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This paper presents the automatic discrimination of geographical origins of milks from Western Yunnan Plateau areas and eastern
China by excitation-emission fluorescence spectrometry and chemometrics. Genuine plateau milks (n = 60) and milks from
eastern China (n = 89) are scanned in the regions of 180–300 nm for excitation and 200–800 nm for emission. Different options of
data analysis are investigated and compared in terms of their performance in discriminating milks of different geographical origins:
(1) two-way partial least squares discriminant analysis (PLSDA) based on excitation and emission spectra, respectively; (2) two-
way PLSDA based on fusion of excitation and emission spectra; (3) three-way PLSDA based on excitation-emission matrix spectra.
The two-way PLSDA methods with excitation spectra, emission spectra, and fusion of excitation and emission spectra correctly
classify 91.3%, 88.6%, and 95.3% of the milk samples, respectively; while the total accuracy of three-way PLSDA is 96.0%. The
results demonstrate the two-way data combining excitation and emission spectra are sufficient to characterize and identify the
plateau milks. Considering both model accuracy and the analytical time required, two-way PLS-DA with fusion of excitation and
emission spectra is recommended as a reliable and quick method to discriminate plateau milks from ordinary milks.

1. Introduction

Recently China has witnessed several food crises, among
which one of the most serious being the adulteration of
milk products with melamine [1]. Fake and shoddy food
products are more than a matter of commercial fraud
but also invoke considerable concerns about public safety
and interest. Consumers are increasingly demanding food
products with conditions of production that are friendlier to
the environment and/or warrant the product quality from a
sensory, nutritional, or safety point of view [2].

For milks, some conditions of production such as
geographical zones or cow grass feeding are known to
confer specific organoleptic and nutritional qualities to the
milk products [3–5] and thus provide an added value to
the product and justify its higher price. In China, the
mainstream milk manufactures and their sources of raw
materials are located in the heavily populated eastern areas.
Milk production in these areas might be influenced by

various adverse conditions, such as potential environmental
problems caused by rapid industrialization, the quality
uncertainty during purchase, and storage of raw material
[1]. On the contrary, Western Yunnan Plateau areas (about
2,000 m altitude), located in the southwest of China, has a
unique geographical position and a sparse population. The
place also enjoys a temperate climate with plenty of rainfall
and sunshine. All the above factors contribute to the high
quality of plateau milks, including rich nutrition, particular
flavor, and more reliable safety guarantee [5, 6]. Moreover,
the output of milks in Western Yunnan plateau is much lower
than that of eastern China; therefore, it is attractive to falsely
denote the origins of milk products for manufacturers, and
it is necessary to develop quick and reliable methods for
discrimination of milk origins.

Traditional methods for discrimination of food origins
depend on chemical component analysis and sensory anal-
ysis. Because many food products like milks are highly
complex chemical systems, the cost of a thorough analysis
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of chemical components is often prohibitive. Moreover, the
quality of milks usually cannot be sufficiently characterized
just by the contents of a single or a few components. Sensory
analysis is an expert-dependent technique and is thought as
a reliable method for the purpose of food authentification,
but it suffers the disadvantages of high cost and lack
of objectivity. Compared with traditional methods, the
combination of various spectrometry (such as near infrared
[7–9] and fluorescent spectrometry [10]) and chemometric
methods has provided promising alternative approaches for
food control [11]. In spectroscopic analysis, the chemistry of
the complicated samples can be characterized by the mea-
sured multivariate spectra and then multivariate statistical
methods are used to extract information concerning food
quality. Some advantages of spectrometry analysis are (1)
no or less sample preparations are required; (2) the analysis
time is largely reduced compared with traditional methods,
so it is very suitable to analyze batch samples; (3) it is a
nondestructive analysis method and can be used for online
analysis; (4) when combined with chemometrics, it provides
an automatic and quick analysis method for food control.

