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Abstract

A multi-resolution collocation method with specially designed spline wavelet is presented to numerically solve a system
of nonlinear differential-algebraic equations of index one in circuit simulation. As the wavelet collocation method is
applied to such system, we will have to solve large nonlinear algebraic equations. For the algebraic equations, we give
a modified Newton type iterative method which bases on two wavelet adaptive techniques. We prove the convergence,
the stability and the complexity on the adaptive method reported here. The new approach could effectively reduce
computational costs and storage requirements to large extent. Numerical experiments are given to further illustrate the
method’s principle.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that in engineering application fields we often need to find dynamic responses of large sys-
tems, such as in nonlinear electronic circuits and so on. Most of these systems may be modelled by differential-
algebraic equations (DAEs), see [3].

In the paper we mainly consider nonlinear DAEs given as follows:

{¥=f<x<r>,y<t>>, %(0) = xo, .
0= g(x(0),p(t), 1€ [0,L],

where ¢ is time variable, Q = [0, L] is finite, xo = (x},x2,...,x2)" is a consistent initial value, f = (fi,f5,. . ..fp)"
and g =(g1,2>, .. .,gm)T are two known continuous functions, x(¢) = (x(), xx(?), . - .,xn(t))T € R" and y(¢) =
1(0),72(1)s - . ., ym(1))T € R™ for all t € Q are to be computed. We assume that (1.1) is index-one, that is, the
nonlinear function g(x,y) is solvable with respect to y.
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Many numerical methods, such as Runge-Kutta method [6] and waveform relaxation (WR) [7,8], have
been successfully applied to solve DAEs. However, under some situations these methods possibly suffer from
the difficulty in effectively handling the singularity, which often occurs in simulations of high-speed circuits. As
we know, due to the advantageous properties of localization in both space and frequency domains, wavelet
technique has been a great tool for adaptivity and multi-resolution schemes to obtain solutions of systems
which vary dynamically both in space and time. Especially, the cubic spline wavelet collocation approach
in [4,10] is not only powerful in treating singularity, but also has O(4*) convergence rate, where / is the step
length. Dian Zhou et al. have succeeded in applying the wavelet method to solve ordinary differential equa-
tions (ODEs) in circuit simulation [11,12]. In [1,2,5,9], the adaptive wavelet iterative method have arisen
for PDEs. However, no research exists in DAEs, and no further analysis appears on the iterations of the
resulting nonlinear algebraic equations, to the best of our knowledge.

The main purpose of the paper is to develop a wavelet multi-resolution scheme for nonlinear DAE:s in cir-
cuit simulation. We propose a modified Newton adaptive iterative method by adopting two adaptive proper-
ties of wavelets to solve resulting nonlinear algebraic equations. The convergence and the stability on the
proposed iterative process is analyzed theoretically. Comparing with the original Newton method, the pro-
posed Newton adaptive iterative method, which is favorable for the solutions of large nonlinear DAEs, could
accelerate iterative process and reduce computation and storage costs. Numerical experiments are provided to
further show the efficiency of the method.

The organization of the paper is as follows. Section 2 firstly outlines the general form of multi-resolution
wavelet collocation and then extends it to solve nonlinear DAEs. Meanwhile, the modified Newton adaptive
iterative process is formulated. The proofs of the convergence and the stability on the relaxation-based method
are shown in Section 3. Section 4 demonstrates the proposed process with numerical experiments. Conclusion
is given in Section 5.

2. The modified Newton adaptive iteration

Without loss of generality, we assume that a circuit system is described by nonlinear DAEs of index one like
(1.1). We are interested in the solution of x(#) and y(7) in a finite interval Q = [0, L]. The idea of multi-resolu-
tion wavelet collocation is that, after replacing the functions x(¢), y(¢), fix(2), y(¢)), g(x(¢), y()) and the differen-
tial operator % of (1.1) with their cubic spline wavelet series, we acquire an algebraic equation system, whose
unknowns are the corresponding wavelet coefficients of these wavelet series.

