Almost-triangular Hopf Algebras

Guohua Liu · Shenglin Zhu

Accepted: 27 February 2006 / Published online: 27 April 2007 © Springer Science + Business Media B.V. 2007

Abstract In this paper, we consider a finite dimensional semisimple cosemisimple quasitriangular Hopf algebra (H, R) with $R^{21}R \in C(H \otimes H)$ (we call this type of Hopf algebras almost-quasitriangular) over an algebraically closed field k. We denote by B the vector space generated by the left tensorand of $R^{21}R$. Then B is a sub-Hopf algebra of H. We proved that when dim B is odd, H has a triangular structure and can be obtained from a group algebra by twisting its usual comultiplication [14]; when dim B is even, H is an extension of an abelian group algebra and a triangular Hopf algebra, and may not be triangular. In general, an almost-triangular Hopf algebra can be viewed as a cocycle bicrossproduct.

AMS Subject Classifications 16W30

Keywords Hopf algebra · Twist · Quasitriangular structure

1 Introduction

The classification of finite-dimensional Hopf algebras is one of the most fundamental problems in the theory of Hopf algebras, and this problem is so difficult that only recently some remarkable results, e.g. [3–6, 13–14, 16] are well developed. Many

G. Liu · S. Zhu (🖂)

G. Liu

S. Zhu

School of Mathematical Sciences, Fudan University, Shanghai 200433, China e-mail: mazhusl@fudan.edu.cn

Department of Mathematics, Southeast University, Nanjing 210096, China e-mail: liuguohua2000cn@yahoo.com.cn

Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Ministry of Education, Shanghai China

of these results depend heavily on the notion of quasitriangular Hopf algebras, a concept introduced by Drinfel'd in the middle 1980s [12] for constructing solutions to the quantum Yang–Baxter equation which arises in mathematical physics. In categorical language, a quasitriangular Hopf algebra is a Hopf algebra whose category of finite-dimensional representations is braided rigid. A quasitriangular Hopf algebra is triangular if the corresponding braided rigid category is symmetric. Quasitriangular Hopf algebras are not obscure, as Drinfel'd shows that any finite-dimensional Hopf algebras can be embedded into a finite-dimensional quasitriangular Hopf algebra known as its quantum double. Thus, prior to general classification, it would be better to focus on quasitriangular Hopf algebras.

In [14], Etingof and Gelaki completely classified semisimple cosemisimple triangular Hopf algebras by means of group-theoretical data. They showed that over an algebraically closed field k there is a bijection between the set of isomorphism classes of semisimple and cosemisimple triangular Hopf algebra of dimension N and the set of isomorphism classes (G, H, V, u), where G is a group of order N, H is a subgroup of G, V is an irreducible projective representation of dimension $(|H|)^{\frac{1}{2}}$, and $u \in G$ is a central element. This classification implies that any semisimple and cosemisimple triangular Hopf algebra over a field can be obtained from a group algebra by twisting its coproduct.

By definition, a quasitriangular Hopf algebra (H, R) is triangular if $R^{21}R = 1 \otimes 1$. To generalize this concept, we call a quasitriangular Hopf algebra (H, R) almosttriangular if $R^{21}R \in C(H \otimes H) = C(H) \otimes C(H)$, the center of $H \otimes H$.

The main topic of this paper is to study almost-triangular Hopf algebras. We obtain the following main theorem.

MAIN THEOREM. Let (H, R) be a finite dimensional semisimple and cosemisimple almost-triangular Hopf algebra over an algebraically closed field. Let B be the vector space generated by the left tensorand of $R^{21}R$. Then

- 1. $R^{21}R$ is symmetric, that is, invariant under the switch map $H \otimes H \mapsto H \otimes H$.
- 2. $B \subset C(H)$ is a commutative and cocommutative sub-Hopf algebra of H.
- 3. If dim B is odd, then H has a triangular structure.
- 4. If dim *B* is even, then there is a quasitriangular structure \widetilde{R} on *H*, such that $\widetilde{R}R^{-1} \in B \otimes B$, $\widetilde{R}^{21}\widetilde{R} \in B \otimes B$. Let $R_{\widetilde{B}} = \widetilde{R}^{21}\widetilde{R}$ and \widetilde{B} be the vector space generated by the left tensorand of $R_{\widetilde{B}}$. Then, dim $\widetilde{B} = 2^l$ for some nonnegative integer *l*.