Among various spectroscopic techniques, fluorescent
spectrometry is widely available in analytical labs, and
its high sensitivity to a wide array of potential analytes
makes it a powerful tool for food analysis [10]. For milk
products, different fluorescent bands can be attributed to
the differences in compositions (fluorescent analytes such
as aromatic amino acids, nucleic acids, and tryptophan)
and properties (e.g., antioxidant activity and acidity) of
samples. This forms the basis for fluorescent analysis of
milks of different kinds and sources. With the development
of chemometric data fusion and multiway techniques like
parallel factor analysis (PARAFAC) [12] and multiway partial
least squares (PLS) [13], excitation-emission fluorescent
spectrometry has been increasingly used in food analysis
[11]. Compared with traditional excitation and emission
fluorescence data, excitation-emission matrix data not only
provides much more information, but also enables more
options of data fusion and analysis methods.

This paper presents a case study of automatic discrimi-
nation of plateau milks from ordinary milks by fluorescent
spectrometry and chemometrics. Different options of data
fusion and analysis are investigated: (1) two-way partial
least squares discriminant analysis (PLSDA) [14] based on
the traditional excitation and emission spectra, respectively,
(2) two-way PLSDA based on fusion of excitation and
emission spectra and (3) three-way PLSDA [11, 13] based on
excitation-emission matrix data. The objective is to develop
a quick and yet reliable analysis method to distinguish the
plateau milks from the milks produced in eastern China
areas. More details of the work will be presented later.

2. Experimental and Methods

2.1. Preparation of Milk Samples and Fluorescent Spectromet-
ric Analysis. A set of 60 pure and authentic milk samples
from Western Yunnan Plateau area are collected from domes-
tic markets. The samples consist of three brands, including

Ouya (20), Laisier (20), and Butterflyspring (20). Another
89 milk samples from eastern China areas are collected of
five mainstream brands including Mengniu (20), Yili (20),
Guangming (20), Wandashan (17), and Wangzai (12). All the
milk samples are produced by pasteurising technology and
stored in a cool, dark area before spectrometry analysis.

The fluorescent spectra are measured on an MC-960
fluorescence spectrophotometer by Shanghai Xianke Instru-
ment Co., Ltd. A trial experiment demonstrates the pure milk
should be diluted to reflect the absorption characteristics in
excitation spectra. Then the excitation-emission matrix data
are measured with no further preprocessing of milk samples
except a dilution of 1 : 500 with distilled water. The scanned
excitation and emission wavelength regions are 180–300 nm
(with an interval of 5 nm) and 200–800 nm (with an interval
of 1 nm), respectively. Therefore, for each sample, a 25-by-
601 excitation-emission matrix is obtained for each sample.
A typical fluorescent matrix data set is shown in Figure 1.

2.2. Two-Way Partial Least Squares Discriminant Analysis
(PLSDA). If each sample is described by a vector, for
example, the multiwavelength emission spectra measured
with the maximum excitation wavelength, one can obtain an
n × p matrix X (a two-way data set) including p wavelength
variables for n samples. For two-class problems, X contains
samples from two different classes. A vector y (n×1) contains
the category variable of each sample in X, for example, an
element of 1 for class A and−1 for class B. The objective is to
predict the class of new samples based on X and y. The above
problem can be solved by two-way PLSDA.

PLSDA is a classification method based on partial least
squares (PLS) regression. As the key method in chemomet-
rics, PLS has been widely used to solve various regression
problems. The goal of PLS is to find a set of orthogonal latent
variables that are the linear combinations of the original X
variables, where the covariance between the latent variables
and y is maximized under some constraints

max (Xw)Ty,

subject to wTw = 1, wT
i XTXw j = 0,

∀i /= j, 1 ≤ i ≤ A, 1 ≤ j ≤ A,

(1)

where A is the number of latent variables and w is the p × 1
weighting vector of original X variables

t = Xw. (2)

The above objective function can be solved by the
Lagrange multiplier method. After all the A latent variables
have been calculated, y is related to X by A latent variables

y = Tq, (3)

where T (T = XW) contains A latent variables in its columns
and W contains the corresponding A weighting vectors.
Regression coefficients q can be solved by least squares
regression

q =
(

TTT
)−1

TTy. (4)
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Figure 1: A typical fluorescence excitation-emission matrix for milk samples from (a) plateau area and (b) eastern China areas.

