
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 115.156.232.184

This content was downloaded on 13/02/2016 at 10:29

Please note that terms and conditions apply.

Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman

excitation

View the table of contents for this issue, or go to the journal homepage for more

2008 J. Phys. B: At. Mol. Opt. Phys. 41 215504

(http://iopscience.iop.org/0953-4075/41/21/215504)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/41/21
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 215504 (8pp) doi:10.1088/0953-4075/41/21/215504

Ultraslow temporal vector optical solitons
in a cold five-state atomic medium under
Raman excitation

Liu-Gang Si1, Ji-Bing Liu2, Xin-You Lü1 and Xiaoxue Yang1
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Abstract

We theoretically investigate the formation of ultraslow temporal vector optical solitons in a
lifetime-broadened five-state atomic system under Raman excitation. By analysing the
interaction between the atomic system and two strong, linear-polarized continuous wave
control fields and a weak, linear-polarized pulsed signal field, having two orthogonally
polarized components, we find that the Maxwell equations of describing the propagation of
two orthogonal polarization components can evolve into two coupled nonlinear Schrödinger
equations, which admit solutions describing vector solitons, including bright–bright,
bright–dark, dark–bright and dark–dark vector solitons with ultraslow group velocity. More
importantly, the Manakov temporal vector solitons can be easily realized in our system by
adjusting the corresponding parameters such as the Rabi frequencies of the control fields, one-
and two-photon detunings. The unique features of the two coupled nonlinear Schrödinger
equations are also discussed.

1. Introduction

The soliton represents a fascinating manifestation of nonlinear
phenomena in nature and occurs in many states of matter
ranging from solid media such as optical fibres [1, 2] or
molecular magnets [3–5] to Bose–Einstein condensed atomic
vapour [6–8]. In the context of optics, the soliton describes
the particle-like properties of an optical pulse envelope in
various nonlinear systems. Under certain conditions, a perfect
balance between the nonlinear and dispersive effects can
result in optical pulses maintaining their shapes not only
during propagation but also during mutual collisions. Due to
the potential applications in quantum information processing
and transmission, optical solitons forming inside cold atomic
media [9–14], semiconductor quantum wells [15] and other
nonlinear media [16, 17] have attracted a great deal of attention
in recent years.

Recently, among the various optical solitons studied so
far, a novel class of solitons, namely vector optical solitons,
which are the solutions of two coupled nonlinear Schrödinger
(NLS) equations describing the envelope evolution of two

polarization components of an electromagnetic field, have
received much attention because of the promising applications
for the design of new types of all-optical switches and logic
gates [18]. The formation of vector optical solitons arises from
the vector nature of light propagating in a nonlinear medium.
According to the interaction between either two waves with
different frequencies, or two waves with same frequency but
belonging to two different polarizations, the optical waves
propagating in nonlinear media may evolve into two types
of vector optical solitons, the temporal [19–26] and spatial
[27–31] vector optical solitons because of self- and cross-
phase modulation effects. However, up to now, most vector
optical solitons have been produced in passive optical media
such as optical fibres [18, 21, 22, 24–31] and far-off-resonance
excitation schemes are generally employed in order to avoid
unmanageable attenuation and distortion of the optical field.
Due to the lack of distinctive energy levels and strong nonlinear
effects, high intense electromagnetic fields and substantial
propagation distance are required in order to generate optical
solitons. As a consequence, vector optical solitons produced
in this way generally travel with a speed very close to c, the
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speed of light in vacuum, and require an extended propagation
distance.

In the past few years the technique of electromagnetically
induced transparency (EIT) [32–36] has been used to obtain
vanishing linear absorption and large nonlinear effects as well
as ultraslow light speed. Based on the EIT effect in nonlinear
media, lots of nonlinear phenomena including soliton
[3, 5, 37] and four-wave mixing [11, 38, 39] (FWM) have
been realized. For example, on the basis of the EIT in a
crystal of molecular magnets, Wu and Yang [3] have shown
the formation of microwave solitons. Hang and Huang [37]
have investigated the ultraslow temporal vector optical solitons
generated in an atomic medium via EIT. However, as shown in
[10], there are difficulties of soliton formation in the conditions
of the usual EIT configuration in a three-state cold atomic
system which can support the propagation of such ultraslow
optical solitons under Raman excitation with nonvanishing
one- and two-photon detunings. Motivated by the work in
[10], we naturally want to ask if the ultraslow temporal vector
optical solitons can also be formed in a lifetime-broadened
five-state atomic system under Raman excitation.

In the present paper, we will examine a low-intensity
linear-polarized signal light pulse propagation in a lifetime-
broadened five-state cold atomic system under Raman
excitation with nonvanishing one- and two-photon detunings.
As an important departure from the conventional EIT
scheme used in [40, 41] where zero one-photon detuning is
required, the system is a Raman scheme with a large one-
photon detuning, which has the advantage of being broadly
tunable. We use the standard Fourier transform technique
and the method developed by Wu and Deng [9, 10] to
obtain two coupled NLS equations describing the envelopes
evolution of two polarization components of a signal field.
Under reasonable and realistic parameters conditions, we
demonstrate that the system can support the existence of
ultraslow temporal vector solitons, including bright–bright,
bright–dark, dark–bright and dark–dark vector solitons, and
the Manakov temporal vector solitons can be easily realized.

