
11

&

www.ietdl.org
Published in IET Control Theory and Applications
Received on 13th September 2008
Revised on 12th August 2009
doi: 10.1049/iet-cta.2008.0415

ISSN 1751-8644

Delay-dependent robust H11111 control of
time-delay systems
M. Sun1 Y. Jia2

1Department of Automation and Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004 Hebei,
People’s Republic of China
2Department of Systems and Control, Beihang University, Beijing 100083, People’s Republic of China
E-mail: sun7661@126.com

Abstract: In this study, a delay-dependent H1 performance criterion that possess decoupling structure is derived for a
class of time-delay systems. It is then extended to H1 state-feedback synthesis for time-delay systems with polytopic
uncertainty and multichannel H1 dynamic output-feedback synthesis for time-delay systems. All the conditions are
given in terms of the linear matrix inequalities. In some previous descriptor methods, the products of controller
matrices and Lyapunov matrices are completely separated in performance analysis, whereas it is not the case in
controller synthesis. However, with the method in the paper, the weakness is eliminated. Numerical examples
illustrate the effectiveness of our solutions as compared to results obtained by other methods.
1 Introduction
Application of a single Lyapunov function to the analysis and
design is investigated for systems with polytopic uncertainty
and multichannel constraints [1]. The strict requirement of a
single Lyapunov function for all admissible uncertainties and
all multichannel constraints can lead to conservative results.
To reduce the conservativeness, researchers turn to using
parameter-dependent Lyapunov functions and have obtained
many results [2–7]. Among these works, an effective idea is
to separate the products of Lyapunov matrices and controller
matrices in the given LMIs by introducing auxiliary slack
variables. A breakthrough towards this direction is the work
for discrete systems in [2] that is extended to continuous time
case in [3–7] by different methods. However, time delay is
not considered in the above references. Time delay is a source
of instability in many cases. Therefore the stability and
performance analysis for time-delay systems are of theoretical
and practical importance [8–12]. Static output-feedback
control problems are investigated in [11, 12]. However, time-
delay systems considered are with norm-bounded uncertainty
but not with polytopic uncertainty. Although stability and
stabilisability conditions with parameter-dependent Lyapunov
variables for time-delay system are presented in [13, 14].
These works are restricted to state-feedback and static output-
feedback control, which are easier to solve than dynamic
22
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output-feedback control. In some situations, there is a strong
need to construct a dynamic output-feedback controller
instead of a static one in order to obtain a better performance
and dynamical behaviour of the state response. The dynamic
output-feedback control is considered in [15]; however, the
multichannel H1 output-feedback synthesis still remains an
open problem and the products of controller matrices and
Lyapunov matrices are not completely separated in [15], and
this motivates the present paper.

In this paper, we solve dynamic output-feedback H1

controller design problems for time-delay systems. We
present new delay-dependent H1 performance conditions
based on the Lyapunov method. Then we derive the H1

performance criterion, which decouples controller matrices
and Lyapunov matrices. It can reduce conservatism inherent
in the conventional method in solving both robust control
problems of polytopic systems and multichannel synthesis
problems by providing a parameter-dependent Lyapunov
function. Then we design a robust H1 state-feedback
controller for polytopic systems and a dynamic H1 output-
feedback controller for systems with multichannel constraints.
The advantages of the results over the conventional methods
are shown by two numerical examples. For simplification, we
use the symbol Sym{.} to denote Sym{X } =def

X + X T, the
symbol ∗ to denote the symmetric part.
IET Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1122–1130
doi: 10.1049/iet-cta.2008.0415



IE
do

www.ietdl.org
2 H1 performance analysis
Consider the following time-delay system

ẋ(t) = Ax(t) + Ad x(t − h) + Bw(t)

z(t) = Cx(t) + Dw(t)

x(t) = 0, ∀t [ [−h, 0]