Then, y is related to X by PLS regression coefficients
b (b = Wq) as

y = Xb + e, (5)

where e is the error vector, and the dependent variable yun of
unknown samples can be predicted from the corresponding
predictor variables Xun

yun = Xunb. (6)

For PLSDA, instead of a set of continuous values, y
contains a binary vector of 1 and −1 (or 1 and 0) denoting
class A and B, respectively. A predicted value of a new sample
above 0 means the sample is predicted to belong to class A by
the model and vice versa.

2.3. Three-Way PLSDA. Here, a brief introduction to three-
way PLS will be given. If each sample is described by a matrix,
for example the fluorescent excitation-emission spectra, one
can obtain an n × p1 × p2 cubic matrix X for n samples
including fluorescent intensities scanned at p1 excitation
wavelengths and p2 emission wavelengths. A three-way data
set is shown in Figure 2.

Three-way PLS is an extension of two-way PLS to tackle
three-way data. Three-way PLS maximizes the covariance
between a latent variable t (n×1) and y. The score of sample
i (i = 1, 2, . . . ,n) in (i = 1, 2, . . . ,n)t can be calculated as

ti = w1i
TXi..w2i, (7)

where w1i(p1 × 1) and w2i(p2 × 1) are weighting vectors for
latent variable j ( j = 1, 2, . . . ,A), Xi..(p1 × p2) is a matrix
containing the fluorescent excitation-emission data for sam-
ple i. The weighting vectors can be deduced by unfolding the
cubic matrix and solving an eigenvalue problem [13]. When
the A latent variables for three-way PLS are obtained, three-
way PLSDA can be performed as in (3)–(6).

2.4. Monte Carlo Cross-Validation (MCCV) [15, 16]. For
discriminant models based on two-way and three-way partial

2 emission waveleng ht s

1 excit ta ion

n samples

waveleng ht sp

p

Figure 2: The n × p1 × p2 three-way matrix data for n samples
scanned at p1 excitation wavelengths and p2 emission wavelengths.

least squares, an important problem is to select the number
of latent variables or determine the model complexity.
Including too few latent variables will lose some useful infor-
mation in the data structure and fail to classify the samples
sufficiently, while a model with too much complexity will
include the class-uncorrelated data variances and have a bad
prediction performance. Therefore, a well-established cross-
validation method, MCCV [15, 16], is used to determine the
complexity of classification models.

MCCV is originally proposed and used to reduce the
risk of selecting too many PLS components [15] and then
corrected for model errors estimation [16]. By multiple
resampling and excluding certain percent of training sam-
ples, MCCV has been proved to be an effective method
to estimate model complexity [17]. With a predefined
model complexity, the root mean square error of MCCV
(RMSEMCCV) can be calculated as

RMSEMCCV =

√√√√√ 1
S× nv

S∑

i=1

∥∥yS(i) − ŷS(i)
∥∥2, (8)

where S and nv are the resampling time and size of left-out
samples, respectively; yS(i) and ŷS(i) represent the reference
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Figure 3: Fusion of excitation and emission spectra for two-way
PLSDA.

and predicted values of left-out samples during the ith
resampling, respectively. The number of PLS components is
selected to get the lowest RMSEMCCV value. The percent of
left-out samples can be adjusted according the size of training
set.

3. Results and Discussion

To remove the baselines, all the data are corrected by
subtracting the spectra matrix of distilled water. Moreover,
to reduce the computational burden, wavelength channels
that have no significant signals compared with backgrounds
(signals of water) are eliminated. For two-way methods,
the emission spectra and fusion of excitation and emission
spectra are demonstrated in Figure 3. Both the excitation
and emission spectra are selected to have the maximum
fluorescent intensities.