To give the structure of almost-triangular Hopf algebras, we use a well-known construction, the cocycle bicrossproduct, developed by Doi and Takeuchi [10], Blattner, Cohen and Montgomery [7], Majid [17], Andruskiewitsch [1, 2], and other authors [8, 20]. We show that as a Hopf algebra, an almost-triangular Hopf algebra H is isomorphic to a cocycle bicrossproduct $B \#_{\alpha}^{\tau} \overline{H}$.

The paper is organized as follows.

In Section 2, we give some properties of almost-triangular Hopf algebras (H, R) and prove the main result Theorem 2.5.

In Section 3, we briefly recall the product construction introduced in [2] and apply it to almost-triangular Hopf algebras. We prove that an almost-triangular Hopf algebra H is isomorphic to the cocycle bicrossproduct $B \#_{\sigma}^{\tau} \overline{H}$ as a Hopf algebra.

🖉 Springer

Preliminaries. Throughout this paper k is a field, and we refer the reader to the books [18, 22] as references for the general theory of Hopf algebras. For a coalgebra C and $c \in C$ we write $\Delta(c) = \sum c_1 \otimes c_2$. We write $\rho(a) = \sum a_{(-1)} \otimes a_{(0)}$ for $a \in A - a$ left C-comodule; and $\rho(a) = \sum a_{(0)} \otimes a_{(1)}$ for $a \in A - a$ right C-comodule.

Let *H* be a Hopf algebra over *k* with comultiplication \triangle , counit ε , and antipode *S*. The following notion of a twisting deformation of *H* is due to V. Drinfel'd [11].

A twist for *H* is an invertible element $J \in H \otimes H$ that satisfies

$$(\triangle \otimes id)(J)(J \otimes 1) = (id \otimes \triangle)(J)(1 \otimes J)$$

We write $J = \sum J^1 \otimes J^2$ and $J^{(-1)} = \sum K^1 \otimes K^1$, we also denote $J^2 \otimes J^1$ by $J_{(21)}$.

Now, we recall the definition of a quasitriangular Hopf algebra and some of its properties. Let *H* be a Hopf algebra over *k* and let $R = \sum R^1 \otimes R^2 \in H \otimes H$. Define a linear map $f_R : H^* \longrightarrow H$ by $f_R(p) = \sum \langle p, R^1 \rangle R^2$, where $p \in H^*$. The pair (H, R) is said to be a quasitriangular Hopf algebra if the following axioms hold, where r = R.

- (QT1) $\sum \triangle(R^1) \otimes R^2 = \sum R^1 \otimes r^1 \otimes R^2 r^2$
- (QT2) $\overline{\varepsilon}(R^1)R^2 = 1$
- (QT3) $\sum R^1 \otimes \triangle(R^2) = \sum R^1 r^1 \otimes r^2 \otimes R^2$
- $(QT4) \quad \varepsilon(R^2)R^1 = 1$

(QT5) $(\triangle^{cop}(h))R = R(\triangle(h))$ for all $h \in H$. or equivalently, if $f_R : H^* \longrightarrow H^{cop}$ is a Hopf algebra map and (QT5) is satisfied. Observe that (QT5) is equivalent to

(QT5')
$$\sum \langle p_1, h_2 \rangle h_1 f_R(p_2) = \sum \langle p_2, h_1 \rangle f_R(p_1) h_2$$
 for all $p \in H^*$ and $h \in H$

Note that for a finite-dimensional quasitriangular Hopf algebra (H, R) the map $f_R^*: H^{*op} \longrightarrow H$ defined by $f_R^*(p) = \sum \langle p, R^2 \rangle R^1$ is a Hopf algebra map satisfying

$$\sum \langle p_1, h_2 \rangle h_1 f_R^*(p_2) = \sum \langle p_2, h_1 \rangle f_R^*(p_1) h_2$$

for all $p \in H^*$ and $h \in H$.

