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Abstract In this paper, we consider a finite dimensional semisimple cosemisimple
quasitriangular Hopf algebra (H, R ) with R 21 R ∈ C(H ⊗ H ) (we call this type of
Hopf algebras almost-quasitriangular) over an algebraically closed field k. We denote
by B the vector space generated by the left tensorand of R 21 R. Then B is a sub-Hopf
algebra of H. We proved that when dim B is odd, H has a triangular structure and
can be obtained from a group algebra by twisting its usual comultiplication [14]; when
dim B is even, H is an extension of an abelian group algebra and a triangular Hopf
algebra, and may not be triangular. In general, an almost-triangular Hopf algebra can
be viewed as a cocycle bicrossproduct.

AMS Subject Classifications 16W30

Keywords Hopf algebra · Twist · Quasitriangular structure

1 Introduction

The classification of finite-dimensional Hopf algebras is one of the most fundamental
problems in the theory of Hopf algebras, and this problem is so difficult that only
recently some remarkable results, e.g. [3–6, 13–14, 16] are well developed. Many
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of these results depend heavily on the notion of quasitriangular Hopf algebras, a
concept introduced by Drinfel’d in the middle 1980s [12] for constructing solutions
to the quantum Yang–Baxter equation which arises in mathematical physics. In cate-
gorical language, a quasitriangular Hopf algebra is a Hopf algebra whose category of
finite-dimensional representations is braided rigid. A quasitriangular Hopf algebra is
triangular if the corresponding braided rigid category is symmetric. Quasitriangular
Hopf algebras are not obscure, as Drinfel’d shows that any finite-dimensional Hopf
algebras can be embedded into a finite-dimensional quasitriangular Hopf algebra
known as its quantum double. Thus, prior to general classification, it would be better
to focus on quasitriangular Hopf algebras.

In [14], Etingof and Gelaki completely classified semisimple cosemisimple trian-
gular Hopf algebras by means of group-theoretical data. They showed that over an
algebraically closed field k there is a bijection between the set of isomorphism classes
of semisimple and cosemisimple triangular Hopf algebra of dimension N and the set
of isomorphism classes (G, H, V, u), where G is a group of order N, H is a subgroup
of G, V is an irreducible projective representation of dimension (|H|)

1
2 , and u ∈ G

is a central element. This classification implies that any semisimple and cosemisimple
triangular Hopf algebra over a field can be obtained from a group algebra by twisting
its coproduct.

By definition, a quasitriangular Hopf algebra (H, R ) is triangular if R 21 R = 1 ⊗ 1.
To generalize this concept, we call a quasitriangular Hopf algebra (H, R ) almost-
triangular if R 21 R ∈ C(H ⊗ H ) = C(H ) ⊗ C(H ), the center of H ⊗ H.

The main topic of this paper is to study almost-triangular Hopf algebras. We obtain
the following main theorem.

MAIN THEOREM. Let (H, R ) be a finite dimensional semisimple and cosemisimple
almost-triangular Hopf algebra over an algebraically closed field. Let B be the vector
space generated by the left tensorand of R 21 R. Then

1. R 21 R is symmetric, that is, invariant under the switch map H ⊗ H 7→ H ⊗ H.
2. B ⊂ C(H ) is a commutative and cocommutative sub-Hopf algebra of H.
3. If dim B is odd, then H has a triangular structure.
4. If dim B is even, then there is a quasitriangular structure R̃ on H, such that R̃R−1

∈

B ⊗ B, R̃ 21 R̃ ∈ B ⊗ B. Let RB̃ = R̃ 21 R̃ and B̃ be the vector space generated by
the left tensorand of RB̃. Then, dim B̃ = 2l for some nonnegative integer l.