(1)

where, x(t) [ Rn is the state, w(t) [ Rnw is the disturbance
signal of finite energy in the space L2[0, 1), z(t) [ Rnz is the
exogenous output signal, and A, B, Ad , C, D are constant
matrices of appropriate dimensions. The time-delay h . 0
is assumed to be known. For a prescribed scalar g . 0, we
define the performance index

J (w) =
∫1

0

(zTz − g2wTw) dt (2)

Lemma 1 [16]: For any 2n × 2n symmetric and positive-
definite matrix R . 0 and matrix M, the following inequality
holds

−2

∫t

t−h

bT(a)a (a)da≤
∫t

t−h

a(a)
b(a)

[ ]T
R RM
∗ (2, 2)

[ ]
a(a)
b(a)

[ ]
da

for a(a) [ R2n, b(a) [ R2n given for s [ [t − h, t]. Here
(2, 2)= (MTR+ I )R−1(RM + I ).

Lemma 2 [13]: Let f, a and b be given matrices of
appropriate dimension. Then the two statements are equivalent:

(i) f, a and b satisfy f , 0 and f+ abT + baT
, 0.

(ii) f, a and b are such as the following LMI is feasible in the
variable G.

f a + bGT

∗ −G − GT

[ ]
= f a

∗ 0

[ ]
+ Sym

0
I

[ ]
G bT −I
[ ]{ }

, 0
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We first provide delay-dependent H1 performance
conditions for the time-delay system (1).

Theorem 1: For prescribed positive scalars g . 0, h . 0
and scalar l, system (1) is stable and the cost function (2)
achieves J(w) , 0 for all non-zero w [ L2[0, 1), if there
exist symmetric and positive-definite matrices P . 0,
S . 0, R1 . 0, R3 . 0 and a matrix R2 such that (see (3))

where (1, 1) = Sym{P(A + Ad + lAd )} + S, (1, 3) = h(A+
(1 + l)Ad )TAT

d R3.

The proof can be referred to in the appendix, and hence is
omitted here.

Corollary 1: For prescribed positive scalars g . 0, h . 0
and scalar l, system (1) is stable and the cost function (2)
achieves J(w) , 0 for all non-zero w [ L2[0, 1), if there
exist symmetric and positive-definite matrices Q . 0,
�S . 0, �R1 . 0, �R3 . 0 and a matrix �R2 such that (see (4))

where

(1, 1) = Sym{(A + Ad + lAd )Q}

(1, 3) = hQ(A + (1 + l)Ad )TAT
d

Proof: Pre- and post-multiplying both sides of the LMI (3)
by diag{Q, �S, �R3, I , I , �R3, �R3}, denoting Q = P−1,
�S = S−1, �R1 = R−1

3 R1R−1
3 , �R2 = R−1

3 R2R−1
3 , �R3 = R−1

3 ,
making a series of congruence transformations and
following the Schur complement Lemma, then we can
obtain Corollary 1 immediately. A

3 H1 state-feedback synthesis
In this section, the results developed in the previous section
are extended to the state-feedback synthesis problem for
(1, 1) −lPAd (1, 3) PB CT h(l+ 1)P h(l+ 1)P

∗ −S −lhAT
d AT

d R3 0 0 0 0
∗ ∗ −hR3 hR3Ad B 0 0 h2(l+ 1)R3Ad

∗ ∗ ∗ −g2I DT 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −hR1 −hR2

∗ ∗ ∗ ∗ ∗ ∗ −hR3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (3)

(1, 1) −lAd
�S (1, 3) B QCT h(l+ 1)�R3 h(l+ 1)�R3 Q

∗ −�S −lh�SAT
d AT

d 0 0 0 0 0
∗ ∗ −h�R3 hAd B 0 0 h2(l+ 1)Ad

�R3 0

∗ ∗ ∗ −g2I DT 0 0 0
∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ −h�R1 −h�R2 0
∗ ∗ ∗ ∗ ∗ ∗ −h�R3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −�S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (4)
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time-delay systems. Consider the following system

ẋ(t) = Ax(t) + Ad x(t − h) + B1w(t) + B2u(t)

z(t) = Cx(t) + D11w(t) + D12u(t)
(5)

where u(t) [ Rnu and the other signals are the same with
system (1), D12 is constant matrix of appropriate dimension.