Conversely, for any finite dimensional Hopf algebra H and $f \in \text{Hom}_k(H^*, H)$, the inverse image R_f of f under the canonical isomorphism $H \otimes H \longrightarrow$ $\text{Hom}_k(H^*, H)$ is an element in $H \otimes H$. We say that f determines a quasitriangular structure on H if (H, R_f) is quasitriangular, or equivalently, $f : H^* \longrightarrow H^{cop}$ is a Hopf algebra homomorphism with (QT5').

A quasitriangular Hopf algebra (H, R) is called triangular if $R^{21}R = 1$ where $R^{21} = \sum R^2 \otimes R^1$. Note that this is equivalent to $R^{21} = R^{-1} = \sum SR^1 \otimes SR^2$ and $f_R * f_{R^{21}} = \varepsilon$ in the convolution algebra Hom_k (H^*, H) .

2 Almost-triangular Hopf Algebras

Let (H, R) be a finite-dimensional quasitriangular Hopf algebra over k. Then (H, R) is said to be triangular if $R^{21}R = 1 \otimes 1$. For a more general consideration, we call (H, R) almost-triangular if $R^{21}R \in C(H) \otimes C(H)$.

LEMMA 2.1. Let (H, R) *be an almost-triangular Hopf algebra over a field k. Then,* $R_B = R^{21}R$ *is symmetric and satisfies* QT1–QT4.

Proof. First, we have the following equation by $R^{21}R \in C(H) \otimes C(H)$

$$R^{21}RR^{21} = R^{21}R^{21}R$$

Then, $RR^{21} = R^{21}R$ since R^{21} is invertible, i.e. R_B is symmetric. Let $R = \tilde{R} = r = \tilde{r}$. Then we have

$$(\triangle \otimes 1)R_B = (\triangle \otimes 1)R^{21}R = (\triangle \otimes 1)R^{21}(\triangle \otimes 1)R$$
$$= \sum (r^2 \otimes R^2 \otimes R^1 r^1)(\widetilde{R}^1 \otimes \widetilde{r}^1 \otimes \widetilde{R}^2 \widetilde{r}^2)$$
$$= \sum r^2 \widetilde{R}^1 \otimes R^2 \widetilde{r}^1 \otimes R^1 r^1 \widetilde{R}^2 \widetilde{r}^2$$
$$= \sum r^2 \widetilde{R}^1 \otimes R^2 \widetilde{r}^1 \otimes r^1 \widetilde{R}^2 R^1 \widetilde{r}^2$$
$$= \sum R_B^{13} R_B^{23}$$

The fourth equality follows from $R^{21}R \in C(H) \otimes C(H)$ and we obtain that R_B satisfies QT1. The proof of QT3 is similar and QT2, QT4 are obvious.

REMARK 2.2. As we can see in the proof, Lemma 2.1 also holds if we assume only that the second tensorand of R_B commutes with the first tensorand of R.

Now assume that (H, R) is an almost-triangular Hopf algebra. Let $R_B = R^{21}R$, and $B = R_B^1 \langle H^*, R_B^2 \rangle$ be the subspace generated by the first tensorand of R_B . By Lemma 2.1, the symmetry of $R^{21}R$ implies that *B* is also the subspace spanned by the second tensorand of $R^{21}R$.

PROPOSITION 2.3. B is a commutative and cocommutative sub-Hopf algebra of H. Furthermore, (B, R_B) is minimal quasitriangular [19].

Proof. First *B* is a sub-Hopf algebra as a consequence of Lemma 2.1.