To give the structure of almost-triangular Hopf algebras, we use a well-known
construction, the cocycle bicrossproduct, developed by Doi and Takeuchi [10],
Blattner, Cohen and Montgomery [7], Majid [17], Andruskiewitsch [1, 2], and other
authors [8, 20]. We show that as a Hopf algebra, an almost-triangular Hopf algebra
H is isomorphic to a cocycle bicrossproduct B #τ

σ H.
The paper is organized as follows.
In Section 2, we give some properties of almost-triangular Hopf algebras (H, R )

and prove the main result Theorem 2.5.
In Section 3, we briefly recall the product construction introduced in [2] and

apply it to almost-triangular Hopf algebras. We prove that an almost-triangular Hopf
algebra H is isomorphic to the cocycle bicrossproduct B #τ

σ H as a Hopf algebra.



Almost-triangular Hopf Algebras 557

Preliminaries. Throughout this paper k is a field, and we refer the reader to the
books [18, 22] as references for the general theory of Hopf algebras. For a coalgebra
C and c ∈ C we write 4(c) =

∑
c1 ⊗ c2. We write ρ(a) =

∑
a(−1) ⊗ a(0) for a ∈ A – a

left C-comodule; and ρ(a) =
∑

a(0) ⊗ a(1) for a ∈ A – a right C-comodule.
Let H be a Hopf algebra over k with comultiplication 4, counit ε, and antipode S.

The following notion of a twisting deformation of H is due to V. Drinfel’d [11].
A twist for H is an invertible element J ∈ H ⊗ H that satisfies

(4 ⊗ id )(J)(J ⊗ 1) = (id ⊗ 4)(J)(1 ⊗ J)

We write J =
∑

J1
⊗ J2 and J(−1)

=
∑

K1
⊗ K1, we also denote J2

⊗ J1 by J(21).
Now, we recall the definition of a quasitriangular Hopf algebra and some of

its properties. Let H be a Hopf algebra over k and let R =
∑

R1
⊗ R 2

∈ H ⊗ H.
Define a linear map fR : H ∗

−→ H by fR(p) =
∑

〈p, R1
〉R 2, where p ∈ H ∗. The

pair (H, R ) is said to be a quasitriangular Hopf algebra if the following axioms hold,
where r = R.

(QT1)
∑

4(R1) ⊗ R 2
=
∑

R1
⊗ r1

⊗ R 2r2

(QT2) ε(R1)R 2
= 1

(QT3)
∑

R1
⊗ 4(R 2) =

∑
R1r1

⊗ r2
⊗ R 2

(QT4) ε(R 2)R1
= 1

(QT5) (4cop(h))R = R(4(h)) for all h ∈ H.
or equivalently, if fR : H∗

−→ Hcop is a Hopf algebra map and (QT5)

is satisfied.
Observe that (QT5) is equivalent to

(QT5′)
∑

〈p1, h2〉h1 fR(p 2) =
∑

〈p2, h1〉 fR(p1)h2 for all p ∈ H ∗ and h ∈ H

Note that for a finite-dimensional quasitriangular Hopf algebra (H, R ) the map
f ∗

R : H ∗op
−→ H defined by f ∗

R(p) =
∑

〈p, R 2
〉R1 is a Hopf algebra map satisfying∑

〈p1, h2〉h1 f ∗

R(p2) =

∑
〈p2, h1〉 f ∗

R(p1)h2

for all p ∈ H ∗ and h ∈ H.
Conversely, for any finite dimensional Hopf algebra H and f ∈ Hom k(H ∗, H ),

the inverse image R f of f under the canonical isomorphism H ⊗ H −→

Hom k(H ∗, H ) is an element in H ⊗ H. We say that f determines a quasitriangular
structure on H if (H, R f ) is quasitriangular, or equivalently, f : H ∗

−→ Hcop is a
Hopf algebra homomorphism with (QT5′).

A quasitriangular Hopf algebra (H, R ) is called triangular if R 21 R = 1 where
R 21

=
∑

R 2
⊗ R1. Note that this is equivalent to R 21

= R−1
=
∑

SR1
⊗ SR 2 and

fR ∗ fR 21 = ε in the convolution algebra Hom k(H ∗, H ).

