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A brief overview is provided as an introduction to hydrodynamic-like turbulence that
characterizes the dynamics of plasmas in several parameter regimes. This includes
magnetohydrodynamics (MHD), the electron fluid plasma, which is closely related
to two-dimensional hydrodynamics, and the solar wind, which is usually viewed as
a laboratory for three-dimensional MHD, with more involved plasma physics at the
dissipative scales. An emphasis is placed on energy decay, spectra, relaxation processes,
coherent structures, and higher statistics with selected applications in solar wind and
laboratory plasmas.
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1. Introduction

The scope of turbulence theory has broadened remarkably in the recent era. Technological
advances have broadened the study of turbulence to a variety of systems while also motivat-
ing and enabling various applications. This breadth offers a great challenge in responding
to the charge “to assess the achievements of the last 50 years of turbulence research and
to identify future challenges that still remain” given to this Colloquium. The challenge is
daunting even in the relatively limited context of the present review. Here, some topics are
reviewed in magnetohydrodynamic (MHD) turbulence, and its close relatives in plasma
physics, such as Guiding Center Fluid or two-fluid (Hall) MHD. Experimental techniques,
computing technology, remote sensing methods, and in situ spacecraft observations have
allowed ideas of MHD turbulence theory to deeply penetrate space physics, solar physics,
astrophysics, cosmology laboratory plasma and fusion physics, geophysics and planetology,
and numerous materials science and engineering applications. Recognizing the futility of
engaging all of these subjects here, this review will focus on some advances that relate
these new subjects to classical turbulence ideas, while touching on associated applications,
mainly in the solar wind, the corona, and laboratory electron plasmas. In the conclusions
section, a brief and incomplete attempt will be made to point toward some important
subjects that are entirely neglected here.
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2 W.H. Matthaeus et al.

2. Models and physical quantities of interest

A plasma, described here as an electrically conducting gas or fluid, evolves in response to
both mechanical and electromagnetic forces. To describe its dynamics in a simple way, one
can begin with the momentum equation for hydrodynamics, and add a Lorentz force on the
fluid elements. This depends on the low-frequency magnetic field and the electric current
density. The magnetic field can then be advanced in time through Faraday’s law, with a
closure based on Ohm’s law. For simplicity, as in hydrodynamic turbulence, the focus is
often on the constant density incompressible model, which provides an adequate context
for the issues of MHD turbulence that are of primary concern here (see [18]). Ignoring
compressible effects necessarily discards at the onset important and detailed features of the
plasmas that MHD is intended to approximate. Nevertheless, this is a quick way to arrive
at the study of the nonlinear scale-to-scale couplings that are at the core of the turbulence
problem. The problem of compressible plasma turbulence is much larger and is entirely
outside the current scope apart from a few remarks below and in the conclusions.

The incompressible MHD model, in terms of the fluid velocity u and the magnetic field
B, involves the momentum equation

∂u

∂t
+ u · ∇u = − 1

ρ
∇p + 1

4πρ
(∇ × B) × B + ν∇2u (1)

and the magnetic induction equation

∂B

∂t
= ∇ × (u × B) + µ∇2B. (2)

The plasma density ρ, the kinematic viscosity ν, and the magnetic diffusivityµ, are assumed
to be uniform constants. Therefore, both the velocity and magnetic field are solenoidal,
∇ · u = ∇ · B = 0. The pressure p, as in incompressible hydro, provides a constraint that
maintains incompressibility, and is determined by taking the divergence of Equation (1).
The dimensionless Reynolds number R = uL/ν (where u is a typical velocity and L a
typical length scale) and magnetic Reynolds number Rm = uL/µ are measures of the
relative strength of the non-linear terms and linear (dissipative) terms in the dynamical
equations. Highly turbulent MHD occurs at high values of R and Rm.

We recall that MHD is frequently applied to space and astrophysical plasmas for which
the derivation of the model is not so clear as one would like. This contrasts the more
firm conceptual basis hydrodynamics or gas dynamics, which rests either on macroscopic
or perturbative (such as Chapman Enskog expansion) approaches given in standard texts
on statistical mechanics. For plasmas with low collisionality, the basic structure of MHD
emerges from conservation of mass, momentum, and energy, along with the Maxwell–
Ampere and Faraday laws, upon ignoring displacement current and adopting a suitable
form of Ohm’s law. However, in some applications, there may not be a clear path to closing
the system with a single isotropic pressure field, or a convincing calculation of viscosity,
resistivity, and other transport coefficients such as thermal conductivity. The study of
the origin of dissipation in space and astrophysical plasmas leads to problems of great
importance and difficulty, as does the investigation of the physics of the pressure tensor.
Many topics relating to the kinetic physics of the solar wind have been studied extensively
(see, e.g., [88]). Equally difficult and important problems arise in connection with boundary
conditions that might need to be imposed, as the number and type of imposed conditions
will differ in plasma and fluid models.
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A customary approach in numerical work is to employ scalar dissipation coefficients,
with values based on numerical limitations of spatial resolution rather than on physical
realism. For turbulent MHD, this is justified in part by assuming that the non-linear cascade
is mainly from large to small scales, and the kinetic dissipation mechanisms act to absorb
whatever energy arrives at small scales through spectral transfer. This is only partially sat-
isfactory, and a more comprehensive theoretical understanding of the nature of dissipation
in low-collisionality MHD applications is desirable, though it may be neither simple in
nature nor of universal form. On the optimistic side, when observations are available, e.g.,
for the solar wind [29], one sees a broad inertial range that separates energy-containing
and dissipation ranges [77]. One can infer an effective Reynolds number for the solar
wind in this way. Ignoring the difference between viscous and resistive dissipation, one
might employ the hydrodynamic estimate of the dissipation wavenumber kd = (ε/ν3)1/4.
Using the Taylor–von Karman estimate of the decay rate ε = u3/λ, this can be cast in the
form kdλ = R3/4, or R = (kdλ)4/3, where R is the Reynolds number. The quantity kdλ is
approximately the bandwidth of the inertial range. Therefore, for a three to four decades
inertial range (e.g., the solar wind, approximately), one has R ≈ 105 (see, e.g., [169]). For
the lower solar corona, a five to six decades inertial range is estimated, so R ≈ 108. For
such high Reynolds numbers, the MHD approximation becomes progressively better at the
larger scales.

The energy is a quantity that garners much attention in hydro and in MHD, because
the non-linear couplings in the fluid equations do not change their value, and therefore it is
meaningful to speak of a “cascade” that exchanges energy among scales without changing
the total amount present. In the high-Reynolds-number cascade, there are many couplings
that drive larger scale structures, and many that drive smaller scale structures. When there is
a source of energy at large scales, and either dissipation (or for some other reason a deficit)
of energy at small scales, then the latter class is dominant, sometimes by only a modest
margin. This effect leads to a net transfer of energy from large to small scales. We will
say more about this later. For now we call attention to a feature of MHD that distinguishes
it from simple hydrodynamics – namely the potential presence of more than one cascade.
This is caused by the fact that there is more than one quadratic quantity that is preserved
by MHD nonlinear couplings.

For homogeneous (periodic) incompressible MHD with zero mean magnetic field,
there are three (known) ideal quadratic invariants: energy, E = 〈|v|2 + |b|2〉, cross-helicity
Hc = 〈v · b〉, and magnetic helicity 〈b · a〉. Here, b = ∇ × a and a is the magnetic vector
potential. There is a lot more that can be said about the role of these additional invariants,
and more will follow in later sections, but for now we note that the presence of as many as
three conserved quadratic fluxes in an “inertial range” restricts the dynamics in important
ways and gives rise to interesting effects such as inverse cascade, enhancement of nonlocal
couplings, and special properties of solutions such as 1/f noise. (In hydrodynamics, there
are two invariants – energy and kinetic helicity – but the latter is often viewed as of less
importance than the additional ideal invariants of MHD. See [70].

The magnetic field may contain a uniform part B0 (below, the “DC magnetic field”) or a
smoothly varying part (which we identify as a local mean magnetic field) plus small-scale
fluctuations b, that is, B = B0 + b. The large-scale magnetic field supports propagation of
hydromagnetic waves; here, for the incompressible case, we call these Alfvén waves [6, 7,
106, 125]. These waves are fluctuations transverse to the mean magnetic field, propagating
along the mean magnetic field direction at the Alfvén speed VA = B0/

√
4πρ.

Even the simplest MHD case, assuming incompressibility, isotropy, stationarity, and
homogeneity, is more complex than hydrodynamics. There are two distinct fields to deal
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4 W.H. Matthaeus et al.

with, the magnetic and velocity field, and additional complexity due to Alfvén wave propa-
gation effects. There are at least two classes of timescales involved, the non-linear time and
the Alfvén crossing time. Moreover, the large-scale magnetic field introduces a preferred
direction and anisotropic effects on the fluctuations are present.

