in our proposed

formulations according to practical settings.

algorithms each sensor only needs to recover the correspond-

First, for the case that the total energy of the measuremenhg element ot with much lower communication burden.

error is bounded with a known positive constanthe math-
ematical model can be:

min 17%¢,
st |[Fe—bl3 <3, 3
c>0,

3 THE CLASSIC ADMM

The classic ADMM is able to solve a large class of separable
constrained convex programs. In this paper we apply itin the
separable linear program (2) and obtain a neat solution.



Consider a linear program [7] (see pp. 249-253): wheres; ands, are twoL x 1 slack vectors. Comparing (7)

) " and (17), we can readily obtaln= [1;0; 0], x = [c;s1;S2),
min  h®x, =[b—601;b+01], X; = {z; > 0}, and
st. Ax =y, @)
x €X;y 1=1,...,. M, A= F -1y 0 )
F 0, I

whereh is anM x 1 coefficient vectorx is anM x 1 opti-
mization vectorA is anN x M matrix,y is anN x 1 vector,
andy; € X; denotes a polyhedral constraint suchyas 0.
The entry oni-th column andj-th row of A is a;;. Let J;
be the se{i|a;; # 0},5 =1, ..., N. Reformulate (7) as:

HereI; and0;, areL x L identity matrix and zero matrix,
respectively.

Hence at time, the classic ADMM procedures for the event
detection problem are:

D ier, Fit(dzgi (@) Fdeagi(B)=p1ji(t) —p2yi (1) —1 *
min Zgl hix;, Ci(t * 1) B [ Ey‘ez- 2df7; ’
st ajri =2y, j=1,...,N,ie€Jj, ®) i=1,.., L,
Yiieg, i = Yin J =1 N, N (14)
r, €X;, i=1,..,M. Sli(t—Fl) = [é)\li(t)_fli(t)]_‘_)
] — [E0: (1) — Lo 15
For eachj = 1, ..., N, we consider Lagrange multiplieps; s2u(t+1) Lgm(t) arai(®)] (13)
. . . i i=1,...,L,
for the equality constraints;;x; = z;;,¢ € J;. According
to the method of multipliers, at time p;; is updated with: T+ 1) = Yper, dff’“c’“(‘t;‘l)””’“(t)
RSO dsu(t+1) d(b; =)
1) =) +d (it +1) = 50 +1). B
,] = 1 N 7€ %, 7'2j(t =+ 1) ZkeI fjken ‘t;‘)+p21k(t) (16)
9) Ay (O dsa, (t41) Zd(b, +0).
. . L Zj|+1
where the parametekis a positive constant. The optimiza- 1. ! L\+
. . - . Jj=
tion variablese; (¢t + 1) and the auxiliary variables;; (t + 1) \ (t) . (t+1)
minimize the augmented Lagrangian function: §ri(t+1) = —sp(t +1) + =2 » .
&Aﬂ%UZS%@+1%+Mf) ”*”” a7)
YLy hii +ZJ 1 e, Pii(t)(ajiwi — zji) i=1,..,L,
+25 N S (agim — zg) (10) 1 (t41)
2 j=l i€y O A zji(t +1) = fiici(t +1) + gpija(t) — %,
_ o 1 T2y t+1
under the constraints.._ ., zj; = 4,5 = 1,..., N andz; € 25t +1) = szcz(t +1) + gpait) — 2, (18)
. e ds 1,..,Li€T;
Xii=1,.., M. j=1..,Li€elj

In the ADMM, the augmented Lagrangian function in (10)is A1 (t + 1) = A () + d(—spi(t + 1) — &,(t + 1)),
optimized in an alternating direction manner, firstfor the op- ~ Ag;(t + 1) = Ao (¢) + d(s2:(t + 1) — &2,(t + 1)),
timization variables:; and second for the auxiliary variables i=1,..., L,
zj;. The closed-form solutions are: (29)
N prji(t+1) = prji(t) + d(frici(t + 1) — z155(t + 1)),
Z]‘\z‘ey- dafizj'i(t)_zj\iej, ajipji(t)—h; ‘ iji(t + 1) = iji(t) + d(fjicl(t 1) ZQJ’L(t + 1))a
zi(t+1) = ! : j=1,..,Li€cT.
2jiie; 993
(20)
i=1,.., M,

Here[-]* denotes the nonnegative mappigég, &2, z1,; and

q (1) z9j; are auxiliary variables; ; andr,; are intermediate vari-
an ables to calculate the auxiliary variables, ang, A2;, p1ji,
2ji(t+1) = agaai(t+ 1) + Lpji(t) + ‘ ‘ andp, ;; are Lagrange multipliers.
—Ykes, “’”‘”jjt“) ke, ’;7"}(;‘), (12) 3.2 The Decentralized Algorithm
j=1,...,N,ie J;. From the derivation above, the decentralized algorithm with
. _ the classic ADMM is outlined as follows.
Here[-]** denotes the mapping to the polyhedrtn We first indicate that the algorithm has a nice decentralized

The classic ADMM iteratively updates the optimization vari- jmplementation since for sensor naglé only needs to com-
abIeSx“ auxiliary variablesz;;, and Lagrange multipliers  mynicate with its nelghbors [ﬁz The enabllng factor is that

to converge to the globally optimal solu'uon of (7) [7]. fij # 0 only whenJ c 1.