2.1. Wavelet collocation discretization of nonlinear DAEs

Define Sobolev space H*(I) = {f(x), x € I|||/*”||» < oo, i=1,2,3}. Introduce an approximation subspace
v, C H*(I), where J > 0 and a fixed interval Q =[0,L] [4,11,12],

Vy=Vo®WodW - ®W,_y, (2.1)
where

Vo = span{n, (¢),n2(t),m(L — ), m (L — 1),y _1(t),- -1, 4(t), 1, 3(L — 1)},

Wi =span{y; (), ¥;0(1), ... ¥i,2(0)}, 0<i<J -1

<
The concrete properties of these functions #,(¢), 172(¢), ¢(¢), ¥(t) can be found in [4]. Here, we only give the
definitions as follows:

(1) = (103,

(2.2)

;Mg:2”73ﬁ+%ﬁfg@fni+é@fmj

4 2.3
ORTAORES o R [C e 23
W) =~ 39000) + 2 921 1) =32~ 2),
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where
t" t=>0
o= ’ ’ 2.4
* {0, t<0. 24)

When J — oo, the space V,— H(I), V; is the multilevel decomposition of the space H*(I). Expand the
unknown function x(¢) € H*(I) in V,. Denote n;= 2 % I+ 3 and P,x(f) by the interpolation approximation
of the function x(7) in V;, we have

L—

Py,x(t) = x;(t) = Lpyx(t) + 521,210, (1) Z 1P (t) + %1223, (L — 1) +Z

k=0 ‘=

nj
§ :x/k /k
k=-1

=x4(0) +_x(0), (2:5)

where I, yx(¢) is the boundary approximation of x,(f), I, mx(t) = o 1(27x) + aona(2 x) + a3a(2/(L — x)) +
g1 (2(L — x)), a1 < i< 4) in [4]. The spatial approximation order is ||x, () — x(7)|| 2 o) S 27 * The wavelet
coeflicients of x,(¢) is

~ A ~ S S A S S T
Xy = (x—17—3a sy X L2 X0, 15 e e 3 XOmg—29 + X 1y e s XSk e e 7xJ7nj—2) . (26)

The wavelet series of x,(t) satisfies

Pyx( ) =x( ), 1<k<L+3 2
Prx(t!)=x(). j>0, ~1<k<n =2 0<j<J/-1L. |
The corresponding interpolation points t}( are
_ 1 _ 1 _
t;]:Oa t(Z ])257 l;lzk—2(3<k<L+1), t£+]2):l‘_§7 t§,+lfﬁ):L7 (28)
; 1 . k+15 ; 1 '
ZLIZF, tk: 21. 0<k<n,_27 t 2—L 2t+2

Let H*(Q) be a Sobolev space which basically contains functions with square integrable second derivatives.
We introduce an approximation subspace ¥, C HXQ) for a given integer J > 0, which denotes the wavelet
decomposition level, and a fixed interval Q =[0, L], consisting of scaling functions and wavelet functions.

Substituting them into the DAEs, we obtain the nonlinear discrete algebraic system as follows:

0=G(x.3),
where 4 = diag(4,...,4) € RV in which
din(n) . dy()
dr dr
A={@dhean = + 1 (2.10)
W) ., ddw(w)
dr dr NxN

is an invertible derivative matrix. The vectors F(x,y) and G(%, p) respectively consist of the values of two vec-
tor functions f{x,y) and g(x,y) at all collocation points ordered in the same way. It says F(x,7) =
(F1,Fa,...,Fy)L., where

SeQ2xi(0), 2o 3i(1) i

S xi(12), 2o 3i(n2)) Jr2
Fp = . =" : (2.11)

fk(z)%i‘pi(tN)a Zj’f‘pi(tN)) fk,N Nxl1

Similarly, the vector (G(%,7)),y.; has the same form.
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2.2. The Newton iterative solution of nonlinear algebraic equations
We choose the Newton-type methods to solve the nonlinear equation system. In the paper, in order to dis-

tinguish the modified Newton adaptive iterative method from the nonadaptive classic Newton method, the
latter now is referred to as the original Newton iterative method.