Here, we arrive at a major difference between fluid and MHD turbulence. Unlike fluid
turbulence, the nonlocal effect of large scales upon the small scales, described earlier
as “sweeping,” is an important issue for MHD turbulence. Beginning with the work of
Iroshnikov [65] and Kraichnan [71], it has been argued that such effects play a significant
role in MHD turbulence, even in the case of absent DC magnetic fields. If there is a
strong, large-scale magnetic field, the small-scale fluctuations are subject to a sweeping-
like effect due to Alfvén wave propagation. To discuss this, it is useful to write MHD in
a more symmetric form, in terms of the so-called Elsässer fields, z+ = u + b/

√
4πρ and

z− = u − b/
√

4πρ

∂z±
∂t

∓ VA · ∇z± = −z∓ · ∇z± − 1

ρ
∇P + µ∇2z±, (3)

where we have explicitly separated a term involving the large-scale magnetic field (written
here in terms of the Alfvén velocity VA). For simplicity, we assumed ν = µ. The total
pressure P = p + B2/8π acts to enforce the constraints ∇ · z± = 0.

Either z+ = 0 or z− = 0 provides exact solutions of the ideal MHD equations. The
nonzero field is often said to correspond to wave packets that propagate along the mean
field direction. This description can be misleading because the “packets” may not be lo-
calized, and also may not propagate. Nonpropagating fluctuations with wavevectors strictly
perpendicular to the mean magnetic field have zero phase speed. In any case, one sees from
the MHD equations that both type of fluctuations z± are needed for the non-linear terms to
be nonzero and sustain turbulence [42, 71].

Kraichnan [70] noted that the mean magnetic field sweeps the small-scale structures
which interact and during that time non-linear transfer of energy between length scales
occurs (in the Kraichnan picture the “wave packets” suffer brief “collisions” during which
energy transfer occurs). One can see then that the mean magnetic field induces an inhibition
of the nonlinear energy cascade [35].

For high-Reynolds-number MHD turbulent flows in astrophysical and space environ-
ments, there is scale separation to distinct physical processes at large and small scales.
Specifically, one divides the dynamics into a small-scale part that contains “small–small”
and “large–small” couplings, and a large-scale part (see [1,176]), reminiscent of k-epsilon
and other hydrodynamic turbulence modeling approaches [82]. This type of “turbulence
transport theory” generalizes WKB theory for MHD and plasma waves [7, 60], and has
proven useful in mapping turbulence amplitudes across large distances within the corona
and heliosphere [23,175]. Adaptations of transport theory can apparently help explain both
the origin of the solar wind [38, 166] and the highly nonadiabatic profile of temperature
throughout the interplanetary medium [24, 39]. Due to space and time limitations, we will
not review transport theory further, but concentrate on theories of homogeneous and/or
local processes in MHD turbulence and its related aspects.

3. Energy decay

A central result of turbulence theory is the similarity decay of energy (per unit mass) for
the free decay problem [66]. For moderate to high Reynolds numbers, the rate of decay of
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Journal of Turbulence 5

energy becomes independent of viscosity, and is governed by the action of the large-scale
eddies. The basic physical content of this simplest turbulence phenomenology is captured
in the equations for decay of energy per unit mass U 2 and the similarity length scale L,
namely

dU 2

dt
= −αU

3

L
;

dL

dt
= βL. (4)

During similarity decay of isotropic turbulence, the correlation functions are stretched and
recalled according to

R(r) = U 2(t)R̂(r/L(t)). (5)

For MHD, the analogous development proceeds by forming the two-point correlation
functions of the Elsässer fluctuations, and examining the conditions for a similarity solution
[168]. For globally isotropic MHD turbulence (lacking an imposed DC magnetic field), the
consistency conditions for a similarity solution, in terms of Elsässer energies Z2

+ and Z2
−

and associated length scales L+ and L−, are

dZ2
+

dt
= −α+

Z2
+Z−
L+

;
dZ2

−
dt

= −α−
Z+Z2

−
L−

, (6)

dL+
dt

= β+Z−;
dL−
dt

= β−L+, (7)

where α±, β± are constants. Note that these equations require two distinct length scales
L+ �= L− whenever the cross-helicity is nonzero and Z+ �= Z−.

Variations of the basic phenomenology of MHD decay include consideration of the
influence of very large-scale eddies on similarity decay of energy [52], and heuristic
treatments of anisotropy [13] and cross-helicity [89]. These suggested variations of the
theory make assumptions that show clearly how properties of the spectral distributions can
directly influence energy decay.

When a DC magnetic field is present and the fluctuations are assumed to be axisymmetric
about this direction, one allows in principle at least four characteristic lengths L parallel
‖ and perpendicular ⊥ for both + and − fluctuations. One finds that additional restriction
needs to be imposed to find a similarity solution. One solution is that the parallel and
perpendicular length scales remain in constant proportion to one another for all relevant
time scales, that is, L‖

+/L⊥
+ = q+, and L‖

−/L⊥
− = q−, for constants q±.

These requirements for similarity decay hint at nonuniversal properties of MHD tur-
bulence because ratios such as L+/L− and q± can apparently take on any value. This
leads in principle to many types of MHD turbulence. More discussion on this will appear
later. Note that even if there is not a universal decay law, there still may be interesting
families of similarity decay. It’s just that having more than one cascaded quantity compli-
cates the picture. Similarity decay in three-dimensional (3D) MHD has been examined in
simulations [18, 63], but usually employing only one length scale. The impact of multiple
dimensionless parameters, and multiple cascades, complicates MHD and can provoke us
to question whether “universality” remains a useful concept (see [168]), but this remains
an open and hotly discussed issue.
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6 W.H. Matthaeus et al.

On the narrower question of existence of similarity decay laws, it is interesting to note
that an analogous situation occurs in two-dimensional (2D) hydrodynamics, where energy
E = 1

2 〈u2〉 and enstrophy	 = 1
2 〈|∇ × u|2〉 are both inviscid quadratic invariants, and both

a direct and inverse cascade are possible [74]. This leads to interest in self-organized
behavior in the long time limit of decay, which will be discussed further below in Section
6. Here, we show some evidence that this type of system can engage in a similarity decay
of the direct cascaded quantity – in this case, enstrophy 	. The system in question is a
Penning trap containing a pure nonneutral electron plasma, operating in a parameter range
in which the cyclotron frequency is much larger than the plasma frequency. In this regime,
the equation of motion for the coarse-grained number density of electrons is identical to
the vorticity equation in 2D hydrodynamics. Meanwhile, since the E × B drift velocity
is divergenceless, and the electric potential due to the electron charges obeys a Poisson
equation, there is an almost complete analogy between the fluid-scale electron motions in
the Trap, and the equations for a 2D incompressible fluid in a circular container. See [43].

To a reasonable degree of approximation, the electron density n(r, θ, t) follows 2D,
z-averaged, E × B drift motion [43], where

vD = −c∇φ × ẑ

B
, ∇2φ = −4π |e|n, (8)

where φ is the electrostatic potential and E = −∇φ. For this system, vD is equivalent to
the 2D fluid velocity v, with the vorticity ω proportional to electron number density n, and
stream function ψ proportional to −φ the potential. Because of this analogy, the evolution
of the system is governed by the 2D NS equation for one-sign vorticity,

∂ω

∂t
+ (v · ∇)ω = ν∇2ω, (9)

where v = ∇ψ × ẑ and ∇2ψ = −ω. The term involving viscosity ν is familiar in hy-
drodynamics but not well-motivated in the guiding center plasma case, as the dissipation
mechanisms may differ significantly in NS and Penning trap cases [76].

The three-dimensionality of the real experiment must be neglected, and differences
between the nonideal effects in the electron plasma and 2D hydro must be neglected. Inter-
estingly, [140] good agreement is found in comparing 2D hydrosimulations and Penning
Trap data (see Figure 1) when the boundary conditions in the simulation are chosen to be
free-slip, even though there is viscous diffusion in the interior. This boundary condition
corresponds to a perfect conductor, having constant potential.

Figure 1 shows important features of 2D hydro that are also analogous to features of
MHD in both 2D and 3D. In particular, one sees the simultaneous formation of large-scale

Figure 1. Vorticity images showing evolution of Penning trap data [140]. Reproduced with per-
mission from Rodgers et al., Phys. Rev. Lett., 2010, copyright (2010) by the American Physical
Society.
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Journal of Turbulence 7

coherent structures that persist for long times, and the small-scale features of the cascade
including small-scale (presumably) dissipative structures. In 2D hydro, the observed transfer
to large scales is an inverse transfer of energy. The direct transfer to small scale is an
enstrophy cascade. In 2D MHD, the inverse transfer is that of mean square magnetic
potential [48–50, 101] and the direct cascade is an energy cascade. In 3D MHD, the direct
cascade is again of energy, and when magnetic helicity if present there can be an inverse
cascade. The behavior of cross-helicity is intermediate (see [158]).