We seek a state-feedback control law

u(t) = Kx(t) (6)

that will asymptotically stabilise the system and achieve
J (w) , 0 for all non-zero w [ L2[0, 1).

Applying the state-feedback control law (6) to system (5),
we can obtain the closed-loop system

ẋc(t) = Acxc(t) + Ad xc(t − h) + B1w(t)

zc(t) = Ccxc(t) + D11w(t)
(7)

where

Ac = A + B2K , Cc = C + D12K (8)

Then we present the following delay-dependent condition
under which there exists a state-feedback H1 controller for
system (7).

Theorem 2: For prescribed positive scalars g . 0, h . 0,
1 . 0 and scalar l, there exists a state-feedback controller such
that the closed-loop system (7) is asymptotically stable and the
cost function achieves J(w) , 0 for all non-zero w [ L2[0, 1)
if there exist symmetric and positive-definite matrices Q . 0,
S . 0, �R1 . 0, �R3 . 0 and matrix �R2, V, U such that (see (9))

where

(1, 6) = (1, 7) = h(l+ 1)R3

(1, 9) = Q + (A + Ad + lAd )V + 1

2
1V + B2U

(3, 7) = h2(l+ 1)Ad
�R3

(3, 9) = hAd (A + Ad + lAd )V + hAd B2U

If the above condition holds, a desired state-feedback
controller can be given by u(t) = UV −1x(t).
24
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The proof can be referred to in the appendix, and hence is
omitted here.

Remark 1: The descriptor system method is applied in [15].
From [15, Theorem 2.1], we can see that the products of
system matrices and Lyapunov matrices are completely
separated. However, from [15, Theorem 3.1], we can see
that the controller matrix is coupled with a symmetric and
positive-definite matrix Q1. Therefore, with the method in
[15], the products of controller matrices and Lyapunov
matrices are completely separated in performance analysis
while it is not the case in controller synthesis. However,
with our method, the weakness is eliminated. Therefore it
is expected to obtain less conservative results.

The LMI in Theorem 2 is affine in the system matrices.
It can thus be applied also to the case where these matrices
are uncertain and are known to reside within a given
polytope. Consider system (5) and denote

V = A B1 B2 Ad

C D11 D12

[ ]

we assume that V [ Co{Vi, i = 1, . . . , N }, namely
V =

∑N
j=1 fjVj for some 0 ≤ fj ≤ 1,

∑N
j=1 fj = 1, where

the N vertices of the polytope are described by

Vi =
Ai B1i B2i Adi

Ci D11i D12i

[ ]

We obtain the following corollary.

Corollary 2: Consider system (5), where the system
matrices reside within the polytope V. For a prescribed
g . 0, the state-feedback law of (6) achieves, J(w) , 0 for
all non-zero w [ L2[0, 1) and for all the matrices in V if
for prescribed scalars 1 . 0, l, there exist symmetric and
positive-definite matrices Qi . 0, �Si . 0, �R1i . 0, �R3i . 0
and matrices �R2i , V, U that satisfy LMIs (9) for
i = 1, . . . , N , where the matrices

Ai, Adi, B1i, B2i, Ci, D11i, D12i, Qi, �Si, �R1i, �R2i, �R3i

are taken with the index i. The state-feedback gain is then
given by K = UV −1.
−1Q −lAd
�S 0 B 0 (1, 6) (1, 7) 0 (1, 9)

∗ −�S −lh�SAT
d AT

d 0 0 0 0 0 0
∗ ∗ −h�R3 hAd B 0 0 (3, 7) 0 (3, 9)