3.1 The Classic ADMM for Event Detection Second, the algorithm is robust to varying network topolo-
gies. Network reconfiguration is done in Step 1 upon having

To apply the classic ADMM in (2), we now rewrite (2) to its new sensory measurements. Further, the algorithm is robust

equivalent form: to the network asynchronization. Though we update the vari-
min 17¢, ables here in a Gauss-Seidel manner, namely using the most
st. Fc—s, =b— 01, up-to-date information, it is also workable to update the vari-

Fc +sy = b+ 01, (13)  ables in a Jaccobi manner, namely using out-dated informa-
c>0,s >0,s, >0, tion. Readers of interest are referred to [7].



4 THE LIGHTWEIGHT ADMM

Reuvisiting the classic ADMM and substituting (17) to (19)
and (18) to (20), we hava;(t) = 71;(t), A2i(t) = T2i(t),

1 = 1,...,[4, as well as;olji(t) = le(t), pgji(t) = ng(t),
j=1,...,L,i€Z;. It means thatin the classic ADMM, the
intermediate variables ; andr,; actually serve as Lagrange
multipliers. Applying this conclusion in (14)-(18), introduc-
ing new intermediate variables, ; andw,;, and eliminating
&4, £2i5 2154, @andzgj;, the ADMM procedures turn to:

Decentralized Algorithm with the Classic ADMM

Step 0: SettingSettings of the communication range,
the distance-dependent influence functfdn), and
the measurement error ranggare known in advance
to all sensor nodes.

Step 1: Initializing.In each event detection period, sensor
node: initializes after having obtained the sensory

measuremerit;, ¢ = 1, ..., L. Sensor nodé broad-
ngi F3(2df 5 (8)es (8) —dwaj (1) —dw2; ()

casts a pilot message to all of its neighbors. Sensor c(t+1) = .
nodej, which is one of the neighbors afanswers ez, 2065,
upon receiving the pilot message. Thegstimates  Djex, T4 ()41 "
the distancel;; with the TOA or RSSI technologies 2sez; 243 ’
[21] and calculateg;; as well asZ; which contains i=1,...L,
itself and its neighbors. ) . (21)
Step 2: Updating Optimization and Slack Variabl&stime s1i(t+1) = [gru(t) + s1i(t) + wai(t)] L
t, sensor nodécalculates:; (¢ + 1), sy;(t + 1), and sai(t+1) = [s2i(t) — wai(t) — graa(®)] ", (22)
Sgi(t—Fl) with (14) and (15) by usinglji (t), 29ji (t), i=1..,L,
P1ji(t), p2ji(t), Ai(t), A2i(t), €14(t), andéa; (t) S ier, finek (1) =1, (t+1)—(b;—0)
stored in itself, forj € Z;,i = 1, ..., L. wij(t+1) = ! EAES ,
Step 3: Updating Intermediate VariableAt time ¢, sensor Zkezj Finer (1) +s25(t+1)—(b;+6)  (23)
nodei requests:; (£ + 1), p1;;(t), andpa;;(t) from wa(t+1) = _ IZ;T+1 ’
j € Z;, then calculates;; (¢ + 1) andr; (¢t + 1) with j=L..L
(16),i =1,..., L. 1 (t 4+ 1) = 7 (t) + dwy;(t + 1),
Step 4: Updating Aucxiliary Variables and Lagrange Multi- Toj(t + 1) = 7o (t) + dwa;(t + 1), (24)

pliers. At time ¢, sensor nodérequestsq ; (¢t + 1)
andry;(t+1) fromj € Z,, and calculateg,; (t + 1),
&t +1), z15i(t + 1), 2055t + 1), At + 1),
Xoi(t + 1), prji(t + 1), andpa; (¢ + 1) with (17),
(18), (19), and (20)%, =1, ..., L.
Step 5: Iteratively OptimizingRepeat from Step 2 to Step 4
iteratively until satisfying the stopping criterion.
Step 6: AlarmingSensor nodeé alarms when the optimized
¢; exceeds a certain threshold.

j=1,..L,

Note that we are just simplifying the classic ADMM; thus
the global convergence still keeps. The lightweight ADMM
is outlined as follows.