Since $R_B \in C(H) \otimes C(H)$, we have the natural commutativity, and the cocommutativity via

$$\begin{split} \Delta R_B^1 \otimes R_B^2 &= \sum R_B^1 \otimes R_B^1 \otimes R_B^2 R_B^2 \\ &= \sum R^2 r^1 \otimes \widetilde{R}^2 \widetilde{r}^1 \otimes R^1 r^2 \widetilde{R}^1 \widetilde{r}^2 \\ &= \sum R^2 r^1 \otimes \widetilde{R}^2 \widetilde{r}^1 \otimes \widetilde{R}^1 \widetilde{r}^2 R^1 r^2 \\ &= \Delta^{cop} R_B^1 \otimes R_B^2 \end{split}$$

Thus R_B is an *R*-matrix of *B* and the minimality of R_B comes from the definition of *B*.

Now, we assume further that *H* is semisimple and cosemisimple over an algebraically closed field *k*. Then *B* is a commutative and cocommutative cosemisimple Hopf algebra. We can assume that B = k [G], where *G* is a finite abelian group. Since O Springer

B (spanned by the first tensorand of $R^{21}R$) is a central Hopf subalgebra of *H* which is clearly normal, we define $\overline{H} = H/HB^+$ to be the corresponding quotient Hopf algebra.

THEOREM 2.4. Let (H, R) be a semisimple and cosemisimple almost-triangular Hopf algebra over an algebraically closed field k. Then we have $H \cong k[G] \#_{\sigma} k[G']^J$ as an algebra, where both G and G' are finite groups, and $k[G']^J$ is a twist Hopf algebra.

Proof. By Proposition 2.3, *B* is a commutative sub-Hopf algebra. Write $\overline{H} = H/HB^+$. Then \overline{H} is a triangular semisimple Hopf algebra with its triangular structure \overline{R} being the quotient of *R*. That $\overline{R}^{21}\overline{R} = 1$ can easily be deduced from $R^{21}R \in B$. By [14], there exist a group G' and a twist *J*, such that $(\overline{H}, \overline{R}) \cong (k[G']^J, J_{21}^{-1}J)$. Now, using Schneider's normal basis theorem [21], we have $H \cong B \#_{\sigma} \overline{H}$ as an algebra. \Box

It is natural to ask when an almost-triangular Hopf algebra is actually triangular? We give the answer in the following theorem.

THEOREM 2.5. Let (H, R) be a finite dimensional semisimple and cosemisimple almost-triangular Hopf algebra over an algebraically closed field, $R_B = R^{21}R$ and $B = R_B^1 \langle H^*, R_B^2 \rangle$. Then there exists an R-matrix R_1 over B such that

- 1. *if* dim *B* is odd then (H, R_1R) is triangular, and thus $(H, R) \cong (k [G_1]^{J_1}, (J_1)_{21}^{-1} J_1)$ for a finite group G_1 and a twist $J_1 \in k [G_1] \otimes k [G_1]$;
- 2. *if* dim *B* is even then $(H, R_1 R)$ is almost-triangular, and $\tilde{R} = R_1 R$ is an *R*-matrix on *H* such that the corresponding commutative and cocommutative sub-Hopf algebra \tilde{B} has dimension dim $\tilde{B} = 2^l$ for some nonnegative integer *l*.

Proof. We know from Proposition 2.3 that $R_B = R^{21}R$ is an *R*-matrix of the sub-Hopf algebra *B* of *H* and *B* is commutative, cocommutative, cosemisimple and minimal quasitriangular. Thus B = k [G] for a finite abelian group G. Let $f : B^* \longrightarrow B$ be the Hopf algebra isomorphism $f(b^*)=R_B^1(b^*, R_B^2)$, for $b^* \in B^*$.