2 Almost-triangular Hopf Algebras

Let (H, R ) be a finite-dimensional quasitriangular Hopf algebra over k. Then (H, R )

is said to be triangular if R 21 R = 1 ⊗ 1. For a more general consideration, we call
(H, R ) almost-triangular if R 21 R ∈ C(H ) ⊗ C(H ).
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LEMMA 2.1. Let (H, R ) be an almost-triangular Hopf algebra over a field k. Then,
RB = R 21 R is symmetric and satisfies QT1–QT4.

Proof. First, we have the following equation by R 21 R ∈ C(H ) ⊗ C(H )

R 21 RR 21
= R 21 R 21 R

Then, RR 21
= R 21 R since R 21 is invertible, i.e. RB is symmetric.

Let R = R̃ = r = r̃. Then we have

(4 ⊗ 1)RB = (4 ⊗ 1)R 21 R = (1 ⊗ 1)R 21(4 ⊗ 1)R

=

∑
(r2

⊗ R 2
⊗ R1r1)(R̃1

⊗ r̃1
⊗ R̃ 2r̃2)

=

∑
r2 R̃1

⊗ R 2r̃1
⊗ R1r1 R̃ 2r̃2

=

∑
r2 R̃1

⊗ R 2r̃1
⊗ r1 R̃ 2 R1r̃2

=

∑
R13

B R 23
B

The fourth equality follows from R 21 R ∈ C(H ) ⊗ C(H ) and we obtain that RB

satisfies QT1. The proof of QT3 is similar and QT2, QT4 are obvious. �

REMARK 2.2. As we can see in the proof, Lemma 2.1 also holds if we assume only
that the second tensorand of RB commutes with the first tensorand of R.

Now assume that (H, R ) is an almost-triangular Hopf algebra. Let RB = R 21 R,
and B = R1

B〈H ∗, R 2
B〉 be the subspace generated by the first tensorand of RB. By

Lemma 2.1, the symmetry of R 21 R implies that B is also the subspace spanned by the
second tensorand of R 21 R.

PROPOSITION 2.3. B is a commutative and cocommutative sub-Hopf algebra of H.
Furthermore, (B, RB) is minimal quasitriangular [19].

Proof. First B is a sub-Hopf algebra as a consequence of Lemma 2.1.
Since RB ∈ C(H ) ⊗ C(H ), we have the natural commutativity, and the cocommu-

tativity via

1R1
B ⊗ R 2

B =

∑
R1

B ⊗ R1
B ⊗ R 2

B R 2
B

=

∑
R 2r1

⊗ R̃ 2r̃1
⊗ R1r2 R̃1r̃2

=

∑
R 2r1

⊗ R̃ 2r̃1
⊗ R̃1r̃2 R1r2

= 1cop R1
B ⊗ R 2

B

Thus RB is an R-matrix of B and the minimality of RB comes from the definition
of B. �

Now, we assume further that H is semisimple and cosemisimple over an alge-
braically closed field k. Then B is a commutative and cocommutative cosemisimple
Hopf algebra. We can assume that B = k [G ], where G is a finite abelian group. Since
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B (spanned by the first tensorand of R 21 R) is a central Hopf subalgebra of H which
is clearly normal, we define H = H/HB+ to be the corresponding quotient Hopf
algebra.

THEOREM 2.4. Let (H, R ) be a semisimple and cosemisimple almost-triangular
Hopf algebra over an algebraically closed field k. Then we have H ∼= k [G ]#σ k[G ′

]
J as

an algebra, where both G and G ′ are finite groups, and k [G ′
]

J is a twist Hopf algebra.

Proof. By Proposition 2.3, B is a commutative sub-Hopf algebra. Write H = H/

HB+. Then H is a triangular semisimple Hopf algebra with its triangular structure
R being the quotient of R. That R 21 R = 1 can easily be deduced from R 21 R ∈ B. By
[14], there exist a group G ′ and a twist J, such that (H, R) ∼= (k [G ′

]
J, J−1

21 J). Now,
using Schneider’s normal basis theorem [21], we have H ∼= B #σ H as an algebra. �

It is natural to ask when an almost-triangular Hopf algebra is actually triangular?
We give the answer in the following theorem.