∗ ∗ ∗ −g2I DT
11 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0 CV + D12U
∗ ∗ ∗ ∗ ∗ −h�R1 −h�R2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −h�R3 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −�S V
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −V − V T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (9)
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Example 1: We consider the following time-delay system

ẋ(t) = Ax(t) + Ad x(t − h) + B1w(t) + B2u(t)

z(t) = Cx(t) + D12u(t)
(10)

where

A =
0 e

f 0.8

[ ]
, Ad =

0.1 0.02

0.03 0.1

[ ]
,

B1 =
0

0.2

[ ]
, B2 =

1

1

[ ]
, C = 1 0

[ ]
, D12 = 1 (11)

where 0 ≤ e ≤ 0.1, −0.5 ≤ f ≤ −0.4, therefore, the plant
can be described as a polytope with four vertices. Our goal
is to find a state-feedback gain K minimising the worst case
H1 cost for all possible values of the parameters e and f.

From [15, Theorem 3.1], for h ¼ 0.5, a minimum value of
g ¼ 1.8069 is obtained with a corresponding state-feedback
gain of K = 8.3629 −9.8057

[ ]
× 104. For g ¼ 3, the

gain of K = 398.5485 −475.2630
[ ]

is obtained.

Applying Corollary 2 in this paper, we obtain, for the
same h and for l ¼ 20.1, 1 ¼ 100, a minimum g of
1.7698 with corresponding state-feedback gain of K =
[ 381.5342 −446.1074 ]. For g ¼ 3, the gain of K =
[ 175.0746 −210.5423 ] is obtained.

It can be seen that the method in this paper achieves
improvement of the H1 upper bounds. It also shows that
the method in this paper arrives at much lower gain than
that of the method in [15]. Therefore the method in this
paper is less conservative.

4 H1 output-feedback synthesis
In this section, we use the criterion derived above to provide a
new more accurate method for output-feedback controller
synthesis with multichannel constraints. Let us consider the
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1122–1130
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following time-delay system

ẋ(t) = Ax(t) + Ad x(t − h) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)

y(t) = C2x(t) + D21w(t)

(12)

where y(t) [ Rny is the measured output signal and the other
signals are the same with system (5).

Denote the output-feedback controller by

˙̂x(t) = AK x̂(t) + BK y(t)

u(t) = CK x̂(t)
(13)

Applying the controller (13) to (12) will result in the
following closed-loop system

˙̂xc(t) = Acx̂c(t) + Adcx̂c(t − h) + B1cw(t)

ẑc(t) = Ccx̂c(t) + Dcw(t)
(14)

where

x̂c =
x

x̂

[ ]
, Ac =

A B2CK

BK C2 AK

[ ]
, Adc =

Ad 0

0 0

[ ]

B1c =
B1

BK D21

[ ]
, Cc = C1 D12CK

[ ]
, Dc = D11

(15)

Then we present a sufficient condition under which there
exists an output-feedback H1 controller of form (13) for
the closed-loop system (14).

Theorem 3: Define G = W T
11 U T

I V11

[ ]
. For prescribed

positive scalars g . 0, h . 0, 1 . 0 and scalar l, there exists
a dynamical output-feedback controller such that the closed-
loop system (14) is asymptotically stable and the cost function
achieves J(w) , 0 for all non-zero w [ L2[0, 1) if there
exist symmetric and positive-definite matrices T . 0, S . 0,

R = R1 R2

∗ R3

[ ]
. 0 and matrices V11, V21, W11, U, Â, B̂,

Ĉ such that the following LMI holds (see (16))
−1T (1, 2) (1, 3) 0 (1, 5) G

∗ (2, 2)

0 0
0 0

hAd B1 0
0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (2, 4)

−lAT
d −lAT

d V11

0 0
0 0
0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ 0

∗ ∗ −g2I DT
11

∗ −I

[ ]
0 BT

1 BT
1 V11 + DT

21B̂T

0 0

[ ]
0

∗ ∗ ∗ (4, 4) h(l+ 1)