To make the data analysis and comparison of model
performances reliable, potential outliers must be removed.
With the 149 milk samples, robust PCA [18] is performed,
and no outliers are detected. To select the representative
training and test samples for model building and validation,
Kennard and Stone (KS) algorithm [19] is used to split the
samples into a representative training set and a test set.
The KS algorithm selects the set of training samples that
covers the overall sample domain based on their distance
(Euclidean distance) from each other. For the four models,
the KS algorithm is performed on the two-way fusion data as
shown in Figure 3(b). Therefore, a training set of 80 samples
(40 genuine plateau milks + 40 nonplateau milks) and a test
set of 69 samples (20 genuine plateau milks + 49 nonplateau
milks) are obtained.

Two-way PLSDA models are developed with excitation
spectra, emission spectra, and fusion of excitation and
emission spectra, respectively. Three-way PLSDA is built on
the excitation-emission matrix data. Considering the size of
training set is not very large, for all the four models, MCCV
with 20 percents of left-out samples is used to determine the

Table 1: The classification results of different models for milk
samples.

Models
Two-way
PLSDA1

Two-way
PLSDA2

Two-way
PLSDA3

Three-way
PLSDA

Model complexity 4 4 5 5

Number of
misclassified4 7/6 7/10 4/3 2/4

Total accuracy rate 91.3% 88.6% 95.3% 96.0%
1
Two-way PLSDA with excitation spectra,

2Two-way PLSDA with emission spectra,
3Two-way PLSDA with fusion of excitation and emission spectra,
4The number of misclassified samples for training/predicting.

number of PLS components and the sampling time is 100.
The results of different models are listed in Table 1.

Seen from Table 1, the two-way PLSDA with excitation
spectra and emission spectra has an accuracy of 91.3%
(136/149), and 88.6% (132/149), respectively, which is
much inferior to those of the other two methods. This
can be partially explained by the insufficiency of chemical
information carried by pure excitation and emission spectra,
because the differences between the excitation or emission
spectra of the different milk samples are very subtle. On
the other hand, for two-way PLSDA with data fusion and
three-way PLSDA with matrix data, both the numbers of PLS
components are 5, which can be attributed to the similarity
of information contained in the data. Moreover, the error
rate for the two models is 4.7% (7/149) and 4.0% (6/149),
respectively, indicating that the performance of two-way
PLSDA with data fusion is comparable to that of three-way
PLSDA with matrix data. The detailed results obtained by
two-way PLS with data fusion are further shown in Figure 4,
where the numbers of misclassified samples for training and
prediction are 4 and 3, respectively. Seen from Figure 4,
the two-way PLSDA model is sufficiently trained, and no
overfitting has been found, because the prediction results are
equally well compared with training results.

4. Conclusions

In order to achieve automatic identification of genuine
plateau milk samples, excitation-emission fluorescence
matrix spectra are measured, and different data analysis and
fusion methods are investigated. The results demonstrate
that two-way PLS with pure excitation or emission spectra
are not very sufficient to classify the milk samples, while two-
way PLSDA with fusion of emission and excitation spectra
and three-way PLSDA with matrix data are effective in
distinguishing milk samples of different geographical origins.

Compared with three-way PLSDA, the two-way PLS with
data fusion has some advantages. Firstly, the measurement
of full excitation-emission fluorescence matrices is time
consuming, especially when the sample size is large or in
case of batch samples. Conversely, the measurement of an
excitation and emission spectra is much more convenient.
Secondly, while the three-way PLSDA is a somewhat complex
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Figure 4: The training (a) and prediction (b) results by two-way PLSDA with fusion data. Samples 1–40 (a) and 1–20 (b) are genuine plateau
milks; Samples 41–80 (a) and 21–69 (b) are nonplateau milks.

mathematical tool for routine use, two-way PLSDA is a well-
established and easy-to-use tool in chemometrics. Therefore,
two-way PLSDA with data fusion of emission and excitation
spectra is recommended as a quick and reliable method for
authentication of plateau milks. Our future work will be
focused on quantitative analysis of milk quality parameters
by fluorescence spectrometry and chemometrics.
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