Let
T
s(k) _ [2lk) o(k) w(k) (k) o(k) 2 (k) w(k) (k) (k) (k)
2® = ( LX120 XN X 10 X020 s Xo vy o s Xy No VL V120 -+ s VN . (2.12)
(n+m)Nx1
Then, the original Newton iterative form is
D) — 20 _ A3 (2.13)
where the (n + m)N-dimensional vector A2*¥) satisfies the relationship as follows:
A (k) _
Q(n+m)N><(n+m)N X Az + H(n+m)N><1 =0 (2. 14)
in which Q is the corresponding Jacobian matrix.
Denote w = A% — F(X, ), we have
X FI(JAC’JA’) Axy *Fl(ffaj’) w1
~ -%2 F2(5Caj}) A)AQ_FZ(SQJA)) wa
w=A — = = (2.15)
X, F.(x,7) Ax, — F,(%,7) Wy
Moreover, we have also
. A% = F(%,5)
H(x,y)=< Gli s (2.16)
(X,y) (n+m)Nx1
and
Oowy 0wy dw; 0wy dwy owy
[ R R I T o> R R ) S B O T T ) 9
Owy, 0wy dwy 0wy wy owy
[ R IR 1 T o> R R ) S B O T T ) 9
Owun  Owny oWy dwan dway AWy
[ R R ST A o> P ) SR R ) S SR
® ®
0x/ mNxnN’ B ) N xmN (14m)N  (nm)N
_a _on _on R _ o _on
ax? ot &’ o G 7 Om
O 4O _0 0 _ _
ot ? [S25 IR ok, ? oy P 7 Om
_OF, _OF, f s O _0R, N
o’ om0ty ox, ? oy ' O
i ®
0/ mNxnN’ D ) mNxmN (n+m)N x (n+m)N
A4-%& _oF
ox [}
= ’ 2.1
( @ oG (2.17)
ox oy (n+m)N x (n+m)N

For the iteration method, the mainly computational burden comes from solving the equation at each iter-
ation step. If the vector 2%) is sparse, namely, it has many zero elements relative to its dimension, then the
Jacobian matrix Q is sparse. Similarly, the vector H has also many zero elements. As a result, the computation
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time and storage cost can be economized at each iteration step. In fact, as the wavelet coefficients of the func-
tions x(¢) and y(¢), the vectors x and y have such sparsity which could always improve the iterative process.
Taking the properties of the spline wavelets with Newton iteration, we can really construct the so-called adap-
tive iterative process.

In next section, we will discuss how to exert the wavelet adaptive properties for the design on the modified
Newton adaptive process. For the purpose, some wavelet adaptive properties should be stated here.

2.3. Adaptive properties with the cubic spline wavelet bases

Denote )%f“ , the wavelet coefficients of sub-element function x*(7) in vector function x(¢) where i and / are the
scale and dilation indexes respectively. First, let v;>0, N=2"* L + 3, and

Xk |fc].‘ | >y,
)A(,'ﬁfk _ [NA il ) 2.18
i F (2.18)
Define
L4
) =35 _m(0) + 7 om0 + 35, ,(0) + Z () + 3 shy(L—1)
=0
J—1 ni—2
3 L =)+ 7 (L= + Z Z s (2.19)
i=0 i—1

and

Xp(0) = &5 ym(6) 35, my(0) + 35, ¢t —|—Zx_1,¢, 3 (L~ 1)

J-1 m—2
F3 (L =)+ 7 (L~ 1)+ Z X Wi (2.20)
i=—1

i=0 -

Based on the above definitions, we turn to giving the two adaptive properties on the cubic spline wavelet.

2.3.1. Adaptive wavelet sparsity representation for function x(t)

Now, we study the characteristics of the function x(7) approximated by the wavelet series x/(¢) = (x%(¢),
1 <k< n)le. Due to time-frequency localization property of wavelet functions, the wavelet coefficients decay
quickly to zero in smooth regions, and large only in region where the function gradient is large. From [10], if
function f € Lip(«), the wavelet coefficient %,; = O(2™™). Hence, we can reduce a quantity of the wavelet coef-
ficients in order to save the operation time and the memory space. According to the properties of the cubic
spline wavelets, we know the wavelet coefficients in the corresponding wavelet expansion will be less than
the error tolerance v in a large part of the solution domain if the decomposition level J becomes larger. Fur-
thermore, the wavelet coefficients 3%, can be set zeros if the magnitudes of x*(7) at collocation points is less than
some given error tolerance v. Thus, many terms of wavelet series may be discarded in the wavelet expansion of
x*(7). Namely, the wavelet coefficients vector ¥ = (3, 1 <m < N, 1 <k <n).,,, has more zero elements
with the level J increasing, where N = 2’L + 3. This fact will be used to achieve adaptivity for the Newton
iterative solution to accelerate convergence and reduce computational cost. For the clarity of the formulation,
we use the hard thresholding v in the next section.