I V11

0 V21

I V11

0 V21

⎡
⎢⎢⎣

⎤
⎥⎥⎦ 0

∗ ∗ ∗ ∗ −G− G
T 0

∗ ∗ ∗ ∗ ∗ (6, 6)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (16)
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where

(1, 2) = h
0 0 W T

11(A + (1 + l)Ad )TAT
d + Ĉ

T
BT

2 AT
d 0

0 0 (A + (1 + l)Ad )TAT
d 0

[ ]

(1, 3) = 0 W T
11CT

1 + Ĉ
T

DT
12

0 CT
1

[ ]

(see equation at the bottom of the page)

(2, 2) = −S
−lhAT

d AT
d 0

0 0

[ ]

∗ −2hI + hR3

⎡
⎢⎣

⎤
⎥⎦

(2, 4) =

0 0 0 0

0 0 0 0

0 0 h2(l+ 1)Ad 0

0 0 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(4, 4) =−h
R1 R2

∗ R3

[ ]
, (6, 6) =−

2I V11

∗ V21 + V T
21

[ ]
+ S

After we obtain the solution of the LMI (16), the
corresponding controller gain matrices AK , BK and CK can
be obtained by the following formulas

AK = V −T
21 (Â − V T

11(A + Ad + lAd )W11

− B̂C2W11 − V T
11B2Ĉ)W −1

21

BK = V −T
21 B̂, CK = ĈW −1

21

The proof can be referred to in the appendix, and hence is
omitted here.

Then we design an output-feedback controller with the
form (13), which meets a family of input–output
specifications. One such set of specifications is, for
instance, ‖L1Tzw(s)J1‖1 , g1, ‖L2Tzw(s)J2‖1 , g2.
Matrices Li , Ji are selection matrices that specify which
channel is involved in the corresponding constraint. With
each channel is associated an LMI constraint of the form
encountered in Theorem 3. The desired characterisation for
output-feedback synthesis with multichannel specifications
can be derived in the following three steps: (i) introduce
different Lyapunov variables Ti , Si, Ri for each channel; (ii)
introduce a variable V common to all channels; (iii)
perform adequate congruence transformations and use
linearising changes of variables to end up with LMI
synthesis condition.

Corollary 3: For prescribed positive scalars g . 0, h . 0,
1 . 0 and scalar l, there exists a dynamical output-
26
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feedback controller such that the closed-loop system (14) is
asymptotically stable and the cost function achieves
J(w) . 0 for all non-zero w [ L2[0, 1) if there exist
symmetric and positive-definite matrices Ti . 0, Si . 0,
Ri . 0 and matrices V11, V21, W11, U, Â, B̂, Ĉ satisfy the
LMI (16) for i = 1, . . . , N , where the matrices Ti, Si , Ri

are taken with the index i. If the above conditions hold, the
output-feedback gain can be obtained similarly from
Theorem 3.

Remark 2: In contrast with earlier results, a different
Lyapunov function is employed for each channel. Hence far
better results can generally be expected.

Example 2: Consider the system (12) with multichannel
constraints, where the system matrices are as follows

A =
0 1

−0.8 0.6

[ ]
, Ad =

0.1 0.02

0.03 0.1

[ ]
,

B1 =
0 0.2

0.5 0

[ ]
, B2 =

1

1

[ ]
C1 = 1 0

[ ]
, C2 = 1 1

[ ]
, D12 = 2, D11 = D21 = 0

Then we design an output-feedback controller with the form
(13) which meets ‖L1Tzw(s)J1‖1 , g1, ‖L2Tzw(s)J2‖1 , g2.

Let L1 = 2, L2 =−2, J1 =
0.8 1
−1 0.2

[ ]
, J2 =

0.6 0.8
0 1

[ ]
,

g1 = 2.