If we assume a similarity decay for 2D hydrodynamics or for the Penning trap system,
then it is possible to state a modified decay law that turns out to work reasonably well. The
needed modification is based on the recognition that much of the vorticity distribution is
somehow “destined” to be locked up in the long-lived metastable state that is eventually
achieved in Penning trap relaxation (see the following section). Suppose this metastable
state has an enstrophy 	ms . If one removes 	ms from the budget of enstrophy that has an
impact on the direct cascade, then a similarity law can be written for the remaining “free
enstrophy” 	For excess above this long-term value [141]. To continue, assume that the
global enstrophy decay timescale τ depends only on	F and a characteristic length scale l.
The only dimensionally consistent choice is τ = 1/

√
	F. This is analogous to τ = l/

√
E

in 3D, where l is a correlation length. Then, free enstrophy changes in time according to

d	F/dt = −a 	F
3
2 , for which the solution is

	F

	F
0

=
(

1 + 2 a
√
	F

0(t − t0)

)−2

. (10)

Here, 	F
0 = 	F(t0) is the initial free enstrophy. For an initially disordered fluid with large

	F
0, Equation (10) gives 	F ∼ t−2 for a

√
	F

0 t � 1, as in the isotropic case predicted

by Batchelor [8]. The conditions for turbulence to be of sufficient strength to justify a
similarity law such as Equation (10) are not entirely clear, although large 	F

0/	
F
ms would

seem favorable.
Figure 2 shows a test of the proposed similarity decay of free enstrophy, employing data

from the University of Delaware Penning trap [105]. The final metastable state enstrophies
for each experimental run were used to compute 	ms , in terms of which the free enstrophy
was computed. A variety of different experimental initial conditions were used in the
comparison. It is apparent that the similarity decay of free enstrophy is a reasonable
hypothesis for these datasets. This is encouraging with regard to extending the von Karman–
Howarth analysis to more complex systems involving more than one cascaded quantity, such
as MHD in 2D and helical MHD in 3D.

4. Spectra and variability

Probably the most famous result from classical hydrodynamic turbulence theory is the
inertial range spectrum in which the omnidirectional energy is distributed across a wide
range of (inertial range) wavenumbers k with a power-law spectrum varying as k−5/3.
For hydrodynamic turbulence in the inertial range, the only important timescale is the
local non-linear time τnl = (kuk)−1 for wavenumber k and uk the contribution to the
speed from excitations near k. Then, the energy decay rate can be written ε ∼ u2

k/τsp,
for spectral transfer time τsp. However, here the only choice is τsp = τnl , so using u2

k =
kE(k) for omnidirectional energy spectrum E , one finds the Kolmogorov spectrum E(k) =
Cε2/3k−5/3.
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8 W.H. Matthaeus et al.

Figure 2. Scaled free enstrophy versus adjusted nonlinear time [140]. Reproduced with permission
from Rodgers et al., Phys. Rev. Lett., 2010, copyright (2010) by the American Physical Society.

For MHD, the situation is complicated by the multiplicity of available time scales, thus
rendering ambiguous the spectral transfer time, which could, for example, depend on both
non-linear time and Alfvén time. For zero cross-helicity, let us designate the amplitude
at k as Zk = Zk+ = Zk−, and write the large-scale magnetic field as B0. This may be
either externally applied, or B0 ∼ Z if it is due to the large-scale fluctuations themselves.
Then, for the Kolmogorov-like theory of isotropic MHD, one chooses τsp = τnl as in the
hydro case, and the Kolmogorov spectrum is reproduced with E(k) = Cε2/3k−5/3 being the
omnidirectional spectrum of the total incompressible energy. The theory of Kraichnan [71]
supposes that the k-independent transfer of energy εmust be in direct proportion to the triple
lifetime. Then, ε = τ3(k)[E(k)]2k4 = τ3(k)Z2

k/τ
2
nl(k). One notices here that the spectral

transfer time in principle differs from the non-linear time, and must involve the lifetime
of the triple correlations. Kraichnan chooses the triple lifetime to be the Alfvén time
τ3(k) = τA(k). From this, it transpires that the energy spectrum is E(k) = CKrε

1/2B
1/2
0 k−3/2.

Pouquet et al. [133] made the important observation that the Alfvén time may be due to a
uniform large-scale field or else the large-scale magnetic fluctuations, which have a similar
influence on much smaller scale inertial range fluctuations.

For finite cross-helicity, Z+
k �= Z−

k . For this case and assuming a Kolmogorov-
like spectral theory, the development only involves the local non-linear times scales
τ±
nl (k). Then (see [71, 177]), one finds that ε± = C±(Z±

k )2/τ±
nl = C±k(Z±

k )2Z∓
k =

C±k5/2E±(k)
√
E∓(k). From these two relations, we conclude that the steady Kolmogorov-

like high-Reynolds-number MHD energy spectra are E±(k) = C±ε
2/3
± [ε±/ε∓]1/3k−5/3.

Thus, the non-linear time scales in the steady inertial range, can be written as τnl(k) ∼
[C1/2

± ε
1/3
± [ε±/ε∓]1/6k2/3]−1. We note that the Elsässer energy spectra shown in Figure 3

admit a range of wavenumbers in which the spectral form roughly varies in accord with a
k−5/3 behavior. Such wavenumber spectra are consistent with local scale-to-scale transfer
dominated by nonlinearity and strain. However, the physics of time decorrelation is distinct
and may still depend on other effects and therefore other available MHD time scales.

One example is the advection (or sweeping) characteristic time at scale 1/k, which
may be expressed as τsw(k) ∼ (kurms)−1. Here, the root-mean-square turbulent velocity
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Figure 3. Elsässer energy spectral densitiesE+ (blue bullets) andE− (red open squares) as a function
of the wavenumber k. The dashed lines represent (see text)E± = C±ε

2/3
± [ε±/ε∓]2/3k−5/3, forC± = 2,

ε+ = 0.26, and ε− = 0.24 [147]. Reproduced with permission from Servidio et al., Europhys. Lett.,
2011, copyright (2011) by the European Physical Society.

urms = 〈|u|2〉 is a global quantity that is typically dominated by contributions from the
large scales. Analogously, a characteristic Alfvèn time (averaged over direction, see [71])
can be defined as τA(k) ∼ (kbrms)−1.1 The root-mean-square magnetic field brms could, in
principle, include contributions from both the fluctuations as well as a mean (uniform or
very large-scale) magnetic field. For the simulation employed here, brms is due only to
fluctuations, which are assumed to have an isotropic distribution. It is worthy of note that
the sweeping and Alfvénic propagation time scales both vary as ∼k. Finally, the viscous
dissipation time is defined as τd ∼ (νk2)−1. In the inertial region, for reasonably small values
of ν, both sweeping- and eddy-turnover times are much smaller than the diffusive time.
The wavenumber λd at which the dissipation and nonlinear times are equal, τnl(1/λd ) =
τd (1/λd ), denotes the termination of the inertial range, and serves to define the Kolmogorov
dissipation scale λd . Generally speaking, in high-Reynolds-number turbulence, and for
wavenumbers k in the inertial range, we expect an ordering such that τnl(k) > τ±

nl (k) >
τsw(k)  τA(k) > τd (k). Indeed, such ordering allows among other things, the possibility
of quasi-equilibrium properties within the inertial range.

The topic of the “correct” inertial range power-law index for MHD turbulence is another
perennially discussed hot topic. The ambiguity between Kolmogorov −5/3 and Kraichnan
−3/2 scaling is often debated, and to some extent the dichotomy can be resolved simply
by allowing the lifetime of the triple correlations to be a composite of several effects [133],
so that

1

τ3(k)
= 1

τnl(k)
+ 1

τA(k)
+ . . . . (11)

Indeed, using just the Alfvén and non-linear time contributions to τ3 one can find a “spectral
law” that interpolates neatly between −5/3 and −3/2 as the ratio of these two effects varies.

In the discussion of energy spectra, it is traditional to appeal to examples. As we will
presently see, this is not necessarily reliable. Nevertheless, at this point, it is worthwhile to
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10 W.H. Matthaeus et al.

Figure 4. Magnetic energy spectrum from Voyager 2 data, taken from Matthaeus and Goldstein [90].
The spectral slope is very close to −5/3. Reproduced with permission from Matthaeus & Goldstein,
J. Geophys. Res., 1982, copyright (1982) by the AGU.

illustrate that the observed wavenumber spectrum of magnetic fluctuations in the solar wind
sometimes presents a very nice picture. Figure 4 shows an example of the one-dimensional
trace magnetic field spectrum computed from an interval Voyager 2 data [91]. It is probably
fair to say that this spectrum is “somewhat typical” and lies close to the 5/3 prediction. The
velocity field spectrum is often a little different [128], which is implied by the nonconstant
Alfvén ratio Ev(k)/Eb(k) [91]. Of course, the steady spectral prediction, assuming local
transfer and ignoring intermittency (see [142]), pertains only to the ideally conserved flux
of total energy, u2 + b2, so this disparity is not of essential concern. Furthermore, the
exchange of energy between velocity and magnetic field is known to be highly nonlocal [1].