1. Assume that |G| = 2k + 1 for a nonnegative integer k. Then, by Langrange's Theorem $f^{|G|}(g^*) = (f(g^*))^{|G|} = 1_G = 1_G \langle g^*, 1_G \rangle$ for any $g^* \in G(B^*)$, i.e. $f^{|G|} = 1_G \varepsilon_{B^*}$. Therefore, we have

$$f_{(R_B)^{|G|}} = (f_{R_B})^{|G|} = f_{1\otimes 1},$$

and thus

$$(R_B)^{2k+1} = (R_B)^{|G|} = 1 \otimes 1.$$

Let $R_1 = (R_B)^k$ and $\tilde{R} = R_1 R$. By Lemma 2.1, R_1 is symmetric. The property that \tilde{R} is an *R*-matrix can be deduced from the fact that *R* and R_1 are *R*-matrices on *H* and *B*, respectively, $R_1 \in C(H) \otimes C(H)$. In addition,

$$\widetilde{R}^{21}\widetilde{R} = (R_1)^{21}R^{21}R_1R = (R_1)^{21}R_1R^{21}R = R_1R_1R^{21}R = R_B^{-1}R_B = 1 \otimes 1.$$

This proves that (H, R_1R) is triangular.

🖄 Springer

2. Assume that $|G| = 2^L m$, where *m* is odd. Since *G* is abelian $G = G_1 \times G_2$, for two subgroups G_1 and G_2 of *G* with $|G_1| = 2^L$ and $|G_2| = m$. For any $g^* \in G(B^*)$, the image $f_{R_B}(g^*)$ is grouplike whence $f_{R_B}(g^*) = g_1g_2$ for some $g_1 \in G_1$ and $g_2 \in G_2$. By Langrange's Theorem again,

$$f_{R_B^m}(g^*) = \langle g^*, (R_B^m)^1 \rangle (R_B^m)^2$$
$$= \langle g^*, R_B^{1m} \rangle (R_B^m)^2$$
$$= \langle g^*, R_B^1 \rangle (R_B^m)^2$$
$$= (f_{R_B}(g^*))^m$$
$$= g_1^m g_2^m$$
$$= g_1^m \in G_1$$

Thus by the symmetry of R_B , we obtain $R_B^m \in k[G_1] \otimes k[G_1]$. Let $R_1 = (R_B)^{(m-1)/2}$. Then R_1 is an *R*-matrix of *B* and $\tilde{R} = R_1 R$ is an *R*-matrix of *H* such that

$$\widetilde{R}^{21}\widetilde{R} = (R_1)^{21} R^{21} R_1 R = (R_1)^{21} R_1 R^{21} R$$
$$= (R_1)^2 R_B = (R_B)^{m-1} R_B$$
$$= R_B^m \in k[G_1] \otimes k[G_1].$$

This proves that the subspace \widetilde{B} spanned by the left tensorand of $\widetilde{R}^{21}\widetilde{R}$ is contained in $k[G_1]$ and has dimension 2^l for some $l \leq L$.

REMARK 2.6. For an even-dimensional semisimple quasitriangular Hopf algebra (H, R), the property $R^{21}R \in C(H) \otimes C(H)$ is not sufficient for the existence of a triangular structure on H. A nice construction of Gelaki [15] provides an example of this.

For completeness, we recall here Gelaki's A_{ap} -constructions [15].

Let *p* and *q* be prime numbers satisfying $p = 1 \mod q$ and pick $m \in \mathbb{Z}_p$ such that |m| = q. Let $\langle b \rangle$ and $\langle h \rangle$ be cyclic groups of orders *p* and q^2 . Assume that the base field *k* contains primitive *p*th and q^2 th roots of unity. Then $\theta(b) = b^m$ induces a group automorphism of order *q* of $\langle b \rangle$. Any non-trivial orbit of the action of θ on *G* is of the form $\{b^k, b^{km}, b^{km^2}, \ldots, b^{km^{q-1}}\}$, which is a set of *q* elements. Choose a set of representatives $\{b_j\}_{i=0}^r$ of all the disjoint orbits, with $b_0 = 1$, $b_1 = b$, and then $r = \frac{p-1}{q}$. Take a generator λ in the linear characters of $k \langle \theta \rangle$, and write $b_i^j = \frac{1}{q} \sum_{k=0}^{q-1} \langle \lambda^{-i}, \theta^k \rangle \theta^k(b_j)$ ($0 \le i \le q-1, 0 \le j \le r$). Then there is a Hopf algebra structure on $A_{qp} = k[\langle b \rangle] \times k[\langle h \rangle]$ with multiplication, comultiplication and antipode defined as