Our paper is organized as follows. In section 2,
we first describe the theoretical model and investigate the
dispersion properties of the system. In section 3, by taking
the reasonable and realistic approximate conditions, we derive
the system’s two coupled NLS equations describing the
envelopes evolution of two polarization components of a signal
field. In section 4, vector soliton solutions, including bright–
bright, bright–dark, dark–bright and dark–dark vector solitons
with ultraslow group velocity, are provided and the Manakov
temporal vector solitons in the system are also discussed. We
conclude with a brief summary in section 5.

2. Model and linearity solutions of the system

We consider a lifetime-broadened five-state atomic system,
whose two upper atomic sublevels are Zeeman split due to
the applied magnetic field interacting with three optical waves
C1, C2 and S, as depicted in figure 1, to study the formation of
temporal vector optical solitons with ultraslow group velocity.
C1 and C2 describe two strong continuous wave (CW) control

Figure 1. Energy level diagram and excitation scheme of the
lifetime-broadened five-state atomic system interacting with two
CW control fields C1 and C2 of the frequencies ωC1 and ωC2 and
the Rabi frequencies �C1 and �C2, respectively, and a weak,
linear-polarized signal field of the frequency ωS and the Rabi
frequency �S . The σ−(σ +) component of the weak signal field
couples to the energy levels |3〉 and |2〉(|3〉 and |4〉), while the
control field C1(C2) couples to |1〉 and |2〉(|4〉 and |5〉).
�S(�S + �) and �C1(�C2) are one- and two-photon detunings,
respectively. � = 2μBgB/h̄ is the Zeeman shift of the upper atomic
sublevel with B the applied magnetic field, μB the Bohr magneton
and g the gyromagnetic factor.

(This figure is in colour only in the electronic version)

fields, respectively, and S denotes a weak, linear-polarized
pulsed (pulse length of τ0 at the entrance of the medium)
signal field, having two orthogonally polarized components.
Two control fields with optical frequencies ωC1, ωC2 and Rabi
frequencies �C1,�C2 drive the transitions from |1〉 to |2〉 and
|4〉 to |5〉, respectively, while two polarization components of
the weak signal field with optical frequencies ωS and Rabi
frequency �S drive the transitions from |3〉 to |2〉 and |3〉 to
|4〉, respectively. It is worth pointing out that in our system the
one-photon detuning is large because the lifetime-broadened
five-state atomic system we study is under Raman excitation
which is very different from the conventional EIT scheme used
in [40, 41] where zero one-photon detuning is required. As we
show below, the introduction of a large one-photon detuning is
critical to parameter selections in demonstrating the formation
of ultraslow temporal vector optical solitons.

Suppose the electric fields of the weak pulsed signal field
and two strong CW control fields have the form of �ES =
�ES+ + �ES− = (�e+ES+ + �e−ES−) exp(−iωSt + ikSz) + c.c. and
�EC1(C2) = �eC1(C2)E(C1)C2 exp(−iωC1(C2)t + i�kC1(C2) · �r) + c.c.,
respectively. Here c.c. stands for complex conjugate, �e+ =
(�x + i�y)/

√
2 and �e− = (�x − i�y)/

√
2 are the unit vectors

of the σ + and σ− circular polarization components with the
envelopes E+ and E−, which drive the transitions |3〉 ↔ |4〉
and |3〉 ↔ |2〉, respectively. �eC1(�eC2) is the unit vector of
the control field with the envelopes EC1(EC2), which drives
the transitions |1〉 ↔ |2〉(|4〉 ↔ |5〉). It is obvious that the
five-state atomic system is composed of two Raman � schemes
which share the ground-state level |3〉 [10, 41–43]. Thus, under
electric-dipole and rotating-wave approximations, we have the
interaction Hamiltonian of the system in the interaction picture
as follows [38, 44, 45]:

Ĥint = −h̄�C1|1〉〈1| − h̄�S |2〉〈2| − h̄�C2|5〉〈5| − h̄(�S

−�)|4〉〈4| − h̄[�C1 ei�kC1·�r |2〉〈1| + �S1 eikSz|2〉〈3|
+ �S2 eikSz|4〉〈3| + �C2 ei�kC2·�r |4〉〈5| + H.c.], (1)

2



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 215504 L-G Si et al

where �S = ωS − ω23,�S − � and �C1 = ωS − ωC1 −
ω23,�C2 = ωS − ωC2 − ω53 are, respectively, one- and
two-photon detunings. �C1 = (�μ21 · �eC1)EC1/h̄,�C2 =
(�μ45 · �eC2)EC2/h̄,�S1 = (�μ23 · �e−)ES−/h̄, and �S2 =
(�μ43 · �e+)ES+/h̄ are Rabi frequencies with �μij being the
dipole moment for the relevant transitions |i〉 ↔ |j 〉. Here
ωjn = |εj − εn|/h̄ denoting the corresponding transition
frequencies with εj the energy of state |j 〉 and � = 2μBgB/h̄

the Zeeman shift of the upper atomic sublevel with B the
applied magnetic field, μB the Bohr magneton and g the
gyromagnetic factor.