Unfortunately, the solar wind is not so cooperative in presenting a single picture that
one can claim evidences universality of one theoretical formulation. For example, Vasquez
et al. [163] computed wavenumber spectra using Taylor hypothesis from 960 intervals of
single-spacecraft magnetic field data measured by the ACE spacecraft. The apparent inertial
range spectra were fitted with a power-law ∼f −q in the (spacecraft frame) frequency range
of 8 mHz to 0.1 Hz. The interval length used is one to several hours. The typical correlation
scale, confirmed by multi-point spacecraft observation [5, 95] is about 106 km, which
corresponds to about 40 min using a 400 km/s typical solar wind speed. Therefore, the
intervals used in the Vasquez et al. study are a few correlation lengths in duration and
should be long enough to obtain good estimates of the spectral index, with some spread
due to finite sample size. The distribution of spectral indices q so obtained are shown
in a histogram, reproduced here in Figure 5. One see that the distribution is not only
approximately centered on the Kolmogorov value of 1.67, but also substantially overlaps
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Journal of Turbulence 11

Figure 5. Histogram of the slope of the energy spectrum from solar wind data at 1 AU [162].
Reproduced with permission from Vasquez et al., J. Geophys. Res., 2007, copyright (2007) by the
AGU.

with the 1.5 Kraichnan–Iroshnikov value. and has a half-width that includes values from
about 1.4 to 1.8.

Of course, the solar wind is not a controlled experiment, so some of this observed vari-
ation of spectral index may be from transient events, variations and nonsteady conditions,
or even non-MHD effects. Another possibility, that variation of q is due to anisotropy, is
discussed later in the following section.

In contrast to the solar wind observations, computer simulations provide controlled
experiments. Nevertheless, the conditions imposed in simulations can differ in subtle ways
according to variations in approach, including diverse forcing functions, boundary condi-
tions, initial conditions, ratios of length scales, etc. Another major factor is the presence
and strength of an applied uniform magnetic field. All of these can influence results on the
spectral distributions and inertial range spectral indices obtained in simulation. This point
was emphasized in a striking way in a recent paper by Lee et al. [81]. In this study, three sim-
ulation results in 3D MHD are contrasted, each starting from approximately the same global
energy, cross-helicity, and magnetic helicity, and having the same Reynolds numbers. Even
the energy spectra are very similar, each initial condition being an MHD generalization
of the Taylor Green vortex. When the simulations are analyzed at the time of peak dissipa-
tion, the results (see Figure 6) show very different spectra, k-dependence of Alfvén ratio,
and other parameters such as the ratio of Alfvén to nonlinear times. The compensated total
energy spectra are shown for these three runs, reproduced from the Lee et al. paper [81].

The kind of variability seen in the aforementioned solar wind and simulation results sug-
gest that MHD turbulence may be rather more variable than hydrodynamic turbulence. The
problem with variability runs even deeper for “inverse cascade systems” such as 2D hydro,
2D MHD, 3D MHD, the Penning trap electron plasma, and similar systems. This is because
such systems have a strong tendency to accumulate excitations in a only a few of its degrees
of freedom, thus setting up a system that through enhancements of nonlocal interactions,
can generate low-frequency 1/f noise [40]. This type of scale-invariant noise is particularly
frustrating to practical attempts to uncover typical or average behavior. Systems with 1/f
noise have long time tails on temporal correlation functions that thwart attempts to invoke
the classical ergodic theorem in estimating ensemble averages though time integration. In-
terestingly, this feature seems to be absent in homogeneous hydrodynamic turbulence, but
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12 W.H. Matthaeus et al.

Figure 6. Total energy spectra (a) compensated by k5/3 and averaged over δt = 0.5 (1.52 turnover
times) about the maximum of dissipation and ratio of nonlinear to Alfvén time scales as a function of
wave number (b) for three runs from different initial fields but with the same initial energy spectra.
Slopes are given only as a reference. The three arrows indicate the magnetic Taylor scale. Note that
the three spectra follow noticeably different spectral laws and possibly different scale dependence
for their time scales as well [80]. Reproduced with permission from Lee et al., Phys. Rev. E., 2010,
copyright (2010) by the American Physical Society.

is present in systems that admit quasi-invariants, thus emulating temporarily the properties
of systems that are strictly multiple ideal invariant inverse cascade systems [41,104]. It is of
interest that 1/f noise is observed in dynamo experiments and in the solar wind [96, 132].

5. Anisotropy

As mentioned in the Introduction, the mean magnetic field imposes a preferred direction
on MHD turbulence that cannot be removed by a Galilean transformation [71]. One of
the associated effects, recognized long ago in laboratory plasma devices [139, 178] is the
generation of fluctuations that maintain stronger correlation along the magnetic field than
perpendicular to it. This effect was simulated first in 2D MHD [149], and later in 3D [124].
These studies showed that spectral transfer is unimpeded in the perpendicular direction in
k-space, but is suppressed in the parallel direction. Non-linear couplings that pump energy
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Journal of Turbulence 13

to smaller scales having larger perpendicular gradients are relatively unaffected by wave
propagation effects. On the other hand, couplings that produce stronger parallel gradients
are suppressed by Alfvén-wave-like couplings that become ever stronger as the mean field
strength is increased. This reasoning led to a rederivation of the equations of Reduced MHD
(RMHD) [156] using an expansion in a small parameter that is in effect ε = b/B0 [111] for
r.m.s. fluctuation strength b. Order-one nonlinear couplings are found to occur for values of
parallel wavenumber satisfying k‖ < εk⊥. Thus, strong RMHD couplings occur when the
large-scale perpendicular Alfvén time 1/(bk⊥) is less than the parallel Alfvén time τA(k‖),
or bk⊥ > B0k‖ [173]. Later, Goldreich and Sridhar [54] in effect refined this condition
by employing the local non-linear time τnl(k) = 1/(bkk⊥) instead of the transverse Alfvén
time 1/(bk⊥), and assuming steady state turbulence. The marginal condition for RMHD
then becomes bkk⊥ ∼ B0k‖, which is known as “critical balance.”

Independent of details, all of the above experimental, theoretical, and simulation results
point toward the preference of MHD turbulence to excite more strongly those fluctuations
that have stronger perpendicular, rather than parallel, gradients.

Evidence has also been accumulating that the solar wind contains a strong admixture
of fluctuations that are in the above sense, quasi-two-dimensional [58]. There are a number
of ways by which solar wind anisotropy can be measured. One approach [93] is to measure
a large number of two-point correlation functions (employing the Taylor hypothesis) at
1AU, with the radial direction, along which the observations are made, varying from
interval-to-interval relative to the mean magnetic field direction. After accumulating the
estimates, assuming axisymmetry about the mean field, and averaging, the result is the
so-called Maltese cross-correlation, shown in Figure 7. This observation led to use of a
“two-component model” for solar wind fluctuations that no only proved useful in scattering
theory and observations [14,148] but also led to direct observational tests of anisotropy [15]
which confirmed that this parameterization of anisotropy corresponds reasonably well to
observed solar wind properties. It is also interesting that considerations of the low-Mach-
number approach to incompressibility in MHD at low to moderate plasma beta (thermal
pressure over magnetic pressure) gives rise in a natural way to geometrical restrictions that
correspond directly to the two-component model [174].

6. Global relaxation

It has been recognized for quite some time that the magnetic field plays a special role in elec-
trodynamics, leading the possibility of global relaxation processes that favor special final
states (e.g., [34,170,179]). This approach gained favor in the 1970s when Taylor [159,160]
offered a physically motivated explanation for relaxation to force-free states in Reversed
Field Pinch experiments, often regarded, along with spheromaks [26] as the canonical lab-
oratory devices for observation of MHD activity. This revival of relaxation theory occurred
almost simultaneously with the description of inverse cascade in 3D MHD, driven by finite
magnetic helicity [46]. The inverse cascade phenomenon in driven MHD is associated
with the requirement that the nonlinear couplings must simultaneous conserve two ideal
invariants, the energy E and magnetic helicity Hm. In analogy to its 2D hydrodynamic
antecedent [72], the transfer of turbulent excitation to higher wavenumber is accompanied
by a concomitant transfer to lower wavenumbers, in order to simultaneously respect both
conservation laws.

It is possible to establish the possibility of inverse cascade in a system such as 3D
MHD by appeal to the absolute equilibrium Gibbs ensemble for an ideal Fourier Galerkin
representation of the system, having a finite number of degrees of freedom, and exact set
of quadratic conservation laws, and a Liouville theorem for maintenance of the canonical
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14 W.H. Matthaeus et al.