$$\begin{split} (b_i^{j} \otimes h^{s})(b_k^{l} \otimes h^{t}) &= \eta^{sk}(b_i^{j}b_k^{l} \otimes h^{s+t}), \\ \Delta(b_i^{j} \otimes h^{s}) &= \sum_{t=0}^{q-1}(b_{i-t}^{j} \otimes h^{qt+s}) \otimes (b_t^{j} \otimes h^{s}), \\ S(b_i^{j} \otimes h^{t}) &= \eta^{-ti}(S(b_i^{j}) \otimes h^{-qi-t}), \end{split}$$

D Springer

and

$$\varepsilon \left(b_i^{j} \otimes h^t \right) = \delta_{i0}$$

where $\eta = \langle \lambda, \theta \rangle$.

THEOREM 2.7 ([15, Theorem 3.11]) Let p and q be prime numbers satisfying p = 1mod q, and let k be a field containing primitive pth and q^2 th roots of unity. Then A_{qp} is a self-dual semisimple Hopf algebra of dimension pq^2 , and A_{qp} is quasitriangular if and only if q = 2. Furthermore, A_{2p} admits exactly 2p - 2 minimal quasitriangular structures and exactly two non-minimal quasitriangular structures with k [G (A_{2p})] as the corresponding minimal quasitriangular sub-Hopf algebra. Moreover, none of the above-mentioned quasitriangular structures is triangular.

PROPOSITION 2.8. Let *p* be an odd prime number, and let *k* be a field containing primitive pth and 4th roots of unity. Denote by *i* a primitive 4th root of unity. Then A_{2p} is almost-triangular with $R = \sum_{l,k=0}^{3} \frac{i^{-lk}}{4} (1 \otimes h^l) \otimes (1 \otimes h^k)$, and there is no triangular structure on A_{2p} .

Proof. By [15, Page 249], $k [\langle h^2 \rangle] \in C(A_{2p})$. We have

$$\begin{split} R^{21}R &= \sum_{k,l,r,s=0}^{3} \frac{i^{-kl-rs}}{16} (1 \otimes h^{k+r}) \otimes (1 \otimes h^{l+s}) \\ &= \sum_{k,l,u,v=0}^{3} \frac{i^{kv-2kl+lu-uv}}{16} (1 \otimes h^{u}) \otimes (1 \otimes h^{v}) \quad (\text{let} \quad k+r=u, \ l+s=v) \\ &= \sum_{u,v=0}^{3} \left(\sum_{k,l=0}^{3} \frac{i^{kv-2kl+lu-uv}}{16} \right) (1 \otimes h^{u}) \otimes (1 \otimes h^{v}) \\ &= \sum_{u,v=0}^{3} \left(\frac{(1+i^{2u})(1+i^{2v})(1+i^{u}+i^{v}-i^{u+v})}{16i^{uv}} \right) (1 \otimes h^{u}) \otimes (1 \otimes h^{v}) \\ &= \frac{1}{2} \left(1 \otimes 1 \otimes 1 \otimes 1 + 1 \otimes 1 \otimes 1 \otimes h^{2} + 1 \otimes h^{2} \otimes 1 \otimes 1 - 1 \otimes h^{2} \otimes 1 \otimes h^{2} \right) \\ &\in C(A_{2p}) \otimes C(A_{2p}), \end{split}$$

hence, A_{2p} is almost-triangular.

The non-existence of triangular structure on A_{2p} is just a consequence of theorem [15, Theorem 3.11] mentioned above.

3 Structure of *H* as Cocycle Bicrossproduct

In this section, we will see that as a Hopf algebra, an almost-triangular Hopf algebra H is isomorphic to a cocycle bicrossproduct $B \#_{\sigma}^{\tau} \overline{H}$ – a construction developed by Doi and Takeuchi [10], Blattner, Cohen and Montgomery [7], Majid [17], Andruskiewitsch [1, 2], and other authors [9].