Applying Corollary 3 we obtain, for h ¼ 0.5, l ¼ 20.9,
1 ¼ 300, a minimum g2 of 1.3142. And we can obtain the
gain matrices of the dynamic output-feedback controller
(13) for system (12)

AK =
−2.6882 −2.5190

−2.7187 −2.5479

[ ]
×106, BK =

−5.3824

−5.4325

[ ]
×103

CK = 693.6611 683.7420
[ ]

Then we use the output feedback controller design method
derived directly from the LMI (3) without carrying out the
process similarly to the proof of Theorem 2 (we omit the
design process for simplification). Because it cannot
separate the Lyapunov matrices and controller matrices, it
should introduce the same Lyapunov function for each
channel. We can obtain the minimum of g2 is 2.0981.
And the corresponding gain matrices of the dynamic
output-feedback controller are as follows

AK =
−1.9870 −1.6742

−1.7365 −1.7590

[ ]
×107, BK =

−2.0871

−2.2245

[ ]
×104

CK = 879.4389 902.6732
[ ]
(1, 5) = T + W T
11(A + Ad + lAd )T + Ĉ

T
BT

2 Â
T

(A + Ad + lAd )T (A + Ad + lAd )TV11 + CT
2 B̂

T

[ ]
+ 1

2
1G
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It can be seen that the method in Corollary 3 achieves better
H1 upper bound and lower gain because it introduces a
different Lyapunov function for each channel.

5 Conclusions
A new H1 performance criterion is proposed based on LMI
approach for a class of time-delay systems with parameter-
dependent Lyapunov variables. It possesses a decoupling
structure which is then used to solve the multichannel
output-feedback control problems and synthesise the
polytopic uncertain systems. Unfortunately, the scalar 1 non-
linearly appears in the LMI conditions. Further results,
therefore, includes how to eliminate the non-linear
influence. Numerical results show that the proposed method
does provide a further improvement in reducing
conservativeness for time-delay systems with polytopic
uncertainty.
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8 Appendix
8.1 Proof of Theorem 1

Proof: Consider a Lyapunov–Krasovskii functional
candidate V (t) as follows

V (t) = V1(t) + V2(t) + V3(t) (17)

where

V1(t) = xT(t)Px(t)

V2(t) =
∫t

t−h

xT(a)Sx(a) da

V3(t) =
∫0

−h

∫t

t+u

ẋT(a)AT
d R3Ad ẋ(a) da du
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Note the following identity (Leibniz–Newton):�b

a
v̇(t) dt = v(b) − v(a). Then the time derivative of V (t)

along the solution of (1) is given by V̇ (t) = V̇ 1(t)
+V̇ 2(t) + V̇ 3(t), where

V̇ 1(t) = 2xT(t)P (A + Ad )x(t) − Ad

∫t

t−h

ẋ(a) da+ Bw(t)

[ ]

= 2xT(t)P(A + Ad )x(t) − 2

∫t

t−h

xT(t)PAd ẋ(a) da

+ 2xT(t)PBw(t)

V̇ 2(t) = xT(t)Sx(t) − xT(t − h)Sx(t − h)

V̇ 3(t) = −
∫t

t−h

ẋT(a)AT
d R3Ad ẋ(a) da+ hẋT(t)AT

d R3Ad ẋ(t)

Let

b = R3Ad ẋ(t), jT = xT(t) xT(t − h) bT
[ ]

R =
R1 R2

∗ R3

[ ]
. 0, d =

P 0 0

P 0 hAT
d

[ ]
.