2.3.2. Adaptive multilevel representation

Lemma 1. Ler x(1) € HX(Q), x;(t) = (5(0),1 <k <n)! |, x}@) = k@), 1 <k<n),, , and the hard

nx1
thresholding v = L3¢, then we have

57
1 (2) = x5 ()l ;20) < € (2.21)
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Proof. From [10], we know

> %,
500 -0 it

-1

X5(1) = 7 (0) L

s () = x5 (D20 = . <G ~ O(e),
n _n
x5 (1) = x3"(1) HA(Q) A
m,|x8|<v 2

where C; is some constant. [

13¢

15> then the truncation

Corollary 1. For x(t) € HX(Q), the wavelet approximation are xt) and xi(t). Let v=
error is

() = x5 (D)l 2(0) ~ Oe)- (2.22)

Proof. By Lemma 1 and the property of the cubic spline wavelet interpolation, we know

le(t) = x5Ol i2@) < Ix(0) = x5Oy + s (6) = x5 (D)l 200 ~ OR7Y) +O(e). O

From the wavelet series, we know, when J — oo the subspace ¥, may approximate the whole space H*(€)
infinitely. It is also clear that the approximated accuracy depends on the wavelet decomposition order J and
the threshold v. The higher the space order is, the less the error would be. Due to the characteristic of the
wavelet representation, the magnitudes of the wavelet coefficients in W, will indicate whether a refinement,
by increasing the wavelet space order, is needed or not. It may be simply described by mathematical symbol.
That is, for given d,, if max{|% |} > 6,, we will increase the wavelet space order J to J' where J' > J.

With the above adaptive properties of the cubic spline wavelets, we present the following modified Newton
adaptive iterative process for the DAEs.

2.4. Modified Newton adaptive iterative process

We give the basic steps of the modified Newton iterative process for the nonlinear DAEs. Let z =

(21,2, ... ,2<n+,,,)N)T and P, be an adaptive truncation operator such that, for 1 < k < (n + m)N,
Zr, Af |z > v,
ps=1" |”, (2.23)
0, otherwise,

_ 13
where v = 5

Given initial conditions, the value 20 = (3©, $®)" and the truncation parameter v.

Step 1. Initially given: the level J, the matrix 4; vectors F and G; vector 2© and Az = 20,
Step 2. When 1Az < 01, to Step 3; else

(BT
1. compute Q(2*)) and H (%), solve the increment Az%);
2. compute 24D by 2+ = 200 _ Az(0);
3. plk+1) — PV2</(+]);
4. 3% = zk+1): to Step 3.
Step 3. If max |2,| < 02, to Step 4; else
LJ=J+1;
2. compute 4, F, G, and 2%; to Step 1.
Step 4. Set 20 = (3®, 3®)" and use inverse discrete wavelet transform to compute x,(¢) and y ().
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3. Theoretical analysis of the modified Newton adaptive iteration

In this section, we provide the theoretical analysis on the convergence and the stability for the modified
Newton adaptive iterative process under some given conditions.

3.1. Convergence analysis

We denote the value Zz = [ . | as the true solution. It should satisfy
H(z) = H(%,p) = (A::(f?’”> =0. (3.1)
x,y) (n+m)N x1

Let
0= P.EY = 0 (W) x HEW 39) - (€Y = 0 (&) x (& 59), -
e =20 — 3z

we have
2D = p (20 — 07 (W) x H(Z,59)) — 2 = P, (2“‘) 0 (29 x (m;(— QE?:?W )) -

(3.3)

Before doing the theoretical analysis, we need some lemmas.

Lemma 2. Let xV(r) = (" (). 3" (1).....xi" ()", 2@(1) = P (0,57 (0),... 27 ()", y0(0) = 6170,
W0, ) ¥ 1) = 00050 3D O) S= Fiofore oS and g= (1.2 gm)". Suppose
that for all t € Q= [0, L] the vector functions f(x(1),y(t)) and g(x(t), y(t)) satisfy

F D (0), y V(@) = £ &2 (0, P Oy < LillxV (1) =22 (Ol g2 ) + LYW (1) = 2 ()20 (3.4)
and
g™ (), yV () = g (), ¥ ()l s@) < Lalld™ () = 52 (O)]] 210 + LoV (1) = P (0)] 210 (3.5)
furthermore, under cubic spline wavelet bases the representation forms of x"(t) and y'"(1) are
N N
() ()
k=1 k=1
> 0 > 0
W= [T 0 = | ST (3.6)
N )
%Wt D Vi (1)
=1 nxl k=1 mx1

similarly, for xX2(t) and y'®(1). Then, there are the constants ay, a», by, and b,, which are related to L,, L\, L,, and
L), such that

1FGED,30) = FE2 3 < ar]d =22 + a3 = 5|2 (3.7)

and

IGGEY,31Y) = GGP, 5P < by |30 =32 + bl = 32 2, (3-8)