In order to study the kinetics of such a five-level system,
we assume the state of the atomic system has the form of |	〉 =
C1(t) eikSz−i�kC1·�r |1〉 + C2(t) eikSz|2〉 + C3(t)|3〉 + C4(t) eikSz|4〉 +
C5(t) eikSz−i�kC2·�r |5〉 and substitute this wavefunction expression
into the Schrödinger equation ih̄∂|	〉/∂t = Ĥint|	〉 in the
interaction picture; then the evolution equations for the
probability amplitudes Cj(t) can be obtained:

∂C1

∂t
= i(�C1 + iγ1)C1 + i�∗

C1C2, (2a)

∂C2

∂t
= i(�S + iγ2)C2 + i�C1C1 + i�S1C3, (2b)

∂C4

∂t
= i(�S − � + iγ4)C4 + i�S2C3 + i�C2C5, (2c)

∂C5

∂t
= i(�C2 + iγ5)C5 + i�∗

C2C4, (2d)

In the above equations we add the population decay rate,
2γk (k = 1, 2, 4, 5), of the state |k〉 phenomenologically and
C3 can be decided by the relation

∑5
j=1 |Cj |2 = 1.

In our system, two control fields C1, C2 are strong CW
and the probe field S is weak signal wave. Consequently
the envelopes �EC1 and �EC2 are independent on the spacetime
variables z and t while the slowly-varying envelopes �ES1(z, t)

and �ES1(z, t) of two polarization components of the weak
signal field depend on the spacetime variables z and t. It is
noted that two continuous electromagnetic waves C1 and C2
are always on and, hence, under the slowly varying envelope
approximation the Rabi frequencies �C1 and �C2 are time- and
space-independent constants. And the equations of the Rabi
frequencies �S1 and �S2 for two polarization components of
the weak signal field can be readily derived from Maxwell’s
equations and they read as

∂�S1

∂z
+

1

c

∂�S1

∂t
= iκ23C2C

∗
3 , (3a)

∂�S2

∂z
+

1

c

∂�S2

∂t
= iκ43C4C

∗
3 , (3b)

where κ23(43) = NωS | �μ23(43) · �e−(+)|2/(2h̄ε0c) with N and
ε0 being the concentration and vacuum dielectric constant,
respectively.

To provide a clear picture of the interplay between
the group-velocity dispersion and nonlinear (self-phase
modulation, SPM, and cross-phase modulation, CPM) effects
of the atomic system interacting with two CW optical fields

and a pulsed signal field, we first investigate the dispersion
properties of the system. This requires a perturbation treatment
of the system response to the first order of two polarization
components �S1 and �S2 of the weak signal field S while
keeping all orders due to control fields �C1 and �C2. In
the following section, we demonstrate SPM and CPM effects
that are due to higher order �S1 and �S2 that are required
for balancing the group-velocity dispersion effect so that the
formation of ultraslow temporal vector optical solitons can
occur.

We assume that the signal field is weak compared with the
other two control fields and that all the atoms are in their ground
states before the signal field enters the medium at t = 0. With
the assumptions above, we can make the asymptotic expansion
Cj = ∑

k C
(k)
j , where C

(k)
j is the kth order part of Cj in terms

of ε. Within an adiabatic following framework it can be shown
that C

(0)
j = δj3 and C

(1)
3 = 0. Considering the first order of

ε and taking time Fourier transform of equations (2a), (2d),
(3a) and (3b)

C
(1)
j (t) = 1√

2π

∫ ∞

−∞
β

(1)
j (ω) e−iωt dω, j = 1, . . . , 5, (4a)

�k(t) = 1√
2π

∫ ∞

−∞
�k(ω) e−iωt dω, k = S1, S2, (4b)

with ω being the Fourier-transform variable, we have

β
(1)
1 = − �∗

C1

D1(ω)
�S1, (5a)

β
(1)
2 = ω + �C1 + iγ1

D1(ω)
�S1, (5b)

β
(1)
4 = ω + �C2 + iγ5

D2(ω)
�S2, (5c)

β
(1)

5 = − �∗
C2

D2(ω)
�S2 (5d)

and

∂�S1

∂z
− i

ω

c
�S1 = iκ23β

(1)
2 , (6a)

∂�S2

∂z
− i

ω

c
�S2 = iκ43β

(1)
4 , (6b)

where D1(ω) = |�C1|2 − (ω + �C1 + iγ1)(ω + �S + iγ2) and
D2(ω) = |�C2|2 − (ω + �C2 + iγ5)(ω + �S − � + iγ4).