In order to obtain an LMI we have to restrict ourselves to the
case of M ¼ lI in Lemma 1, where l , R is a scalar
parameter. And let a(a) = 0 AT

d

[ ]T
ẋ(a), b(a) = dj in

Lemma 1. By Lemma 1, we can obtain

− 2

∫t

t−h

xT(t)PAd ẋ(a) da

= −2

∫t

t−h

jTdT 0

Ad

[ ]
ẋ(a) da+ 2h

∫t

t−h

bTAd Ad ẋ(a) da

≤
∫t

t−h

ẋT(a) 0 AT
d

[ ]
R

0

Ad

[ ]
ẋ(a) da

+ 2l

∫t

t−h

jTdT 0

Ad

[ ]
ẋ(a) da

+ (l+ 1)2

∫t

t−h

jTdTR−1dj da

+ 2h

∫t

t−h

bTAd Ad ẋ(a) da

=
∫t

t−h

ẋT(a)AT
d R3Ad ẋ(a) da

+ 2l

∫t

t−h

xT(t)PAd ẋ(a) da
28
The Institution of Engineering and Technology 2010
+ 2(l+ 1)h

∫t

t−h

bTAd Ad ẋ(a) da

+ (l+ 1)2

∫t

t−h

jTdTR−1dj da

Note that

2(l+ 1)h

∫t

t−h

bTAd Ad ẋ(a) da+ hẋT(t)AT
d R3Ad ẋ(t)

= 2hbTAd (A + (1 + l)Ad )x(t) − 2lhbTAd Ad x(t − h)

− hbTR−1
3 b+ 2hbTAd Bw(t)

Then substituting
�t

t−h
ẋ(a) = x(t) − x(t − h) and

Ad x(t − h) = ẋ(t) − Ax(t) − Bw(t) into the above
equation, we obtain

dV (t)

dt
+ zT(t)z(t) − g2wT(t)w(t) = rTVr+ zT(t)z(t)

(18)

where

rT = jT wT(t)
[ ]

V=

C1 −lPAd h(A+Ad +lAd )TAT
d

∗ −S −hlAT
d AT

d

∗ ∗ −hR−1
3

⎡
⎢⎣

⎤
⎥⎦+V1

PB
0

hAd B

⎡
⎣

⎤
⎦

∗ −g2I

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

V1=h(l+1)2
dTR−1d

C1=Sym{P(A+Ad +lAd )}+S

Integrate (18) in t from 0 to 1. Because
V (0)=0,V (1)≥0 and

�1

0
zT(t)z(t)=

�1

0
(xT(t)CT+

wT(t)DT)(Cx(t)+Dw(t)). From Schur complement
Lemma, we can obtain that J(w), 0 (and V̇ ,0) if the
following LMI holds (see equation at the bottom of the
page)

Then we can obtain the LMI (3) by Schur complement
lemma. A
C1 −lPAd h(A + Ad + lAd )TAT
d PB CT h(l+ 1)P h(l+ 1)P

∗ −S −hlAT
d AT

d 0 0 0 0
∗ ∗ −hR−1

3 hAd B 0 0 h2(l+ 1)Ad

∗ ∗ ∗ −g2I DT 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −hR1 −hR2

∗ ∗ ∗ ∗ ∗ ∗ −hR3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0
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8.2 Proof of Theorem 2

Proof: Applying Corollary 1 to the closed-loop system (7),
we can obtain (see (19))

where
(1, 1) = Sym{(Ac + Ad + lAd )Q}

(1, 3) = hQ(Ac + (1 + l)Ad )TAT
d

It is obvious that there exists a positive scalar 1 such that the
following equation holds (see (20))

Note that the LMI (19) can be rewritten as

P+ abT + baT , 0 (21)

where

a = Q 0 0 0 0 0 0 0
[ ]T

b =
(Ac + Ad + lAd )T + 1

2 1I 0
[
h(Ac + Ad + lAd )TAT

d 0CT
c 00I

]T

Substitute (8) into (21) and define U = KV . From
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1122–1130
i: 10.1049/iet-cta.2008.0415
Lemma 2, we can obtain that the LMIs (20) and (21) are
equivalent to the LMI (9). A

8.3 Proof of Theorem 3

Proof: Apply Theorem 1 to the closed-loop system (14) and
carry out the process similar to the proof of Theorem 2, then
we can obtain (see (22))

where
(1, 3) = h(Ac + (1 + l)Adc)