Figure 7. Two-point autocorrelation of the magnetic field b · b′ as a function of coordinates par-
allel, and perpendicular, the mean magnetic field (axisymmetry assumed) in the solar wind at 1AU
from ≈ 600 days of ISEE-3 data. (From [93]). Reproduced with permission from Matthaeus et al.,
J. Geophys. Res., 1990, copyright (1990) by the AGU.

Gibbsian distribution [46, 72, 80, 145, 157]. When “Bose condensation” of a quantity into
the longest allowed wavelength modes occurs for the Galerkin system as its number of
included modes tends toward infinity, this is taken to be indicative of an inverse cascade
for the corresponding driven dissipative system. This activity has led to identification of
inverse cascades in 2D hydro, 3D MHD, 2D MHD, 3D Hall MHD, drift wave turbulence,
and other systems.

Adaptation of the same physical reasoning to the case of decaying turbulence, leads to a
set of selective decay principles [19,90,109,110] that describe potential relaxed states of an
MHD turbulent system. Schematically, if A is an inverse cascaded quantity and E a direct
cascade quantity, then the selective decay principle predicts that spectral transfer leads to
minimization of the ratio E/A, subject possibly to auxiliary constraints, and often limited
by allowed eigenmode structure (i.e., geometry). Selective decay is a broad dynamical
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Journal of Turbulence 15

relaxation principle that accounts for behavior such as Taylor relaxation and the tendency
for 2D MHD and hydro to evolve toward states characterized by long-lived large-scale
structures.

Searching for numerical evidence in MHD in support of selective decay led to the
realization that there can be competing relaxation processes in MHD turbulence. Selective
decay involves the energy and the magnetic invariant, but what about the third invariant,
the cross-helicity Hc?

It has long been known that minimizing energy subject to constant Hc leads to what
are sometimes called large-amplitude Alfvén waves, or “Alfvénic states” [6, 7, 106, 125].
Note that here familiar Alfvénic units are used. For incompressible MHD, these states are
described by v = b at all points in space, or v = −b at all points. These states (if permitted
by boundary conditions) persist for all time in the absence of dissipation, as they lead to
a full cancellation of the non-linear terms. The same solutions survive if a uniform mean
magnetic field B0) is added to the fluctuation b; for that case, the solutions propagate either
along v = b the B0 direction, or antiparallel to it (v = −b).

Large-amplitude Alfvénic states are in fact one of the defining characteristics of ob-
served solar wind turbulence and are frequently observed [9–12, 27, 29], especially in the
inner heliosphere. A classic example of Alfvénic turbulence in the solar wind from the
Belcher and Davis paper is shown in Figure 8.

Based on the special position occupied by Alfvénic solutions, and their observation
in space, Dobrowolney et al. [42] predicted that these states should emerge dynamically
from MHD turbulence. This was verified in closure theory [55], and subsequently seen to
emerge from turbulence evolution in 3D simulations [134] and in 2D simulations [92] (see
Figure 9). It is interesting to note that Alfvénic states appear to emerge from a dynamic

Figure 8. Twenty-four hours of magnetic field and plasma data demonstrating the presence of nearly
pure Alfvén waves. The upper six curves are 5.04-min bulk velocity components in km/s (diagonal
lines) and magnetic field components averaged over the plasma probe sampling period, in gammas
(horizontal and vertical lines). The lower two curves are magnetic field strength and proton number
density [12]. Reproduced with permission from Belcher & Davis, J. Geophys. Res., 1971, copyright
(1971) by the AGU.
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16 W.H. Matthaeus et al.

Figure 9. Evolution of the normalized cross-helicity ρ. Dashed line, random initial conditions; solid
line, Orszag–Tang vortex [133]. Reproduced with permission from Pouquet et al., Phys. Rev. A.,
1986, copyright (1986) by the American Physical Society.

alignment process that can be globally described by minimizing E for a specified Hc, or
minimizing 〈u2 + b2〉/〈u · b〉.

In the 1980s, with evidence emerging in simulations and experiments that magnetic-
invariant-driven relaxation such as selective decay indeed occurs, while also the solar wind
and other simulation results supporting dynamic alignment, the natural question to ask
was whether both can be realized. Unfortunately, the answer is immediately seen to be
negative, as can easily be demonstrated. 3D MHD selective decay (or Taylor relaxation)
requires minimizingE/Hm = (Ev + Eb)/Hm. This clearly requires thatEv = (1/2)〈u2〉 →
0. Therefore, one cannot also require that u = ±b unless both fields vanish.

How close can one get to states that compromise between the two principles? Ting et al.
[161] examined this issue in 2D MHD using simulations and developed an explanation for
observed final states based on minimizing energy subject to conservation of both the mag-
netic invariantA and the cross-helicityHc. The three-dimensional version of this study was
later carried out [158], using the same approach as employed by Ting et al. for 2D. The con-
strained minimum energy states [119,158,161], incorporating constraints from both selec-
tive decay and dynamic alignment principles, are determined from the variational problem

δ

∫
[(|v|2 + |b|2) − α1v · b − α2a · b]d3x = 0, (12)

where αi are Lagrange multipliers. The aforementioned Euler–Lagrange equation implies
that in the relaxed (long-time) state, equilibrium is characterized by long-wavelength states
that have the properties that

A1v = A2b = A3 j = A4ω, (13)
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Journal of Turbulence 17

Figure 10. Parameter space for evolution of 3D MHD spanned by axes that measure the ratios
Hm/E (indicative of selective decay) and Hc/E (indicative of dynamic alignment). Evolution of
a large number of simulations (a few are shown) demonstrates that most cases evolve toward the
extremal curve that is analytically computed by minimizing energy subject to constancy of both
Hm and Hc [158]. Reproduced with permission from Striling & Matthaeus, Phys. Fluids B, 1991,
copyright (1991) by the American Institute of Physics.

where A1, A2, A3, and A4 are constants related to the Lagrange multipliers, and a is the
potential vector (b = ∇ × a), j = ∇ × b is the current density, and ω = ∇ × v is the vor-
ticity. It is noteworthy that this principle predicts the parameter space curve (as illustrated
in Figure 10) toward which most numerically computed solutions eventually evolve.

The empirical demonstration that many simulation cases evolve toward the constrained
minimum energy curve is rather interesting, but falls short of being a predictive theory in a
few ways. First, there is no definitive way to determine precisely the position on the minimum
energy curve to which a particular simulation will evolve. Second, some simulations do not
evolve toward the curve, but rather get “lost” in the middle of the space, exhausting their
energy before they can evolve to a boundary. Others evolve toward the small region near
the origin labeled “IV” in Figure 10 which is characterized by a vanishing magnetic field.
This “hydrodynamic region” of behavior seems to be attained by turbulence with large-
scale, strong velocity shears. If sufficiently dominant, the strong velocity field might drive
zero cross-helicity fluctuations into the inertial range, thus destroying eventually the initial
Hc. If the magnetic helicity is insufficient to produce a strong selective decay effect, this
high shear turbulence can evolve toward a “hydrodynamic-like” state. It is interesting that
the highly Alfvénic states observed in the inner heliosphere [12] eventually evolve toward
lower cross-helicity as observed at 1AU and beyond [137]. One explanation offered for
this [138] is that the shear associated with high-speed–low-speed stream interfaces destroys
the cross-helicity, as in the aforementioned Region IV behavior. This addresses why the
solar wind apparently does not dynamically align.

It is apparent that selective decay and dynamic alignment are powerful but imperfect
(or at least incomplete) principle for understanding relaxation in MHD. Efforts to describe
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18 W.H. Matthaeus et al.

turbulent relaxation as precisely as possible some time ago once again turned attention to
the related field of 2D incompressible. Very long simulation runs in 2D periodic geometry
showed that the system approached the selective decay state with regard to some metrics,
but slowly [94] in part due to the tendency of isolated vortices to form [20,98]. As vortices
merge, with bursts of turbulent activity, the system ever more slowly approaches the target
state of selective decay. Further quantitative study revealed [112,113] that another principle,
i.e., that of maximum entropy, is an even better descriptor of the relaxation. In this, one
postulates an entropy of the form

S = −
∫
ω+ logω+ d2x −

∫
ω− logω− d2x, (14)

where ω = ω+ − ω−, while ω+ ≥ 0 and ω− ≥ 0. This allows for addition of the same arbi-
trary constant to both ω±, but for a “minimalist” prescription with ω+ω− = 0 everywhere
initially. At that moment, the aforementioned definition reduces to S = − ∫ |ω| log |ω|d2x,
while the full prescription in Equation (14) is appropriate for the time-dependent prob-
lem [112]. Upon employing standard variational methods, it is possible to derive an equa-
tion for the maximum entropy subject to the constraint of constant energy and signed
flux (see [112]). The “sinh-Poisson” equation that describes this relaxed state had been
derived earlier using a discrete line vortex representation [108], and the applicability of
that approach to decaying viscous continuum 2D turbulence was revived following these
computations (see, e.g., [21, 22, 135, 136]). It is noteworthy that the correlation coefficient
of the time-dependent computed solution with the selective decay state in these kinds of
numerical experiments eventually exceeds 90 or 95%, but the correlation with the maxi-
mum entropy state has been measured to be as high as 0.995. By now, this experiment has
been repeated numerous times.