First, we recall the bicrossproduct construction which appeared in [2].

Let A, B be two Hopf algebras, $\rightarrow : B \otimes A \rightarrow A$ a weak action, $\rho : B \rightarrow B \otimes A$ a weak coaction and $\sigma : B \times B \rightarrow A$ a cocycle in the sense that σ is bilinear map satisfying

(unitary condition)

$$\sigma(h, 1) = \sigma(1, h) = \varepsilon(h)1;$$

(cocycle condition)

$$(h_{(1)} \rightarrow \sigma(l_{(1)}, m_{(1)}))\sigma(h_{(2)}, l_{(2)}m_{(2)}) = \sigma(h_{(1)}, l_{(1)})\sigma(h_{(2)}l_{(2)}, m);$$

(twisted module condition)

$$(h_{(1)} \rightarrow (l_{(1)} \rightarrow a))\sigma(h_{(2)}, l_{(2)}) = \sigma(h_{(1)}, l_{(1)})(h_{(2)}l_{(2)} \rightarrow a),$$

for any $h, l, m \in B$ and $a \in A$.

Let $\tau: B \to A \otimes A$ be a cocycle in the sense that τ is a bilinear map satisfying

(counitary condition)

$$\varepsilon_B(b)1_A = (\varepsilon_A \otimes id)\tau(b) = (id \otimes \varepsilon_A)\tau(b);$$

(cycle condition)

 $m_{A^{\otimes 3}}(\Delta \otimes id \otimes \tau \otimes id)(\tau \otimes \rho)\Delta = (id \otimes m_{A^{\otimes 2}})(id \otimes \Delta \otimes id \otimes id)(\tau \otimes \tau)\Delta;$

(twisted comodule condition)

$$(id \otimes m_{A^{\otimes 2}})(id \otimes \Delta \otimes id \otimes id)(\rho \otimes \tau)\Delta = m_{A^{\otimes 2}}^{13}(id \otimes id \otimes \rho \otimes id)(\tau \otimes \rho)\Delta,$$

where $m_{A^{\otimes 2}}^{13}$: $A \otimes A \otimes B \otimes A \otimes A \to B \otimes A \otimes A$ sends $g \otimes h \otimes c \otimes \overline{g} \otimes \overline{h}$ to $c \otimes \overline{g} \otimes h\overline{h}$.

Let $C = A^{\tau} \#_{\sigma} B$ denote the vector space $A \otimes B$ provided with the multiplication

$$(a \otimes b)(\overline{a} \otimes \overline{b}) = a(b_{(1)} \rightarrow \overline{a})\sigma(b_{(2)}, \overline{b}_{(1)}) \otimes b_{(3)}\overline{b}_{(2)}$$

and the comultiplication

$$\Delta(a \otimes b) = a_{(1)}\tau(b_{(1)})^1 \otimes b_{(2)(0)} \otimes a_{(2)}\tau(b_{(1)})^2 b_{(2)(1)} \otimes b_{(3)},$$

where $\tau(b) = \tau(b)^1 \otimes \tau(b)^2$.

Let $\iota : A \to C$ and $\pi : C \to B$ be given by $\iota(a) = a \otimes 1$, $\pi(a \otimes b) = \varepsilon(a)b \cdot A \#_{\sigma} B$ (resp., $A^{\tau} \# B$) denotes the same space considered merely as an algebra (resp., as a coalgebra).

PROPOSITION 3.1. [1, 2, 17] If σ and τ satisfy the compatibility conditions listed in [2, Page 17], then $C = A^{\tau} \#_{\sigma} B$ is a bialgebra. Moreover, if σ and τ are invertible with respect to the convolution product, then C is a Hopf algebra.

D Springer

In this case,

$$k \longrightarrow A \xrightarrow{\iota} C \xrightarrow{\pi} B \longrightarrow k \tag{(*)}$$

is an exact sequence of Hopf algebras.