TAT
dcR3

(1, 8) = P + (Ac + (1 + l)Adc)
TV + 1

2
1V

(3, 7) = h2(1 + l)R3Adc

Partition V and its inverse V −1 in the LMI (22) as

V = V11 V12

V21 V22

[ ]
, W = V −1 = W11 W12

W21 W22

[ ]
(23)

From VW ¼ I, define

F1 = W11 I
W21 0

[ ]
, F2 = I V11

0 V21

[ ]
(24)
(1, 1) −lAd
�S (1, 3) B QCT

c h(l+ 1)�R3 h(l+ 1)�R3 Q

∗ −�S −lh�SAT
d AT

d 0 0 0 0 0
∗ ∗ −h�R3 hAd B 0 0 h2(l+ 1)Ad

�R3 0

∗ ∗ ∗ −g2I DT
11 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ −h�R1 −h�R2 0
∗ ∗ ∗ ∗ ∗ ∗ −h�R3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −�S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (19)

P =

−1Q −lAd
�S 0 B 0 h(l+ 1)�R3 h(l+ 1)�R3 0

∗ −�S −lh�SAT
d AT

d 0 0 0 0 0
∗ ∗ −h�R3 hAd B 0 0 h2(l+ 1)Ad

�R3 0

∗ ∗ ∗ −g2I DT
11 0 0 0

∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ −h�R1 −h�R2 0
∗ ∗ ∗ ∗ ∗ ∗ −h�R3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −�S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (20)

−1P 0 (1, 3) 0 CT
c 0 0 (1, 8) I

∗ −S −lhAT
dcA

T
dcR3 0 0 0 0 −lAT

dcV 0
∗ ∗ −hR3 hR3AdcB1c 0 0 (3, 7) 0 0

∗ ∗ ∗ −g2I DT
11 0 0 BT

1cV 0
∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −hR1 −hR2 h(l+ 1)V 0
∗ ∗ ∗ ∗ ∗ ∗ −hR3 h(l+ 1)V 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −V − V T 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (22)
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And also we define U = V T
21W21 + V T

11W11. It is always
possible to find the invertible matrices V21 and W21 satisfying
V T

21W21 = U − V T
11W11. This is verified by assuring

the invertibility of U − V T
11W11, which is proved below.

After performing the linearising congruence
transformations and change of variables, we can obtain

F T
1 (V T + V )F1 = F T

1 V TF1 + F T
1 VF1

= W11 + W T
11 I + U T

∗ V11 + V T
11

[ ]
. 0

The above inequality ensures the invertibility of the three

matrices F T
1 V TF1, W11 and V11. With W11, we can define

the invertible matrix P = I I
0 −W11

[ ]
. The product of

the two matrices F T
1 VF1 and P leads to

F T
1 V TF1P =

W11 I

U V T
11

[ ]
I I

0 −W11

[ ]

=
W11 0

U U − V T
11W11

[ ] (25)
30
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which assures that U − V T
11W11 is invertible.

Perform the following linearising changes of variables:

Â = V T
11(A + Ad + lAd )W11 + V T

21BK C2W11

+ V T
11B2CK W21 + V T

21AK W21

B̂ = V T
21BK , Ĉ = CK W21, T = F T

1 PF1

(26)

Pre- and post-multiply the LMI (22) by
diag{F T

1 , I , R−1
3 , I , I , I , I , F T

1 , F T
1 V T} and its inverse,

respectively, substitute (15), (23), (24) into the obtained
equation. Obviously, −F T

1 V TS−1VF1 ≤ −F T
1 V T − VF1+

S, −R−1 ≤ −2I + R. Using the above equations, the LMI
(16) can be derived.

After we obtain the solution of the LMI (16), the
corresponding controller of form (13) will be constructed as
follows: (i) compute W21 from U − V T

11W11; (ii) utilising
the matrices Aj , Bj , Cj , V11, W11, V21 and W21 obtained
above, compute the controller gain by reversing (26). A
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