Equations (6a) and (6b) can be solved analytically by
using equations (5b) and (5c), yielding

�S1(z, ω) = �S1(0, ω) exp[iK1(ω)z], (7a)

�S2(z, ω) = �S2(0, ω) exp[iK2(ω)z], (7b)

where the propagation constants K1(ω) and K2(ω),
corresponding to σ− and σ + components of the signal field,
respectively, are denoted by

K1(ω) = ω

c
+ κ23

ω + �C1 + iγ1

D1(ω)

= K1 + K ′
1ω + K ′′

1 ω2 + · · · , (8a)

3
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Figure 2. Absorption coefficients α1 versus dimensionless Rabi
frequency |�C1|/γ1 for several different values of the two-photon
detuning �C1. The other parameters are 2γ1 
 4.0 × 103 s−1,
γ2 
 104γ1, κ23 
 1.0 × 109(cm · s)−1 and �S 
 1.0 × 107 s−1.

K2(ω) = ω

c
+ κ43

ω + �C2 + iγ5

D2(ω)

= K2 + K ′
2ω + K ′′

2 ω2 + · · · , (8b)

where K1(2) = K1(2)(0),K ′
1(2) = dK1(2)(ω)/dω|ω=0,K

′′
1(2) =

2d2K1(2)(ω)/dω2|ω=0, which have clear physical signification.
K1(2) = φ1(2) + iα1(2)/2 describes the phase shift φ1(2) per unit
length and absorption coefficient α1(2) (see figures 2 and 3) of
the σ−(σ +) component of the signal field. K ′

1(2) = 1/Vg1(g2)

gives the propagation group velocity, and K ′′
1(2) represents the

group-velocity dispersion that contributes to the pulse’s shape
change and additional loss of field intensity. It should be
emphasized that the vector optical soliton pairs produced in
this way generally travel with, respectively, a group velocity
given by Vg1 = 1/K ′

1 and Vg2 = 1/K ′
2(see figures 4 and 5).

Figures 2 and 3 illustrate, respectively, the absorption
coefficients α1 = 2Im(K1) and α2 = 2Im(K2) of the σ− and
σ + components of the signal field versus the dimensionless
Rabi frequencies |�C1|/γ1 and |�C2|/γ5 for several different
values of two-photon detunings �C1 and �C2. In these two
figures, the corresponding parameters are chosen as 2γ1 ≈
2γ5 
 4.0×103 s−1, γ4 ≈ γ2, γ2 
 104γ1, κ23 ≈ κ43 
 1.0×
109 (cm · s)−1,�S 
 1.0 × 107 s−1 and � 
 2.0 × 106 s−1.
These two figures clearly demonstrate that the absorptions
of two polarization components of the weak signal field are
affected by the intensities of the control fields and the two-
photon detunings. We see that there exist parameter regimes
with small absorption coefficients α1(2), which means that the
absorption of the signal field is almost completely suppressed
in this five-level Raman system. As we demonstrate below, a
reasonable and realistic set of parameters can be surely found,
which satisfy that α1(2) ≈ 0.

The purpose of our paper is to search for the formation
of ultraslow temporal vector optical solitons which are
evolved from two polarization components of the signal
field. Therefore, we need to systematically keep terms up
to ω2 in equations (8a) and (8b). For a Gaussian input of
the σ− component of the signal field, namely, �S1(0, t) =
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Figure 3. Absorption coefficients α2 versus dimensionless Rabi
frequency |�C2|/γ5 for several different values of the two-photon
detuning �C2. The parameter values are γ5 ≈ γ1, γ4 ≈ γ2, κ43 ≈ κ23

and � 
 2.0 × 106 s−1.
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Figure 4. The relative group velocity Vg1/c versus dimensionless
Rabi frequency |�C1|/γ1 for several different values of the
two-photon detuning �C1. The other parameters are the same as in
figure 2 except the one-photon detuning �S 
 −1.0 × 109 s−1.

�S1(0, 0) exp
(−t2

/
τ0

2
)
, we obtain from equation (7a) after

carrying out the inverse Fourier transformation

�S1(z, t) = �S1(0, 0)√
b1(z) − ib2(z)

× exp

[
izK1 − (zK ′

1 − t)2

[b1(z) − ib2(z)]τ0
2

]
, (9)

where b1(z) = 1 + 4z Re(K ′′
1 )

/
τ0

2 and b2(z) =
4z Im(K ′′

1 )
/
τ0

2. A similar analytical expression for �S2(z, t)

can also be obtained if the initial condition of the σ + component
of the signal field is a Gaussian pulse. From equation (9),
we clearly see that the linear and quadratic dispersion effects
contribute to the pulse attenuation, phase shift, group velocity
and propagation-dependent pulse spreading. In this case, it
would be possible to generate ultraslow temporal vector optical
solitons in the lifetime-broadened five-state atomic system
under Raman excitation only if we search for an effective
remedy to balance the rapid increase in pulse width. This
is the main objective of the following section where two

4



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 215504 L-G Si et al

2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

0

2

4

6

8
x 10

|Ω
C2

|/γ
5

V g
2

/c

 

 

Δ
C2

=500γ
5

Δ
C2

=1000γ
5

Δ
C2

=1500γ
5

Figure 5. The relative group velocity Vg2/c versus dimensionless
Rabi frequency |�C2|/γ5 for several different values of the
two-photon detuning �C2. The other parameters are the same as in
figure 3 except the one-photon detuning �S 
 −1.0 × 109 s−1.

coupled NLS equations describing the envelopes evolution
of two polarization components of the signal field are derived
and the SPM and CPM effects are investigated for balancing
the group-velocity dispersion.