In the lightweight ADMM, in each iteration, sensor node
needs to broadcast, m;, andrs; to its neighbors. When the
iteration number ig’, the overall communication burden is
3T'. Bring to mind the fact that the average node degree in
a connected random graph is much larger than 1, obviously
|Zi| —1>1,i=1,..., L. Therefore, for sensor nodethe
Third, we discuss the energy efficiency of the decentralizedcommunication burden of the lightweight ADMM, namely
algorithm. Since the main source of energy consumption in3Z', is significantly reduced from that of the classic ADMM,

a WSN is communication, we investigate the communica-namely?" + 27'|Z;|.

tion burden alternatively. Supposing that the iteration num-
ber isT, in each iteration, sensor nod@eeds to broadcast Decentralized Algorithm with the Lightweight ADMM
¢i, T14, @ndry;, and transmip, ;; andps;; to its neighbor;.
Hence the overall communication burden per sensor node iStep 0: SettingSame to that in the classic ADMM.

T + 2T|Z;|, which is irrelevant to the network sizé and Step 1: Initializing.Same to that in the classic ADMM.
hence scalable. As a comparison, in centralized algorithmsStep 2: Updating Optimization and Slack Variabléstime
sensors nodes need to transmit all sensory measurements to ¢, sensor nodécalculates:;(t + 1), s1;(t + 1), and

a fusion center, and the average communication burden can s9;(t + 1) with (21) and (22).

be as high as- L=. Further, considering the method of Step 3: Updating Intermediate VariableAt time ¢, sensor
using grid points as candidate positions, the decentralized nodei requests; (t+ 1) from j € Z;, then calculates
algorithm in [9] requires an average communication burden wy;(t + 1) andwy; (t 4+ 1) with (23),i =1, ..., L.

per iteration as- K. Recalling thatX is the number of grid ~ Step 4: Updating Lagrange Multipliergit time ¢, sensor
points, this method is also unscalable when the sensing field node; calculates; (t + 1), 72;(t + 1) with (24), and
is large andor the expected spatial resolution is high. broadcasts them to its neighboiss 1, ..., L.

From the analysis above, we can find that the communicatiorStep 5: Iteratively OptimizindRepeat from Step 2 to Step 4
burden of the decentralized algorithm is proportional to the iteratively until satisfying the stopping criterion.
amount of exchanged data per iteration. This fact motivatesStep 6: AlarmingSensor nodé alarms when the optimized
us to improve the energy efficiency by reducing the amount c¢; exceeds a certain threshold.

of exchanged data, which leads to a lightweight ADMM.




5 SIMULATION RESULTS In the second experiment, we vary the communication range
rco as20, 30, and40. As shown in Fig. 4, the convergence

In the simulation we uniformly randomly deploy 100 sensor yates are similar and the energy consumptions are hence also

nodes in d00 x 100 sensing area. The communication range gimilar for the lightweight ADMM. However, the average

rc varies in different experiments, with a minimal value of ngge degrees for these communication ranges-ar).7,

20 which guarantees network connectivity. At the snapshota; 3 and34.3, respectively, and thus the energy consump-

of interest, two events occur, one with magnit@el42 at  tions for the classic ADMM are quite different; the larger the

sensor node#001 and another with magnitudg0.1413 at  communication range, the worse the energy efficiency.
sensor nodeg#066. The influence functiory(d;;) is set as

exp(—d3;/o?) with o = 10, which makesf (d;;) ~ 0 when
d;; > r¢, and thus satisfies the assumpt{@®). Sensory The Lightweight ADMM

measurement error is uniformly randomly distributed within °
[0, 6] andd = 0.01. The network topology withrc = 20 S

. . L = | —— Event at #001 ||
and the events occurring are depicted in Fig. 1. 505 - - —Event at #066

©

The parameted! of the ADMM is chosen as 2. In the first S
experiment, we setc = 20 and compare the performance 0 50 100 150 200
of the classic ADMM and the lightweight ADMM. Fig. 2

The Classic ADMM

shows the estimated magnitudes by the sensor nodes. Sensor 1
nodes#001 and #066 provides nearly accurate estimates
which are close to the true values, while all of other sensor

—— Event at #001

Magnitude
o
(6]

nodes report zero after a number of iterations. Squared error - - - Event at #066
between the estimates and the true values and the squared s -m----- i
error between the estimates and the optimal solution to (2) % 50 100 150 200
are shown in Fig. 3. The simulation experiment validates the Iteration

effectiveness of the linear program formulation (2) as well as

the algorithms using the ADMM.