THEOREM 2.5. Let (H, R ) be a finite dimensional semisimple and cosemisimple
almost-triangular Hopf algebra over an algebraically closed field, RB = R 21 R and
B = R1

B〈H ∗, R 2
B〉. Then there exists an R-matrix R1 over B such that

1. if dim B is odd then (H, R1 R) is triangular, and thus (H, R) ∼= (k [G1]
J1 , (J1)

−1
21 J1)

for a finite group G1 and a twist J1 ∈ k [G1] ⊗ k [G1];
2. if dim B is even then (H, R1 R) is almost-triangular, and R̃ = R1 R is an R-matrix

on H such that the corresponding commutative and cocommutative sub-Hopf
algebra B̃ has dimension dim B̃ = 2l for some nonnegative integer l.

Proof. We know from Proposition 2.3 that RB = R 21 R is an R-matrix of the
sub-Hopf algebra B of H and B is commutative, cocommutative, cosemisimple and
minimal quasitriangular. Thus B = k

[
G
]

for a finite abelian group G. Let f : B ∗
−→

B be the Hopf algebra isomorphism f (b ∗)=R1
B

〈
b ∗, R 2

B

〉
, for b ∗

∈ B ∗.

1. Assume that |G| = 2k + 1 for a nonnegative integer k. Then, by Langrange’s
Theorem f |G|(g∗) = ( f (g∗))|G|

= 1G = 1G 〈g∗, 1G〉 for any g∗
∈ G (B ∗), i.e.

f |G|
= 1GεB ∗ . Therefore, we have

f(RB)|G| =
(

fRB

)|G|
= f1⊗1,

and thus

(RB)2k+1
= (RB)|G|

= 1 ⊗ 1.

Let R1 = (RB)k and R̃ = R1 R. By Lemma 2.1, R1 is symmetric.
The property that R̃ is an R-matrix can be deduced from the fact that R and R1

are R-matrices on H and B, respectively, R1 ∈ C(H ) ⊗ C(H ). In addition,

R̃ 21 R̃ = (R1)
21 R 21 R1 R = (R1)

21 R1 R 21 R = R1 R1 R 21 R = R−1
B RB = 1 ⊗ 1.

This proves that (H, R1 R ) is triangular.
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2. Assume that |G | = 2Lm, where m is odd. Since G is abelian G = G1 × G2, for
two subgroups G1 and G2 of G with |G1| = 2L and |G2| = m. For any g∗

∈

G(B ∗), the image fRB(g∗) is grouplike whence fRB(g∗) = g1g2 for some g1 ∈ G1

and g2 ∈ G2. By Langrange’s Theorem again,

fR m
B
(g∗) = 〈g∗, (R m

B )1
〉(R m

B )2

= 〈g∗, R1m
B 〉(R m

B )2

= 〈g∗, R1
B〉

m(R m
B )2

= ( fRB(g∗))m

= gm
1 g m

2

= gm
1 ∈ G1

Thus by the symmetry of RB, we obtain R m
B ∈ k [G1] ⊗ k [G1].

Let R1 = (RB)(m−1)/2. Then R1 is an R-matrix of B and R̃ = R1 R is an R-matrix
of H such that

R̃ 21 R̃ = (R1)
21 R 21 R1 R = (R1)

21 R1 R 21 R

= (R1)
2 RB = (RB)m−1 RB

= R m
B ∈ k [G1] ⊗ k [G1].

This proves that the subspace B̃ spanned by the left tensorand of R̃ 21 R̃ is con-
tained in k [G1] and has dimension 2l for some l ≤ L. �

REMARK 2.6. For an even-dimensional semisimple quasitriangular Hopf algebra
(H, R ), the property R 21 R ∈ C(H ) ⊗ C(H ) is not sufficient for the existence of a
triangular structure on H. A nice construction of Gelaki [15] provides an example
of this.