One may of course wonder how robust this result is for various 2D hydro systems,
parameters, and initial conditions, and in view of prior experience with relaxation in 2D
MHD this would seem prudent. In fact, Huang and Driscoll [64] reported an experimental
observation that selective decay is more accurate than maximum entropy as a predictor
of an observed metastable state in the 2D hydro-like Penning trap electron fluid. Rodgers
et al. [140] reexamined this conclusion using a series of initial conditions for the electron
trap experiments that varied in their initial complexity and turbulence level. An example
of one such initial condition is shown in the left panel of Figure 1. The conclusion was
given that, for these particular experiments, the maximum entropy description worked at
least as well as selective decay, the two descriptions being about equivalent at low levels
of initial turbulence. For smaller scale more complex initial data, the maximum entropy
description became progressively more favored. There is the additional element of complex
plasma physics involved in these electron experiments, so the results may be considered
interesting, but not conclusive in the realm of fluid theory. However, it is noteworthy that
in both MHD and in 2D hydro, there is evidence that the distinct relaxation processes may
be operative and may compete, sometimes with one only slightly favored in the evolution.
Furthermore, initial data appear to be a significant factor in guiding the eventual relaxation.

The fact that a maximum entropy theory is a slightly better predictor of the final state
than is selective decay in 2D hydro is noteworthy in itself and may be viewed as ample
motivation to find suitable maximum entropy theories and predictions for 2D MHD and
3D MHD. However, in spite of some beginnings toward this type of theory (e.g., [110]),
there has not yet been to our knowledge a convincing demonstration of maximum entropy
in MHD turbulence.
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The aforementioned lack of clarity regarding relaxation and maximum entropy has
persisted for several decades in spite of heavy mathematical methods that have been brought
to bear on the subject of fluid entropies (e.g., [51]). The latter reference demonstrated in
a rather abstract mathematical way that solutions of the Navier–Stokes equations with a
single signed vorticity after long times, approach an Oseen vortex solution that is related to
a maximum entropy functional such as that given earlier. A recent publication clarified this
conclusion in a way perhaps more accessible to physicists [115]. Temporarily adopting the
notation of that paper, we can consider solutions of the Navier–Stokes equation in infinite
2D space without boundaries and initially a single sign of vorticity. Suppose then that the
entropy Equation (14) is maximized subject to conservation of integrated vorticity

	 ≡
∫
ω d2x = const (15)

and the relation

� ≡
∫
ωr2

t
d2x = 4ν	+ 1

t

∫
r2ω0 d

2x, (16)

which from the equation of motion, is independent of time. It is possible then to show that
constrained maximum entropy solutions are of the form

ω = 	2

π�t
exp [−	r2/�t]. (17)

Then, as t becomes large, � → 4ν	, and one finds

ω =⇒
t→∞

	

4πνt
exp

[−r2

4νt

]
, (18)

which has the form of the standard Oseen vortex solution of the Navier–Stokes equation.
This calculation shows that at least for this one simple case, a maximum entropy solution
will emerge at long times. It may be the only case for which a unique solution to the
turbulent relaxation question is known.

At this point, it may be worthwhile to remark upon boundary conditions and how they
might affect the evolution of turbulence, particularly in computations. It has become an
almost unquestioned article of faith that the important features of turbulence can be recov-
ered by imposing rectangular periodic boundary conditions of sufficiently high resolution.
This has been true even though some investigators were aware that periodicity imposed
some undesirable limitations: for example, they prohibit the existence of any net flux of
vorticity or electric current to pass through the computational volume, and have other
drawbacks [114]. In recent years, there have been some decaying 2D turbulence compu-
tations that have revealed strong differences in their late time evolution that are different
for differing boundary conditions. In addition to the unbounded, relaxing Oseen vortex
calculation just described, there have been 2D decaying turbulent computations that have
shown widely different results for no-slip circular boundaries [83, 84], no-slip rectangular
boundaries [36, 59], free-slip circular boundaries [140], and stress-free circular bound-
aries [84]. All these have been for Navier–Stokes situations, and MHD analogs are only
beginning to be explored. It seems clear that there are vast regimes in turbulence situations
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20 W.H. Matthaeus et al.

Figure 11. Scaling exponents ζp for 3D MHD turbulence (diamonds) and relative exponents ζp/ζ3

for 2D MHD turbulence (triangles). The continuous curve is the She–Leveque model, the dashed
curve the modified model for MHD, and the dotted line the IK model. (Muller & Biskamp, PRL,
2000) Reproduced with permission from Biskamp & Muller, Phys. Plasmas, 2000, copyright (2000)
by the American Institute of Physics.

where boundary condition effects strongly affect the evolution of the turbulent field in ways
that cannot be captured with rectangular periodic assumptions and theories that assume
homogeneity and isotropy. It may be expected to be inevitable that less emphasis will be
placed on Fourier spectra and dimensional analysis for bounded problems.

7. Intermittency, discontinuities and magnetic structures

Simulations of magnetohydrodynamic (MHD) turbulence [17, 131] and solar wind obser-
vations [32, 61, 87, 153] each show evidence for intermittency in the form of characteris-
tic small-scale structures. A familiar, theoretically motivated approach to characterizing

Figure 12. The scaling behavior of the PdF for δb as calculated from the experimental data (white
symbols) in the fast streams. The full lines represent the fit obtained through a model [152]. Repro-
duced with permission from Sorriso-Valvo et al., Geophs. Res. Lett., 1999, copyright (1999) by the
AGU.
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Figure 13. PDF of the out-of-plane electric current density Jz from the 2D simulation, compared to a
reference Gaussian (standard deviation σ ). For each region I, II, and III, magnetic field lines (contours
of constant magnetic potential Az: >0 solid, <0 dashed) are shown; the colored (red) regions are
places where the selected band (I, II, or III) contributes [56]. Reproduced with permission from Greco
et al., Astrophys. J., 2009, copyright (2009) by the AAS.

intermittency is to examine the scaling of the exponents of the higher order structure func-
tions. Examples are shown here from MHD simulation, in Figure 11, and from solar wind
observations, in Figure 12. These scalings can be studied on their own, but, as our hydrody-
namics colleagues remind us [154], the significance of these scalings is that they correspond
in some way to structure and enhanced dissipation. For 2D MHD, it is fairly easy to visual-
ize this association. The highly dissipative coherent structures can be identified as current
sheets that form dynamically between interacting magnetic islands [16, 33, 90, 129, 164].
Figure 13 demonstrates how the non-Gaussian tails of the current distribution in a 2D MHD
simulation correspond to strong current sheets of this type. This is less easy to demonstrate
in 3D and in the solar wind.

To pursue understanding intermittency in MHD and in the solar wind, a reasonable
hypothesis is that the well-known frequent appearance of structures traditionally identi-
fied as magnetic discontinuities [30, 162] are related to intermittency of turbulence. As a
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22 W.H. Matthaeus et al.

preliminary step, a recent simulation study [56] showed intermittency- and discontinuity-
identification methods, and concluded that a substantial fraction of the observed discon-
tinuities may be related to flux tube boundaries and intermittent structures that appear
spontaneously in MHD turbulence [33, 90, 129, 144, 163, 164].

A well-known feature of solar wind observations is, in fact, the appearance of sudden
changes in the magnetic field vector, defined as directional discontinuities (DDs), which
are detected throughout the heliosphere [28, 30, 116, 117, 153, 162]. These changes are
often seen at time scales of 3–5 min, although similar discontinuities are seen at smaller
time scales [163]. One interpretation of magnetic discontinuities is that they are the walls
between filamentary structures of a discontinuous solar wind plasma [28, 31]. An alter-
native possibility is that the observed discontinuities are the current sheets that form as
a consequence of the MHD turbulent cascade [90, 165]. Recent studies on magnetic dis-
continuities show that their statistical properties are very similar to distributions obtained
from simulations of MHD turbulence [56, 57]. This line of reasoning argues that thin cur-
rent sheets are characteristic coherent structures expected in active intermittent 2D and 3D
MHD turbulence [102], and which are therefore integral to the dynamical couplings across
scales.

In order to establish a link between solar wind discontinuities and spatial patches of
strong current sheets, we illustrate here a comparison between solar wind datasets and
direct numerical simulations of MHD. Regarding the simulations, we focus on properties
of discontinuities that are recorded by magnetic field measurements at a single spacecraft in
interplanetary space. We adopt a spacecraft-like sampling through the simulation domain
(see Greco et al. [56]), interpolating the magnetic field data along the one-dimensional path
s, so we can identify discontinuities (TDs) with the following procedure:

(1) First, to describe rapid changes in the magnetic field, we look at the increments

�b(s,�s) = b(s +�s) − b(s), (19)

where �s the spatial separation or lag. For this simulation, we choose a small-scale
lag, �s  0.67λdiss , which is comparable to the turbulence dissipation scales (see
previous sections).