3. Two coupled NLS equations

In this section we will investigate the nonlinear evolution
of two polarization components of the signal field. In the
following we show that a reasonable and realistic set of
parameters can be found, the SPM and CPM effects of two
components of the signal field can balance the group-velocity
dispersion and lead to the formation of ultraslow temporal
vector optical solitons in the lifetime-broadened five-state
atomic system under Raman excitation.

As a first step in getting a quantitative description for the
formation and dynamics of ultraslow temporal vector optical
solitons, we now derive the nonlinear envelope equations
describing the evolution of two polarization components
of the signal field by using the method developed by
[2, 3, 5, 9–11]. Taking a trial function �S1(S2)(z, ω) =
�1(2)(z, ω) exp[izK1(2)] and substituting them into the wave
equations

∂

∂z
�S1(z, ω) = iK1(ω)�S1(z, ω), (10a)

∂

∂z
�S2(z, ω) = iK2(ω)�S2(z, ω), (10b)

we then obtain

∂�1(z, ω)

∂z
eizK1 = i(K ′

1ω + K ′′
1 ω2)�1(z, ω) eizK1 , (11a)

∂�2(z, ω)

∂z
eizK2 = i(K ′

2ω + K ′′
2 ω2)�2(z, ω) eizK2 . (11b)

Here we only keep terms up to order ω2 in expanding the
propagation constants K1(ω) and K2(ω). In order to balance

the interplay between group-velocity dispersion and nonlinear
effect, it is necessary for us to consider the terms of nonlinear
polarization on the right-hand sides of equations (3a) and (3b),
namely,

iκ23C2C
∗
3 ≈ iκ23C

(1)
2

[
C

(0)
3

]∗
+ iNLT1, (12a)

iκ43C4C
∗
3 ≈ iκ43C

(1)
4

[
C

(0)
3

]∗
+ iNLT2, (12b)

where the nonlinear terms NLT1 and NLT2 are, respectively,
given by NLT1 = −κ23C

(1)
2

[∣∣C(1)
1

∣∣2
+
∣∣C(1)

2

∣∣2
+
∣∣C(1)

4

∣∣2
+
∣∣C(1)

5

∣∣2]
and NLT2 = −κ43C

(1)
4

[∣∣C(1)
1

∣∣2
+

∣∣C(1)
2

∣∣2
+

∣∣C(1)
4

∣∣2
+

∣∣C(1)

5

∣∣2]
.

With the help of the explicit expressions C
(1)
j (j = 1, 2, 4, 5),

we can immediately obtain from equations (5a)–(5d) by
setting ω = 0 and replacing β

(1)
j , �S1(S2) with β

(1)
j and �S1(S2),

respectively

C
(1)
1 = −�∗

C1

D1
�S1, C

(1)
2 = �C1 + iγ1

D1
�S1, (13a)

C
(1)

5 = −�∗
C2

D2
�S2, C

(1)
4 = �C2 + iγ5

D2
�S2, (13b)

with D1 = |�C1|2 − (�C1 + iγ1)(�S + iγ2) and D2 =
|�C2|2 − (�C2 + iγ5)(�S − � + iγ4).

With the nonlinear polarization terms (12a) and (12b),
we now turn to the investigation of the nonlinear effect of the
system. Performing the inverse Fourier transformation for the
above evolution equations (11a) and (11b)

�k(z, t) = 1√
2π

∫ ∞

−∞
�k(z, ω) e−iωt dω, k = 1, 2,

(14)

we can straightforwardly obtain the following nonlinear
evolution equations, namely, two coupled NLS equations for
the slowly varying envelopes �1(z, t) and �2(z, t),

i

(
∂

∂z
+

1

Vg1

∂

∂t

)
�1(z, t) − K ′′

1
∂2

∂t2
�1(z, t)

= [U11 e−α1z|�1(z, t)|2 + U12 e−α2z|�2(z, t)|2]�1(z, t),

(15a)

i

(
∂

∂z
+

1

Vg2

∂

∂t

)
�2(z, t) − K ′′

2
∂2

∂t2
�2(z, t)

= [U21 e−α1z|�1(z, t)|2 + U22 e−α2z|�2(z, t)|2]�2(z, t),

(15b)

with α1 = 2Im(K1) and α2 = 2Im(K2) being the absorption
coefficients, Vg1 = 1/K ′

1 and Vg2 = 1/K ′
2 being the

group velocities, K ′′
1 and K ′′

2 characterizing the group-velocity
dispersion, U11 and U22 characterizing the SPM, and U12 and
U21 characterizing the CPM of the σ− and σ + components
of the signal field, respectively. The expressions of these
corresponding coefficients are shown in the appendix.