For completeness, we recall here Gelaki’s A qp-constructions [15].
Let p and q be prime numbers satisfying p = 1 mod q and pick m ∈ Zp such

that |m| = q. Let 〈b〉 and 〈h〉 be cyclic groups of orders p and q2. Assume that the
base field k contains primitive pth and q2th roots of unity. Then θ (b) = b m induces
a group automorphism of order q of 〈b〉 . Any non-trivial orbit of the action of

θ on G is of the form
{

b k, b k m, b k m 2
, . . . , b k m q−1

}
, which is a set of q elements.

Choose a set of representatives {b j}
r
i=0 of all the disjoint orbits, with b 0 = 1, b 1 =

b , and then r =
p − 1

q
. Take a generator λ in the linear characters of k 〈θ〉 , and

write b j
i =

1

q

∑q − 1
k = 0

〈
λ−i, θk

〉
θk
(
b j
)

(0 ≤ i ≤ q − 1, 0 ≤ j ≤ r). Then there is a Hopf

algebra structure on A qp = k [〈b〉] × k [〈h〉] with multiplication, comultiplication and
antipode defined as

(b j
i ⊗ hs)(bl

k ⊗ ht) = ηsk(b j
i b

l
k ⊗ hs+t),

1(b j
i ⊗ hs) =

∑q−1
t=0 (b j

i−t ⊗ hqt+s) ⊗ (b j
t ⊗ hs),

S(b j
i ⊗ ht) = η−ti(S(b j

i ) ⊗ h−qi−t),
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and

ε
(

b j
i ⊗ ht

)
= δi0,

where η = 〈λ, θ〉 .

THEOREM 2.7 ([15, Theorem 3.11]) Let p and q be prime numbers satisfying p = 1
mod q, and let k be a field containing primitive pth and q2th roots of unity. Then A qp

is a self-dual semisimple Hopf algebra of dimension pq2, and A qp is quasitriangular
if and only if q = 2. Furthermore, A 2p admits exactly 2p − 2 minimal quasitriangular
structures and exactly two non-minimal quasitriangular structures with k

[
G
(

A 2p
)]

as
the corresponding minimal quasitriangular sub-Hopf algebra. Moreover, none of the
above-mentioned quasitriangular structures is triangular.

PROPOSITION 2.8. Let p be an odd prime number, and let k be a field containing
primitive pth and 4th roots of unity. Denote by i a primitive 4th root of unity. Then A 2p

is almost-triangular with R =
∑3

l,k=0
i−lk

4 (1 ⊗ hl) ⊗ (1 ⊗ hk ), and there is no triangular
structure on A 2p.

Proof. By [15, Page 249], k [〈h2
〉] ∈ C(A 2p). We have

R 21 R =

3∑
k,l,r,s=0

i−k l−rs

16
(1 ⊗ hk+r) ⊗ (1 ⊗ hl+s)

=

3∑
k,l,u,v=0

ikv−2k l+lu−uv

16
(1 ⊗ hu) ⊗ (1 ⊗ hv) (let k + r = u, l + s = v)

=

3∑
u,v=0

 3∑
k,l=0

ikv−2k l+lu−uv

16

 (1 ⊗ hu) ⊗ (1 ⊗ hv)

=

3∑
u,v=0

((
1 + i2 u

) (
1 + i2 v

) (
1 + iu

+ iv − iu+v
)

16 iu v

)
(1 ⊗ hu) ⊗ (1 ⊗ hv)

=
1

2

(
1 ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ h2

+ 1 ⊗ h2
⊗ 1 ⊗ 1 − 1 ⊗ h2

⊗ 1 ⊗ h2
)

∈ C(A 2p) ⊗ C(A 2p),

hence, A2p is almost-triangular.
The non-existence of triangular structure on A 2p is just a consequence of theorem

[15, Theorem 3.11] mentioned above. �

3 Structure of H as Cocycle Bicrossproduct

In this section, we will see that as a Hopf algebra, an almost-triangular Hopf
algebra H is isomorphic to a cocycle bicrossproduct B #τ