(2) Second, employing only the sequence of magnetic increments, we compute the
normalized magnitude

�(�s, �, s) = |�b(s,�s)|√
〈|�b(s,�s)|2〉�

, (20)

where 〈•〉� = (1/�)
∫
�
• ds denotes a spatial average over an interval of length �, and

�s is the spatial lag in Equation (19). The square of the above quantity has been called
the Partial Variance of Increments (PVI) [56] and the method abbreviated as the PVI
method. For the numerical analysis performed here, �  535λC , where λC = 0.18
is the turbulence correlation length – a natural scale for computing averages.

The PVI time series, evaluated using Equations (19) and (20), is reported in Figure 14.
The illustration spans more than 500 correlation lengths. This spatial signal has been
compared to a time signal measured by the ACE solar wind spacecraft [150], near 1
AU, over a period of about 20 days (lower panel of the figure). In order to facilitate the
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Journal of Turbulence 23

Figure 14. Top: Spatial signal �(�s, �, s) (PVI) obtained from the simulation by sampling along
the trajectory s in the simulation box, with �s  0.67λd and �  535λC . Bottom: Same quantity
obtained from solar wind data, with �s = 20 s and �  500λC .

comparison, we converted the time signal to a spatial signal, using the average velocity of
the flow, and then normalized to a solar wind magnetic correlation length of 1.2 × 106 km.

The PVI increment time series is bursty, suggesting the presence of sharp gradients and
localized coherent structures in the magnetic field that represent the spatial intermittency
of turbulence. These events may correspond to what are qualitatively called “tangential
discontinuities” and, possibly, sites of enhanced dissipation and magnetic reconnection.

Imposing a threshold θ on Equation (20), a collection of stronger discontinuities along
the path s can be identified. That is, we select portions of the trajectory in which the
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24 W.H. Matthaeus et al.

Figure 15. Probability density function of the spatial signal � (PVI) obtained from ACE measure-
ments (blue line) and simulation (red line). The error bar ±σ is displayed in the legend and the value
of σ is the expected fractional error in the PDF due to counting statistics.

condition

�(�s, �, s) > θ (21)

is satisfied, and we will employ this condition to identify candidate coherent structures
and potential reconnection sites. To understand the physical meaning of the threshold θ ,
we recall from [56, 57] that the probability distribution of the PVI statistic derived from
a non-Gaussian turbulent signal is empirically found to strongly deviate from the pdf of
PVI computed from a Gaussian signal, for values of PVI greater than about 3. As PVI
increases to values of 4 or more, the recorded “events” are extremely likely to be associated
with coherent structures and therefore inconsistent with a signal having random phases.
Thus, as θ is increased, stronger and more rare events are identified, associated with highly
non-Gaussian coherent structures.

Finally, in Figure 15, we show the probability distribution functions of the PVI signal
for both the observational and simulation data. The comparison tells us that there is a great
similarity within the errors [121].

8. Local relaxation and nongaussianity

The two central features of MHD turbulence discussed in the last two sections are generally
studied independently: intermittency of inertial range fluctuations, and MHD relaxation
processes. The first manifests through the appearance of high kurtosis of vorticity and
current, multifractal scaling of moments, and inhomogeneous dissipation of energy (in
space). The second is characterized by distinctive states such as Taylor relaxation, selective
decay, global dynamic alignment, and helical dynamo action [90, 100, 119, 158, 159, 161].
As described earlier, relaxation has most often been viewed as a consequence of multiple
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Figure 16. PDFs of the cosine of the angle for the sets of field. (Servidio et al., PRL, 2008) The sets
of fields are: {v, b} (red), {v, ω} (green), { j , b} (blue), { j , ω} (pink). Reproduced with permission
from Servidio et al., Phys. Rev. Lett., 2008, copyright (2008) by the American Physical Society.

global ideal conservation principles, characterized by dynamical times much longer than
the characteristic times of intermittency.

Recently [144], it has been demonstrated that undriven MHD turbulence spontaneously
generates coherent spatial correlations of several types, associated with local Beltrami fields,
local Alfvénic correlations, i.e., directional alignment of velocity and magnetic fields, local
force-free states, and anti-alignment of magnetic and fluid acceleration components. These
correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields,
and occur in spatial patches. These are not true quasi-equilibria, as the non-linearity is only
very rarely fully suppressed, but the systematic occurrence of these correlations indicates
that the turbulence adjusts to the presence of large forces through a rapid dynamical
response to reduce these stresses. These rapid relaxation processes are necessarily local,
simultaneously occurring in various locations without regard to global compatibility other
than the global conservation laws. Intuitively, this picture gives rise to a cellularization of
the turbulence, which is in fact observed in simulations [97,144] and in the solar wind [122].

To demonstrate the rapid local relaxation of MHD turbulence, we illustrate the distri-
butions (PDFs) of the angle [75, 126]

cos θ = f · g

|f||g| , (22)

where {f, g} represents one of {v, b}, {v,ω}, { j , b}, and { j ,ω}. In Figure 16, these four
PDFs are shown. The initial Gaussian distribution with null (net) helicities corresponds to
imposing a flat initial distribution of Equation (22). Quickly, as the nonlinearity develops,
strong alignments appear. These aligned (anti-aligned) fields correspond to a Beltramization
of the magnetofluid, similar to the Navier–Stokes (NS) case. Even though global helicities
remain small, the magnetofluid locally self-organizes into patches which contain several
types of correlations.

Since the conclusions bear a close resemblance to the properties of 3D MHD global
relaxation, it is tempting to extend the original interpretations. Global long-time relaxation
gives rise to the same Beltrami properties as suggested in Figure 16, for both velocity v

and magnetic b fields. These emerge from variational principles [90, 109, 161] in which
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26 W.H. Matthaeus et al.

minimum energy states [119,158,161] are solutions to Equation (12). The associated Euler–
Lagrange equations imply that the relaxed states are described by: v ∝ b ∝ j ∝ ω,
where a is the potential vector (b = ∇ × a), j = ∇ × b is the current density, and ω =
∇ × v is the vorticity. In global relaxation, these conditions are applied to the entire system
and at large times, with the coefficients of proportionality implied in Equation (13) taken
to be uniform constants. However, the observation of local patches of enhanced Beltrami,
force-free, and Alfvénic correlations at short times suggests another interpretation in which
the coefficients of proportionality defining the generalized Beltrami states are viewed as
piecewise constant and time-varying. It remains for further work to show if this description
can adequately account for the cellular structure of MHD turbulence, in which patches
of correlation are bounded by near-discontinuous slowly evolving coherent structures that
separate the relaxed regions.

There are numerous quantitative implications of the aforegiven picture of rapid relax-
ation, only some of which have been examined so far. One consequence of the increased
probability of occurrence of the Beltrami correlations (cos θ = ±1) is the emergence of
regions in which the non-linear term has become suppressed and the energy cascade has
become inhibited [67]. From a simple look at the MHD equations, the alignment ob-
served in Figure 16 suggests that the strength of the nonlinear term is “suppressed” [144].
Indeed, quantitative examination of simulations data has shown that the turbulent acceler-
ations (| ∂v

∂t
|, | ∂b

∂t
|) are much weaker than if they were computed with a Gaussian (random)

field [144].
While the rapid alignment processes occur, suppressing the strength of the nonlinear

terms, it was also shown that enhancement of the kurtosis occurs, thus supporting the
interpretation as the development of “cells.” The kurtosis is an elementary measure of the
degree of the intermittency of the system. Therefore, if the suppression is driven by non-
linear relaxation, then one would expect to see signatures of coherent structure formation
even in ideal flows. Indeed, it was suggested years ago [47] that current sheets form
exponentially fast in ideal MHD. Recent analysis of both dissipative and ideal 2D MHD
simulations demonstrated that spectral transfer, beginning from band-limited Gaussian
initial conditions, gives rise to high kurtosis excitations at the higher wavenumbers [167],
even at very early times.

The overall picture, in which it may be possible to understand the close linkages between
cascade and intermittency, between rapid local relaxation and suppression of nonlinearity,
between coherent structures and cellular boundaries, and ultimately between slow global
relaxation and fast local relaxation, remains far from complete. The connections reviewed
earlier have been established in both 2D and 3D MHD studies, but the picture in 3D is
of course less clear, due to both physical complexity and numerical limitations. Much
more work will be needed to complete this picture, and to establish a firmer analytical
understanding beyond the sketchy suggestions implied earlier.