Conversely, let (*) be an exact sequence of Hopf algebras and assume that in addition it is cleft. Then there exist \rightarrow , σ , ρ , τ satisfying the given conditions, such that $C \simeq A^{\tau} \#_{\sigma} B$.

PROPOSITION 3.2. Let (H, R) be a finite dimensional almost-triangular Hopf algebra, $B = R_B^1 \langle H^*, R_B^2 \rangle$ be the subspace generated by the first tensorand of $R_B = R^{21}R$ and $N = H/HB^+$. Then as a Hopf algebra $H \simeq B^{\tau} \#_{\sigma} N$ for some compatible σ, τ , with the trivial action of N on B.

Proof. Since $B \subseteq C(H)$, the action induced from any section is trivial. The result is then a direct consequence of [2, Theorem 3.1.17, Proposition 3.1.12].

Acknowledgement The authors are grateful to the referee for many helpful comments that have helped us to improve this paper. In particular, the referee suggested the present version of Section 3.

References

- 1. Andruskiewitsch, N., Devoto, J.: Extensions of Hopf algebras. Algebra Anal. 7, 22-61 (1995)
- 2. Andruskiewitsch, N.: Notes on extensions of Hopf algebras. Canadian J. Math. 48, 3-42 (1996)
- Andruskiewitsch, N., Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf algebras of order p³. J. Algebra 209(2), 658–691 (1998)
- Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups over abelian groups of prime exponent. Ann. Sci. Ec. Norm. Super. 35(1), 1–26 (2002)
- Andruskiewitsch, N., Schneider, H.-J.: A characterization of quantum groups. J. Reine Angew. Math. 577, 81–104 (2004)
- Beattie, M., Dăscălescu, S., Grunenfelder, L.: On the number of types of finite dimensional Hopf algebras. Invent. Math 136(1), 1–7 (1999)
- Blattner, R.J., Cohen, M., Montgomery, S.: Crossed products and inner actions of Hopf algebras. Trans. Am. Math. Soc. 298, 671–711 (1986)
- Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3, 19–42 (2000)
- Cohen, M., Raianu, S., Westreich, S.: Semiinvariants for Hopf algebra actions. Isr. J. Math. 88, 279–306 (1994)
- Doi, Y., Takeuchi, M.: Cleft comodule algebra for a bialgebra. Commun. Algebra 14(5), 801–818 (1986)
- Drinfel'd, V.G., Quantum groups: Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986, Amer. Math. Society, pp. 798–820. Providence, Rhode Island (1987)
- 12. Drinfel'd, V.G.: On almost cocommutative Hopf algebras. Leningr. Math. J. I, 321-342 (1990)
- Etingof, P., Gelaki, S.: Some properties of finite-dimensional semisimple Hopf algebra. Math. Res. Lett. 5, 191–197 (1998)
- Etingof, P., Gelaki, S.: The classification of triangular semisimple and cosemisimple Hopf algebra over an algebraically closed field. Internat. Int. Math. Res. Not. 5, 223–234 (2000)
- 15. Gelaki, S.: Quantum groups of dimension pq^2 . Isr. J. Math. **102**, 227–267 (1997)
- Gelaki, S.: Pointed Hopf algebras and Kaplansky's 10th conjecture. J. Algebra 209(2), 635–657 (1998)
- Majid, S.: More examples of bicrossproduct and double crossproduct Hopf algebras. Israel J. Math. 72,133–148 (1990)
- Montgomery, S.: Hopf algebras and their actions on rings. CBMS Regional Conference Series in Math. Vol. 82, Amer. Math. Soc., Providence (1993)
- 19. Radford, D.E.: Minimal quasitriangular Hopf algebras. J. Algebra 157, 281-315 (1993)

- Schauenburg, P.: The structure of algebras with a weak projection. Algebr. Represent. Theory 3, 187–211 (2000)
- Schneider, H.-J.: Normal basis and transitivity of crossed products for Hopf algebras. J. Algebra 152, 289–312 (1992)
- 22. Sweedler, M.E.: Hopf Algebras, Mathematics Lectures Notes Series. Benjamin, New York (1969)