N o) N s N (D) )

where V) = ( et X1 > Dokt Kok - 5 DopetXnis D> Similarly, for #2, 3 and 3.
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Proof. By the definitions of F and G, we know
IFEY, ) = FGED, 52|

FixW,50) — F (2, 7)

F2(£<1)7j;(1)) — Fz(jc(z),j/@))

~(1 - ~(2 t ~(1 - ~(2 t
sag-wag | Ol sy s | Il

2

Similarly, we have
IGGEY,31) = GG, 32 < ba[#Y = 2P + Bol 3 = 32 .
It is also clear that ay, a», b; and b, are induced by the constants Ly, L}, L, and L,. O
A4 0
Lemma 3. Let W =
(5
=Wy ee <n<l (39)

) be the system matrix, then, we have W € L(¢*, 0% and

for 0 < i < no, where o> 0 is some constant.
Proof. For the representation matrix W of the differential operator in (1.1), it is not difficult to check
W e L({* ¢°). By [5], we have that the conclusion holds. [

Next, we state the property of the Jacobian matrix Q. Since the system of nonlinear DAEs is index one, the
matrix %—G is nonsingular. If the matrix 4 — %i; is nonsingular, then the Jacobian matrix Q is nonsingular, too.
Furthermore, the standard local convergence theory on Newton iteration implies the following lemma.

Lemma 4. Let the constant n be given in Lemma 3. If the initial value 2 is selected appropriately, then, for the
iterative solution %), the Jacobian matrix Q has the property |0~ (¢®)||» < n.

Now, we give a convergence proof of the above modified Newton iterative process. To do so, we also need
an assumption.

Assumption N. Let a;, a», by, and b, be Lipschitz constants appearing in Lemma 2, we suppose that they satisfy

Z - a11 —azl
I=n
b1 byl

for some constant u.

<p<l (3.10)

2
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Theorem 1. Given 0, and ey. If the truncation parameter is v = % then the iterative error of the modified Newton
process is
¢ k+1
lexillz < 5 T “Heoll - (3.11)

Proof. First, we observe that the operator P, is contractive. From the definitions of 0, and e, we know

A(k+1)

eppy =200 — 2 =200 — (20 — 071 @) x H(EW)) + (2% - 071 (2W) x H(ZY)) — 2

Furthermore, under Assumption N, we get

lecrillz < 10kl + wllell 2
< 0ll2 + 1101l 2 + pllew—rl2)

< (102 + pllOcillz + 221102l + -+ #1100l 2) + 15 ol 2

k
= (Z ﬂ""||9f||;z> + 1 leoll 2

i=0

k
< (max o) > i+t ol
Due to
10:]l2 = [|1P,EY — 07 ENHED)) — (Y — 07 ENHED)) |2 <€,

we have the following formula:

k
lecalls < (max |9i||,z) S i

€
max | <m+ﬂk+1”€0”zz~
<i<

m=0

The above iterative error will go to zero as e — 0 and kK — +o0. The convergence rate depends on the order of
e. O



J. Gao, Y.-L. Jiang | Applied Mathematics and Computation 189 (2007) 208-220 217
Note that by prescribing the value of €, we can actively control the accuracy of the solution.
3.2. Stability analysis

Let 2D be the small disturbance of 2*1) it has

& = 20D _ 2, (3.12)

3kt skt
Wiyl = ) — )

Now, we show that the small disturbance cannot affect the whole stability under some conditions. For con-
venience, we denote that

Q;1:Q71(2(k)), Q;lefl(é(k)) (3.13)
and
A0 _ (k) k) A3k _ (k) k)
_ (AR - FEY Y o (A FEE Y)Y (3.14)
G(fc("), j,(k)) G(jc(k) , j,(k))

Theorem 2. Suppose
o' =0l <= (3.15)

for small enough =, and given wy, and ey, we have
k+1 c
Wil < 17 [[woll 2 +mf7 (3.16)
where C is constant and n <1 in Assumption N.