It does appear however that a general view is emerging that the non-linear dynamics
of decaying 3D incompressible MHD leads spontaneously to several rapid, local relaxation
processes, favoring states having strong aligned or anti-aligned fields, namely those that sup-
press the strength of nonlinearities. The production of spatial patches of these correlations
requires that the statistical distribution of velocity and magnetic field become non-Gaussian,
as can be seen by formulating the correlations of (at least) fourth order, such as 〈(v · b)2〉
that must grow to form Alfvénic patches Our conclusion is that this multifaceted rapid
relaxation is intimately related to the formation of spatial intermittent structures. A simple
real space picture emerges: when patches of suppression of non-linearity are formed, the
fourth-order statistics become non-Gaussian, as the gradients become concentrated along
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boundaries of the patches. For example, two regions can become approximately force-free,
but the boundary between them will not be force-free [25]. This would concentrate non-
linear activity near cellular boundaries of turbulence. Magnetic reconnection is one example
of the type activity that can occur at these boundaries [146].

9. Third-order law in MHD

A well known Kolmogorov–Yaglom law relates the third-order structure function to the
energy dissipation rate [45, 68, 107]. Usually, it is stated with the assumptions of isotropy,
homogeneity, and time stationarity of the statistics of velocity increments δu = u(x + r) −
u(x) [velocity u, spatial positions x + r and x]. It also apparently requires adoption of the
von Kármán hypothesis [66] that the rate of energy dissipation ε approaches a constant
nonzero value as Reynolds number tends to infinity. Without the need for assuming isotropy,
one finds

∂

∂ri
〈δui |δu|2〉 = −4ε, (23)

where 〈· · · 〉 indicates an ensemble average and a sum on repeated indices is implied. If
isotropy is further assumed then,

〈δuL |δu|2〉 = − 4

d
ε |r| , (24)

where d is the number of spatial dimensions and δuL = r̂ · δu is the increment component
measured in the direction of the unit vector r̂ parallel to the relative separation r .

Extension of the third-order law to the case of incompressible MHD was reported
by [130], who remained close to the approximations made in the hydrodynamic case.
Without assuming isotropy, they found

∂

∂ri

〈
δz∓i

∣∣δz±∣∣2〉 = −4ε±, (25)

which, after adoption of isotropy, reduces to,

〈
δz∓L

∣∣δz±∣∣2〉 = − 4

d
ε±r, (26)

where δz± = z±(x + r) − z±(x) are the increments of the Elsässer variables and δz±L =
r̂ · δz±. The constants ε± are the mean energy dissipation rates of the corresponding
variables z± = u ± b, where b is the magnetic field fluctuation in Alfvén speed units.

There has been a flurry of activity in the past few years, geared toward measurement
of the cascade rate in the solar wind using various forms of the isotropic third-order
law [85,86,152,155], including the anisotropic form [123]. Many of these estimates arrive
at heating rates around 104 JKg−1s−1, which agrees well with estimates from temperature
gradients [163]. (See also [37]). Another approach to study of the third-order law begins with
an exact law and then imposes symmetries to find possible special solutions (e.g., [53,127].
It is not known if these solutions are realizable.
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Figure 17. PDFs of the ion temperature, where each PDF corresponds to a different range of

PVI values �, where �(�s, �, s) = |�b(s,�s)|/ 〈|�b(s,�s)|2〉1/2
�

. As the PVI values increase, the
probability density decreases at lower temperatures and increases at higher temperatures. Also, the
mean ion temperature increases with increasing PVI. The corresponding PDFs for electron heat flux
magnitude, electron temperature, and local dissipation behave in a similar manner [120]. Reproduced
with permission from Osman et al., Astrophys. J., 2011, copyright (2011) by the AAS.

10. Extension to KRSH and intermittency of dissipation

The Kolmogorov-Refined Similarity Hypothesis (KRSH) [69] is the unproven but extraor-
dinarily useful theoretical construct that connects the probability distributions of inertial
range increments and averages of the dissipation function [118,154]. The extension to MHD
is not completely straightforward, for the usual reasons that there is more than one cascaded
field, and ambiguities arise. For a useful starting place, see [99]. It is noteworthy that the
KRSH might be formally viewed as the motivation for scaling studies of higher order struc-
ture functions, yet, as described earlier, this activity has proceeded [17,61,87,131,153], in
spite of the absence of a clear statement of the correct form of the hypothesis. (This may
be an oxymoron of sorts, since the KRSH is a working hypothesis.)

Apart from complications associated with MHD Theory, application of KRSH exten-
sions to low-density solar wind and astrophysical plasmas must confront another great
problem – we do not know the correct functional form of the dissipation function, or even
the complete roster of appropriate physical processes to include in it. The problem of ex-
amining possible dissipation processes in the solar wind and interstellar medium is a very
active one at present, and a complete review would be well outside the present scope. For
a few starting points, see [3, 4, 77–79, 143, 151]. A fuller understanding of this problem is
a great challenge for the coming years.

As a final remark on this point, we note that for a low-density space plasma one might
expect to find relationships of the form (schematically)

δZ3
s

s
∼ εs → Ts, (27)

where δZs is a measure of the (possibly mixed) magnitude of vector increments at separation
s, εs is the average of the dissipation function over scale s, andTs is a measure of the similarly
averaged temperature, or perhaps the local temperature excess. The first relationship in
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Equation (27) is akin to the KRSH, although the precise form of the increment might be a
fruitful topic of conversation (see [99]). The second relationship is even less clear, although
intuitively it seems that if one deposits a large amount of heat locally, the temperature very
well might increase. The first relationship cannot be examined in the solar wind because we
do not know ε. The second relationship cannot be examined in most simulations because
they are incompressible, and in any case we do not know the correct form of the heat
conduction for a plasma such as the solar wind. But what we can do is assume the second
relationship and then compare increments to temperature averages in the solar wind. This
was done recently by Osman et al. [121]. The approach was to employ the PVI statistic
discussed in an earlier section to find locations of near-discontinuous magnetic structure.
The higher values of PVI indicate more rare and stronger discontinuities. Then, the proton
temperature (and other diagnostics) were conditionally sampled for increasing PVI. One
such result is reproduced here in Figure 17. It is readily apparent that the samples with
large PVI are hotter on average and have hotter tails. This is completely consistent with
the idea that the dissipation function, whatever it is in the solar wind, is more active
within and near the coherent structures. Evidently the solar wind plasma, even though it is
not hydrodynamics nor even precisely an MHD medium, shares with classical turbulence
the ideas that the dissipative structures are localized, providing a meaning to the ideas
of intermittency for this plasma that is similar to what Kolmogorov’s ideas mean for
hydrodynamics.

11. Conclusions and omissions

MHD turbulence and its applications to real physical systems remains a fascinating, com-
plex, and rapidly developing field of physics. Naturally, many of its features remain close
to their hydrodynamic antecedents, but numerous new complications arise. Here, we aimed
to provide a quick sampling of some MHD results for homogeneous plasmas, for related
systems in 2D hydro and electron plasmas, and for a major field of application in the solar
wind. The subject is big enough that a complete review of even these special topics has
not been possible, and we apologize for what have doubtless been numerous and egregious
oversights on the discussion and references.

We have made essentially no attempt to cover very important fields such as laboratory
plasmas, astrophysics, magnetic reconnection, planetary, stellar, and laboratory dynamo
theory, MHD power generation and other industrial applications, as well as deeper con-
nections with plasma physics through multispecies fluid models and other variants of the
MHD plasma. The omission of discussion of relaxation in laboratory reversed field pinch,
spheromak, and tokamak plasmas is particularly egregious due to the close relationship
those studies have to those that are included here. For excellent reviews and introductory
material in these areas, see [25, 26, 62, 160].

On the theoretical side, an important class of questions exists regarding the issue of
nonlocal contributions to spectral transfer [103], which we have alluded to several times
earlier, but not discussed in any detail. It is intriguing to note that MHD couplings are
decidedly more nonlocal [1] than their hydrodynamic counterparts. In part, this is due to
interactions with large-scale shear or with a large-scale or DC magnetic field [2, 71, 133],
but in any case scale nonlocality introduces challenging features into the subject that may
not be anticipated by strict reliance on the standard Kolmogorov–Obukhov reasoning that
has dominated the subject.

Another major deficiency here is the lack of discussion of closures [55, 73, 120, 133].
These provide capable even if complex tools that are potentially useful in addressing future
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questions about MHD and plasma turbulence both of a theoretical and practical nature.
One high-powered example is the two-scale direct interaction approximation that has been
applied to development of tractable MHD closures (e.g., [172]). These indeed have the
potential to make progress in problems of current interest [171]; however, as with other
interesting subjects, there has not been an opportunity to delve into that interesting subject
here.

We hope that, within the limited context of the sample provided here, there may be
adequate connections afforded by the references for an interested reader to get a foothold
in a few interesting problems relating to turbulence in magnetized fluids, and in the physics
of the solar wind.
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Note
1. The unaveraged Alfvén timescale is (k · B0)−1, where B0 is the mean magnetic field. This induces

anisotropy [149] and the possibility of important additional time-scale effects. Here, we deal only
with the isotropic case.
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