We define δ = (1/Vg1 − 1/Vg2)/2, 1/Vg = (1/Vg1 +
1/Vg2)/2, ξ = z and τ = t − z/Vg , according to ∂/∂z ∼
∂/∂ξ − ∂/(Vg∂τ) and ∂/∂t ∼ ∂/∂τ , the nonlinear evolution
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equations of equations (15a) and (15b) can be simplified as

i

(
∂

∂ξ
+ δ

∂

∂τ

)
�1 − K ′′

1
∂2

∂τ 2
�1

= (U11 e−α1ξ |�1|2 + U12 e−α2ξ |�2|2)�1, (16a)

i

(
∂

∂ξ
− δ

∂

∂τ

)
�2 − K ′′

2
∂2

∂τ 2
�2

= (U22 e−α2ξ |�2|2 + U21 e−α1ξ |�1|2)�2. (16b)

The two coupled NLS equations (16a) and (16b) generally
have complex coefficients and hence do not allow soliton
solutions. However, as we show below, the absorption of the
signal field is largely suppressed by adjusting the intensities of
the control fields and the one- and two-photon detunings. If
we can choose a reasonable and realistic set of parameters for
the present system so that the imaginary parts of the complex
coefficients are much smaller than the corresponding real parts,
i.e., α1 ≈ α2 ≈ 0,K ′′

n = K ′′
n,r + iK ′′

n,i ≈ K ′′
n,r (n = 1, 2),and

U ′′
lm = U ′′

lm,r + iU ′′
lm,i ≈ U ′′

lm,r (l, m = 1, 2). In this situation
equations (16a) and (16b) can be written in the dimensionless
form

i
∂u

∂s
+ iGδ

∂u

∂σ
− G1

∂2u

∂σ 2
− (G11|u|2 + G12|v|2)u = 0, (17a)

i
∂v

∂s
− iGδ

∂v

∂σ
− G2

∂2v

∂σ 2
− (G22|v|2 + G21|u|2)v = 0, (17b)

which admit solutions describing various vector solitons [1, 19,
37, 46–49], including bright–bright, bright–dark, dark–bright
and dark–dark vector solitons, as will be seen in the following
section. Here s = ξ/LD, σ = τ/τ0, u = �1/U0, v =
�2/U0,Gδ = sgn(δ)LD/Lδ,Gn = K ′′

n,r/|K ′′
2,r |(n = 1, 2)

and Glm = Ulm,r/|U22,r |(l,m = 1, 2) with τ0 being the
characteristic pulse length of the signal field. U0 =
|K ′′

2,r/U22,r |1/2/τ0 is the typical Rabi frequency of the signal
field. LD = τ0

2/|K ′′
2,r | is the characteristic dispersion length.

LN = 1/(|U22,r |U0
2) is the characteristic nonlinear length.

And Lδ = τ0/|δ| is the characteristic group velocity mismatch
length of the system. Besides, we have set LD = LN , which
means the balance between the group-velocity dispersion and
nonlinearity effects in our system, to obtain soliton solutions
from equations (17a) and (17b).

4. Vector soliton solutions and Manakov equations

Based on the analysis above, we find that equations (17a) and
(17b) are nearly integrable, the SPM and CPM coefficients in
equations (15a) and (15b) defined by equations (A.4a), (A.4b),
(A.5a) and (A.5b) satisfy the relation U11U22 = U12U21, i.e.,
G11G22 = G12G21, which represents the balance between
the dispersion and the SPM and CPM effects, and hence
shape-preserving temporal vector optical soliton solutions are
possible that can propagate for an extended distance without
significant deformation in the system.

When the parameters fulfil the condition G22G1 =
G12G2, we can easily obtain bright–bright, bright–dark,
dark–bright and dark–dark vector soliton solutions of
equations (17a) and (17b) as shown below.

(i) Bright–bright vector soliton solution.

u = C1sech(σ ) exp[i(F11σ + F12s)], (18a)

v = C2sech(σ ) exp[i(F21σ + F22s)], (18b)

where sech(σ ) is the hyperbolic secant function.
And we have defined F11 = Gδ/(2G1), F12 =
−G1 − Gδ

2
/
(4G1), F21 = −Gδ/(2G2), F22 = −G2 −

Gδ
2
/
(4G2) and C2 = [(

2G1 −G11C1
2
)/

G12
]1/2

with C1

being a free parameter.
(ii) Bright–dark vector soliton solution.

u = C1sech(σ ) exp[i(F11σ + F12s)], (19a)

v = C2tanh(σ ) exp[i(F21σ + F22s)], (19b)

where tanh(σ ) is the hyperbolic tangent function. And
we also have defined F11 = Gδ/(2G1), F12 = −F11Gδ −
G1(1 − F11

2) − G12C2
2, F21 = −Gδ/(2G2), F22 =

F21Gδ + G2F21
2 − G22C2

2 and C2 = [(G11C1
2 −

2G1)/G12]1/2 with C1 being a free parameter.
(iii) Dark–bright vector soliton solution.

u = C1tanh(σ ) exp[i(F11σ + F12s)], (20a)

v = C2sech(σ ) exp[i(F21σ + F22s)], (20b)

where F11 = Gδ/(2G1), F12 = −F11Gδ + G1F11
2 −

G11C1
2, F21 = −Gδ/(2G2), F22 = F21Gδ + G2

(
1 −

F21
2
) − G21C1

2 and C2 = [(
G11C1

2 + 2G1
)/

G12
]1/2

with C1 being a free parameter.
(iv) Dark–dark vector soliton solution.