σ H – a construction devel-
oped by Doi and Takeuchi [10], Blattner, Cohen and Montgomery [7], Majid [17],
Andruskiewitsch [1, 2], and other authors [9].
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First, we recall the bicrossproduct construction which appeared in [2].
Let A, B be two Hopf algebras, ⇀: B ⊗ A → A a weak action, ρ : B → B ⊗ A

a weak coaction and σ : B × B → A a cocycle in the sense that σ is bilinear map
satisfying

(unitary condition)

σ(h, 1) = σ(1, h) = ε(h)1;

(cocycle condition)

(h(1) ⇀ σ(l(1), m(1)))σ (h(2), l(2)m(2)) = σ(h(1), l(1))σ (h(2)l(2), m);

(twisted module condition)

(h(1) ⇀ (l(1) ⇀ a))σ (h(2), l(2)) = σ(h(1), l(1))(h(2)l(2) ⇀ a),

for any h, l, m ∈ B and a ∈ A.
Let τ : B → A ⊗ A be a cocycle in the sense that τ is a bilinear map

satisfying
(counitary condition)

εB(b)1A = (εA ⊗ id )τ (b) = (id ⊗ εA )τ (b);

(cycle condition)

mA⊗3(1 ⊗ id ⊗ τ ⊗ id)(τ ⊗ ρ)1 = (id ⊗ mA⊗2)(id ⊗ 1 ⊗ id ⊗ id)(τ ⊗ τ)1;

(twisted comodule condition)

(id ⊗ mA⊗2)(id ⊗ 1 ⊗ id ⊗ id)( ρ ⊗ τ)1 = m13
A⊗2(id ⊗ id ⊗ ρ ⊗ id )(τ ⊗ ρ)1,

where m13
A⊗2 : A ⊗ A ⊗B ⊗ A ⊗ A→ B ⊗ A ⊗ A sends g ⊗ h ⊗ c ⊗ g ⊗ h to c⊗

gg ⊗ hh.

Let C = Aτ #σ B denote the vector space A ⊗ B provided with the
multiplication

(a ⊗ b)(a ⊗ b) = a(b (1) ⇀ a)σ (b (2), b (1)) ⊗ b (3)b (2)

and the comultiplication

1(a ⊗ b) = a(1)τ (b (1))
1
⊗ b (2)(0) ⊗ a(2)τ (b (1))

2b (2)(1) ⊗ b (3),

where τ(b) = τ(b)1
⊗ τ(b)2.

Let ι : A → C and π : C → B be given by ι(a) = a ⊗ 1, π(a ⊗ b) = ε(a)b . A #σ B
(resp., Aτ #B) denotes the same space considered merely as an algebra (resp., as a
coalgebra).

PROPOSITION 3.1. [1, 2, 17] If σ and τ satisfy the compatibility conditions listed in
[2, Page 17], then C = Aτ #σ B is a bialgebra. Moreover, if σ and τ are invertible with
respect to the convolution product, then C is a Hopf algebra.
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In this case,

k −→ A
ι

−→ C
π

−→ B −→ k (*)

is an exact sequence of Hopf algebras.
Conversely, let (*) be an exact sequence of Hopf algebras and assume that in

addition it is cleft. Then there exist ⇀, σ, ρ, τ satisfying the given conditions, such that
C ' Aτ #σ B.

PROPOSITION 3.2. Let (H, R ) be a finite dimensional almost-triangular Hopf
algebra, B = R1

B〈H ∗, R 2
B〉 be the subspace generated by the first tensorand of

RB = R 21 R and N = H/HB+. Then as a Hopf algebra H ' Bτ #σ N for some
compatible σ, τ , with the trivial action of N on B.

Proof. Since B ⊆ C(H ), the action induced from any section is trivial. The result
is then a direct consequence of [2, Theorem 3.1.17, Proposition 3.1.12]. �
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