Unsurprisingly we can find that the classic ADMM and the
lightweight ADMM have the same convergence property

from Fig. 2 and Fig. 3. Indeed, as we have indicated, the 1

Fig. 2: Estimated event magnitudes.

The Lightweight ADMM

lightweight ADMM is simplified from the classic ADMM. u%
Nevertheless, the two algorithms do imply totally different S 0.5 — Versus Optimal Solution ||
communication burden. Both of them nearly converge for s = - - Versus True Value
T = 80; however, considering that the average node degree & 0 ‘
is~ 10.7 in this case, the the average communication burden 0 50 100 150 200
is 22.47T for the classic ADMM, which is much higher than The Classic ADMM
that of 3T for the lightweight ADMM. 5 ! ‘ ‘
Note that in practical applications, it is not necessary to wait i . .
Lo . . . o \ —— Versus Optimal Solution ||
for optimization variables converging to the optimal values ¢ 05 - - ~Versus True Value
since in the event detection task, existence and position ofan 32
event are of rather more importance than its magnitude. 9 :
0 50 100 150 200
Iteration
100 : : ‘ Fig. 3: Squared errors.
80} ] ’
60} 1 0.8f
2
< o
o
40} iy — =20}
8 - ro=30
© =
o0l ;s')_ - rC_40 o
O L L L L
0 20 40 60 80 100 <
X Axis ‘ L T ‘
i . i ) ) 100 150 200
Fig. 1. Network topology withro = 20 is depicted; herein lteration

black dots denote sensor nodes and blue lines denote edges.
Two events denoted as red pentagrams occur at sensor nodegy. 4: Squared errors of the lightweight ADMM for differ-
#001 (northwest) angdt066 (southeast), respectively. ent settings of the communication range



6 CONCLUSIONS [12] M. Lucchiand M. Chiani, “Distributed detection of local phe-
nomena with wireless sensor networks,” In: Proceedings of

In this paper we address the problem of decentralized event |cc, 2010.

detection in a large-scale WSN. In the existing centralized[13] D. Donoho,“Compressed sensing,” IEEE Transactions on In-

scheme, sensory measurements are all collected by a fusion formation Theory, vol. 52, pp. 1289-1306, 2006.

center which processes the information thereafter. This cenfl4] S. Chen, D. Donoho, and M. Saunders, "Atomic decompos-

tralized scheme is inefficient with regard to energy consump-  tion by basis pursuit,” SIAM Journal on Scientific Computing,

tion and unscalable to network size. Contrarily, we propose _ Vol 20, pp. 33-61, 1998. _ o

a fully decentralized information processing scheme, wherd1®l R. Tibshirani, “Regression shrinkage and selection via the

each sensor node makes decision by itself via only limited Lasso,” Journal of Royal Statistical Society B, vol. 58, pp.

L . . 267-288, 1996.
communication with its neighbors. In consequence, energ)fm] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projec-

efficiency and netwo.rk scalability are greatly strengthened. tion for sparse reconstruction: application to compressed sens-
To enable decentralized event detection, we formulate the ingand other inverse problems,” IEEE Journal of Selected Top-
event detection task as a linear program which can be solved ics in Signal Processing, vol. 1, pp. 586-597, 2007.
by the classic ADMM. Under mild conditions, this iterative [17] E. Candes and T. Tao, “The Dantzig selector: statistical esti-
algorithm is fully decentralized. Considering that the energy ~ mation when p is much larger than n,” Annals of Statistics, vol.
consumption is proportional to communication burden, we 35, pp. 2313-2351, 2007. o
further simplify the classic ADMM to a lightweight ADMM, ~ [18] S. Boyd and L. Vandenbergh&onvex OptimizationCam-
which requires much fewer amount of exchanged data pey, __Pridge University Press, 2004. o
. . . . le] V. Cevher, M. Duarte, and R. Baraniuk, “Distributed target lo-
iteration without affecting the convergence property. Exten- o . o ;

. . . . : calization via spartial sparsity,” In: Proceedings of EUSIPCO,
sive simulation results validate effectiveness of the proposed

. . 2008.
lightweight ADMM. [20] A. Schmidt and J. Moura, “Field inversion by consensus and

The discussions in this paper also imply that the energy con-  compressed sensing,” In: Proceedings of ICASSP, 2009.
sumption of a decentralized algorithm is proportional to the[21] K. Ssu, C. Ou, and H. Jiau, “Localization with mobile anchor
iteration number. Therefore, how to accelerate the algorithm  points in wireless sensor networks,” IEEE Transactions on Ve-
will be an important future research direction. hicular Technology, vol. 54, pp. 1187-1197, 2005.
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