u = C1tanh(σ ) exp[i(F11σ + F12s)], (21a)

v = C2tanh(σ ) exp[i(F21σ + F22s)], (21b)

where F11 = Gδ/(2G1), F12 = −F11Gδ + G1(2 +
F11

2), F21 = −Gδ/(2G2), F22 = F21Gδ + G2
(
2 + F21

2
)

and C2 = [−(
G11C1

2 + 2G1
)/

G12
]1/2

with C1 being
a free parameter. It is worth pointing out that all four
types of temporal vector optical soliton pairs described
by equations (18a), (18b), (19a), (19b), (20a), (20b),
(21a) and (21b) are allowed in our system and travel with
ultraslow group velocity Vg .

We now present numerical examples to demonstrate the
existence of ultraslow bright–bright and dark–dark vector
optical solitons described above in the atomic system studied
through equations (16a) and (16b). We consider a realistic
atomic system where the decay rates are 2γ1 ≈ 2γ5 ≈
4.0 × 103 s−1 and 2γ2 ≈ 2γ4 ≈ 4.0 × 107 s−1.

We first consider the case of ultraslow dark–dark vector
optical solitons. Taking κ23 ≈ κ43 = 1.0 × 109 (cm s)−1,

2�C1 ≈ 2�C2 = 2.0×108 s−1,�C1 ≈ �C2 ≈ 2.0×106 s−1,

�S ≈ −1.0 × 109 s−1 and � = 2.0 × 106 s−1, we
can obtain K1 ≈ 0.1667 + 0.0007i cm−1,K2 ≈ 0.1666 +
0.0007i cm−1,K ′

1 ≈ (6.950 + 0.044i) × 10−8 s cm−1,K ′
2 ≈

(6.946 + 0.044i) × 10−8 s cm−1,K ′′
1 ≈ (−5.765 + 0.061i) ×

10−15 s2 cm−1,K ′′
2 ≈ (−5.770 + 0.061i) × 10−15 s2 cm−1,

U11 ≈ (1.158 + 0.0048i) × 10−17 s2 cm−1, U22 ≈ (1.157 +
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0.0048i) × 10−17 s2 cm−1, U12 ≈ (1.157 + 0.0048i) ×
10−17 s2 cm−1, U21 ≈ (1.157 + 0.0048i) × 10−17 s2 cm−1,

Vg1/c ≈ 4.796 × 10−4, Vg2/c ≈ 4.800 × 10−4 and α1 ≈
α2 ≈ 0.0014 cm−1. Note that the imaginary parts of these
quantities are indeed much smaller than their relevant real
parts. With these quantities, we have LD = 0.624 cm
and Lδ = 1296.2 cm with τ0 = 6.0 × 10−8 s and
U0 = 3.723 × 108 s−1 and the dimensionless coefficients
read Gδ = 4.81 × 10−4,G1 = −0.999,G2 = −1 and
G11 ≈ G12 ≈ G21 ≈ G22 = 1, then the two coupled NLS
equations (17a) and (17b) are well characterized, and hence we
have demonstrated the existence of dark–dark vector optical
solitons that are evolved from two polarization components
of the weak signal field with nearly matched (see figures 4
and 5), ultraslow propagating velocities comparing with c in a
cold atomic medium.

For ultraslow bright–bright vector optical solitons we
adjust one-photon detuning �S ≈ 1.0 × 109 s−1 and Rabi
frequencies 2�C1 ≈ 2�C2 = 4.2 × 107 s−1 with all other
parameters given above unchanged. In this case we obtain
K1 ≈ −1.282 + 0.033i cm−1,K2 ≈ −1.289 + 0.034i cm−1,

K ′
1 ≈ (1.827 + 0.098i) × 10−7 s cm−1,K ′

2 ≈ (1.846 +
0.100i) × 10−7 s cm−1,K ′′

1 ≈ (−1.165 + 0.071i) ×
10−13 s2 cm−1,K ′′

2 ≈ (−1.179 + 0.072i) × 10−13 s2 cm−1,

U11 ≈ (−2.346 + 0.061i) × 10−16 s2 cm−1, U22 ≈ (−2.382 +
0.062i) × 10−16 s2 cm−1, U12 ≈ (−2.370 + 0.061i) ×
10−16 s2 cm−1, U21 ≈ (−2.358 + 0.061i) × 10−16 s2 cm−1,

Vg1/c ≈ 1.819×10−4, Vg2/c ≈ 1.800×10−4 and α1 ≈ α2 ≈
0.067 cm−1. Note that the imaginary parts of these quantities
are also indeed much smaller than their relevant real parts.
With these quantities, we have LD = 0.34 cm and Lδ =
105.7 cm with τ0 = 2.0 × 10−7 s and U0 = 1.112 × 108 s−1

and the dimensionless coefficients read Gδ = −0.003,G1 =
−0.989,G2 = −1 and G11 ≈ G12 ≈ G21 ≈ G22 = −1.
These parameters and results again show that the two coupled
NLS equations (17a) and (17b) are well characterized and that
the bright–bright vector optical solitons which are evolved
from two polarization components of the signal field with
nearly matched, ultraslow propagating velocities comparing
with c indeed can be formed in this atomic system.