Proof. From the definitions on w;; and &;, we have

N 5 B} 150 _ FGW 50
— 5D _ 30— p (300 _ o1 3y [ A% (&, 319)
Wil = Z M =p (2" -0z ))< G(EW 50 )

T _ gk o0
_p (s _ o-1(smy) [ A — FEO, 30
Fdet-oe »( GEY,50)

. o [ AZ® — G050 1i® — FE0 30
_ 30 _ gt gty [ AXY = FEY 5N g1 sty (AR — FED, )
—ee @)( GEW,59) FHOEOLT Gam )

~ A58 _ (k) 30k ~ 430 _ Rk k)
— G0 _ 50 sty (AR = FEO )\ gy (AR — FED, )
= =) [ (R ) g (40
=w; +0;'B—0;'D.
Now, we focus on the analysis of the formula QI_IB -0; 'D. Because
O/'B-0,'D=0/"B-0;'D+0/'D~0,'D=0;' (B~ D)+ (07" = 0;')D,

where
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and
('~ 0D =(0" - 03" (Zi(k;(i r ?:;)i(")))
<a-an (" ) (50)
e )
we get

[wesillp < [[we +O;'B— 05'D||p

_ :‘i — a11 —612] 1 1 ;i — all —Clz] ~
={7-0 Wi + - e
‘ ( Q1 ( b1] b2] )]) k (Q1 Qz ) b1[ b2] k

From Assumption N, the matrix A—al —al

N bl byl
A— (ll[ 7&2] ~
€k
b][ bz[

where C is some positive constant. Thus, we arrive at

2

is bounded. It follows that

~ i

2

T. O

C
Pweille < plloxllp +Ct <o <ol + 7= p

3.3. Complexity analysis

Here, we give the complexity analysis of the step 2 of the adaptive Newton algorithm.

Given the level J, when the iterative time is k, the vectors %) and $® have the non-zero element numbers
Ni(x) and N (), respectively. Let Ny = max(N,(x),N,(¥)). The main computational burden of the step 2
depends on the computation of Q(2%) and H(2W), that is, F(x*, 319), G(E®, 3®), & (30, 30), &G0, 30),
& (xW,3W) and & (3™, ). For the level J, the matrix 4, can be computed only once. The complexity of
F, G %, aa—f, %—g and % are O(NVylog(Ny)), respectively. The operation of the operator P, equals the sort program
operation with O(N,log(Ny)). Thus, the complexity of the step 2 needs O(N,log(N)) operations at most. By
[4], the wavelet transform of the step 4 also needs O(N,log(Ny)) operations.

From the above complexity analysis, we know the storage and computation of the Newton iterative method
depend on the nonzero numbers of the wavelet coefficients vector X and . In order to demonstrate the tremen-
dous savings of the adaptive algorithm it is illustrative to compare the number of nonzero element numbers
used in the adaptive and nonadaptive methods with adequate resolution.

4. Numerical experiments

In this section, we do some elementary experiments on a simple system of nonlinear DAEs of index one to
confirm the theoretical analysis discussed above. For this purpose, we apply the proposed adaptive wavelet
method to compute its transient responses

&0 — 18 tanh(y(¢) — x(¢)) + 2 sin(4n?),
y(t) = 1§ tanh(y(¢)) + 2 tanh(y(r) — x(¢)) + 3sin(nz/2),
[x(O),y(O)]t = [O,O}I, te [Oa S]a
&E—e*

eite "

where tanh(z) =
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Table 1

Numerical result for the example

Level J Size N=2"«L+3 Error R Iteration n
1 13 6.12¢—2 18

2 23 1.24e-2 15

3 43 2.25¢-3 15

4 83 7.32¢e—4 10

Compression ratio

o Il Il Il Il Il Il Il

Iteration

Fig. 1. The compression ratio X as a function of the iteration k for e = 10™* and J = 5.

The computed errors of the modified Newton adaptive iterative method is presented in Table 1. It is obvi-
ous that the adaptive algorithm is convergent with the iteration step.

Let the compression ratio X = %—f, where N7 is the actual non-zero numbers of the vectors & and y used in the
calculations at the kth iterative step and N” is the number of the vectors & and 7, required for the non-adaptive
algorithm problem. The compression ratio measures the ratio of the efficiency of this adaptive method. Under
the convergence circumstance, the increase compression ratio means the less actual complexity operation of

this algorithm. Here, we give the graph of the function compression ratio N as the iteration k (Fig. 1).
5. Conclusion

An adaptive wavelet numerical method is developed for nonlinear differential-algebraic equations (DAEs)
of index one. The method combines cubic spline wavelet collocation with the modified Newton adaptive iter-
ative process to find the responses of large dynamic systems. The approach developed here is more appropriate
in theory for highly oscillatory analysis of DAEs in circuit simulation. How to select “good” boundary func-
tions for some concrete circuit systems to further improve the efficiency of the method will be studied in the
future.
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