It is worth noting that the above-described parameter
sets also lead to realize a temporal Manakov system, which
is completely integrable and can be determined by Hirota’s
method [49, 50]. In fact, with the quantities obtained in the
case of ultraslow bright–bright vector optical solitons, two
coupled NLS equations (17a) and (17b) can be written as the
standard integrable Manakov equations,

i
∂

∂s
u +

∂2

∂σ 2
u + (|u|2 + |v|2)u = 0, (22a)

i
∂

∂s
v +

∂2

∂σ 2
v + (|v|2 + |u|2)v = 0, (22b)

which admits of exact N-soliton solutions [50]. And the
bright–bright vector soliton solutions of equations (22a) and
(22b) are given by

u =
√

2 cos(θ) sech(σ ) eis , (23a)

v =
√

2 sin(θ) sech(σ ) eis , (23b)

where θ is a free parameter. Here we have θ = π/4 due to
the fact that the injected signal field is linearly polarized and
two polarization components have equal amplitudes. Thus,
we have demonstrated the existence of the Manakov temporal
vector solitons with ultraslow group velocity (Vg ∼ 10−4c)

in a lifetime-broadened five-state atomic system under Raman
excitation.

In addition, we point out that the general solutions of
two coupled NLS equations (17a) and (17b) which govern
the propagation of two pules with same frequency but
belonging to two different polarizations not only include one-
soliton solutions (18a)–(21b), but depending on the choice
of corresponding parameters such as the Rabi frequencies of
the control fields, one- and two-photon detunings, they also
exhibit different types of soliton solutions [49]. For instance,
by adjusting the parameters, the dark–bright vector soliton
may experience a breakup into another dark–bright soliton
and an oscillating soliton, and even its reverse process, the
fusion of a dark–bright vector soliton and an oscillating soliton
into another dark–bright vector soliton, is also possible. This
provides the possibility of the promising applications for the
design of new types of all-optical switches and logic gates
[18, 49].

5. Conclusions

In conclusion, we have analysed nonlinear dynamics of a weak,
linear-polarized pulsed signal field, having two orthogonally
polarized components, in a lifetime-broadened five-state
atomic system under Raman excitation. In the presence of two
coherent driving control fields, the linear as well as nonlinear
dispersion are dramatically enhanced while simultaneously
the absorptions of two polarization components of the signal
field are suppressed in the medium. We have derived
the corresponding nonlinear evolution equations, i.e., two
coupled nonlinear Schrödinger equations, and have shown
that the dispersion and the SPM and CPM effects can achieve
perfect balance, and there are parameter regimes in which
the temporal vector solitons, including bright–bright, bright–
dark, dark–bright and dark–dark vector solitons with ultraslow
group velocity, can propagate through the medium of cold
atom. Besides, the ultraslow Manakov temporal vector optical
solitons can be easily realized in the system by adjusting the
corresponding parameters such as the Rabi frequencies of the
control fields, one- and two-photon detunings. We also discuss
the unique features of the two coupled NLS equations. The
Raman scheme described may lead to other new phenomena
that manifest themselves under well-controlled balance of
dispersion and nonlinear effects. These include, but are
not limited to, simultaneous formation of multiple solitons
and soliton–soliton interactions in the ultraslow propagation
regime.
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Appendix

The explicit expressions of K1,K2,K
′
1,K

′
2,K

′′
1 ,K ′′

2 , U11,

U22, U12 and U21 are written as follows:

K1 = κ23(�C1 + iγ1)

D1
, K2 = κ43(�C2 + iγ5)

D2
, (A.1)

K ′
1 = 1

c
+ κ23

|�C1|2 + (�C1 + iγ1)
2

D1
2 , (A.2a)

K ′
2 = 1

c
+ κ43

|�C2|2 + (�C2 + iγ5)
2

D2
2 , (A.2b)

K ′′
1 = κ23[2|�C1|2(�C1 + iγ1) + (�C1 + iγ1)

3

+ |�C1|2(�S + iγ2)] ÷ D1
3, (A.3a)

K ′′
2 = κ43[2|�C2|2(�C2 + iγ5) + (�C2 + iγ5)

3

+ |�C2|2(�S − � + iγ4)] ÷ D2
3, (A.3b)

U11 = κ23(�C1 + iγ1)(|�C1|2 + �C1
2 + γ1

2)

D1|D1|2 , (A.4a)

U22 = κ43(�C2 + iγ5)(|�C2|2 + �C2
2 + γ5

2)

D2|D2|2 , (A.4b)

U12 = κ23(�C1 + iγ1)(|�C2|2 + �C2
2 + γ5

2)

D1|D2|2 , (A.5a)

U21 = κ43(�C2 + iγ5)(|�C1|2 + �C1
2 + γ1

2)

D2|D1|2 , (A.5b)

with D1 = |�C1|2 − (�C1 + iγ1)(�S + iγ2) and D2 =
|�C2|2 − (�C2 + iγ5)(�S − � + iγ4).
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