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Abstract

This paper is to further study the origin-based (OB) algorithm for solving the combined distribution and assignment
(CDA) problem, where the trip distribution follows a gravity model and the traffic assignment is a user-equilibrium model.
Recently, the OB algorithm has shown to be superior to the Frank–Wolfe (FW) algorithm for the traffic assignment (TA)
problem and better than the Evans’ algorithm for the CDA problem in both computational time and solution accuracy. In
this paper, a modified origin–destination (OD) flow update strategy proposed by Huang and Lam [Transportation
Research Part B 26 (4), 1992, 325–337] for CDA with the Evans’ algorithm is adopted to improve the OB algorithm
for solving the CDA problem. Convergence proof of the improved OB algorithm is provided along with some preliminary
computational results to demonstrate the effect of the modified OD flow update strategy embedded in the OB algorithm.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Transportation system can be regarded as the combination of different elements and their interactions,
which produce the demand for travel and the supply of transportation services to satisfy this demand. When
studying improvements to a transportation system, there are various alternatives. Evaluating each alternative
requires forecasts of travel patterns. Travel forecasting is a complex problem and has been receiving much
attention in the transportation field. Traditionally, this problem was simplified by considering a sequence
of steps or stages: trip generation (travel choice), trip distribution (destination choice), modal split (mode
choice) and traffic assignment (route choice). This simplification has been adopted in transportation planning
studies for several decades, and continues to be the current practice (Boyce and Xiong, 2007).
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As noted by many researchers (e.g., Oppenheim, 1995; Garret and Wachs, 1996; McNally, 2000; Boyce,
2002), the sequential four-step procedure suffers from inconsistent consideration of travel times and conges-
tion effects in various steps of the procedure. As a remedy, a feedback mechanism is often introduced to
resolve the inconsistency, but generally, this approach does not fulfilled it completely and rigorously (Boyce,
2002). An alternative approach to this problem is to adopt a mathematical model using behavioral assump-
tions (typically from random utility theory) as mathematical conditions to seek solutions that satisfy these
conditions. Such models are referred to as ‘combined’ or ‘integrated’ models.

Models that combine several travel choices together have been studied for several decades. The first con-
strained convex optimization formulation for the user-equilibrium assignment problem with elastic demand
was first proposed by Beckmann et al. (1956) that considered travelers between every origin–destination
(OD) pair to be a function of the travel service for that OD pair. Florian et al. (1975) and Evans (1976)
extended the convex optimization formulation to consider destination choice by providing a combined distri-
bution and assignment (CDA) model, where the trip distribution follows a gravity model with a negative expo-
nential deterrence function and the traffic assignment follows a user-equilibrium model. Oppenheim (1993)
added variable destination costs in the CDA model to capture the congestion effect at the destinations.
Lam and Huang (1992), Boyce and Bar-Gera (2004) and Ho et al. (2006) extended the CDA model to account
for multiple user classes, while Florian and Nguyen (1978) considered modal split in the CDA model. Friesz
(1981) provided an equivalent optimization problem for combined multiclass distribution, assignment, and
model split which obviates symmetry restrictions. Wong et al. (2004) proposed an optimization model for
combining distribution, hierarchical mode choice, and assignment network with multiple user and mode clas-
ses. Safwat and Magnanti (1988) developed a combined model by integrating all four steps in sequential
demand forecasting based on random utility theory. Oppenheim (1995) made further extension to simulta-
neously consider the travel-destination-mode-route choice, which is based on the multinomial logit model
in a hierarchical structure by assuming each traveler is a customer of urban trip, whose choice is reflected
by the utility and budget constraints.

Of all the combined models discussed above, the CDA model is particularly important in many transpor-
tation applications, because it can help transportation planners to understand the interactions between land
use and transportation, and hence to determine the future direction of urban development and transportation
systems improvement plan. For example, many researchers have adopted the CDA model as the lower-level
problem in a bilevel programming framework to model different land use and transportation issues. Yang
et al. (2000) used the CDA model for modeling the capacity and level of service of urban transportation net-
works; Tam and Lam (2000) adopted the CDA model for determining the maximum number of cars subject to
the capacity of the road network and the number of parking spaces available; Lin and Feng (2003) applied the
CDA model in a land use – network design problem for analyzing the integrated layouts of land uses, public
facilities, transport network and travel demands; Lee et al. (2006) examined the equity issue associated with
land use development in terms of the change of equilibrium OD travel costs; Yim (2005) used the CDA model
as a mapping to map the land use pattern to the link-loading pattern in a network for optimizing the network
reliability with respect to the residential and employment allocations and network enhancements; and Ho and
Wong (2007) embedded the CDA model of housing locations and traffic equilibrium to determine the optimal
housing provision pattern in a continuum transportation system.

For solution approaches, several algorithms have been proposed in the literature for solving the CDA
model formulated as a constrained convex optimization problem. Evans (1976) presented a partial lineariza-
tion method, which is a descent algorithm for continuous optimization problems (Patriksson, 1994). Florian
et al. (1975) and Florian and Nguyen (1978) presented another algorithm based on the Frank and Wolfe
(1956) method. However, Evans’ algorithm has better convergence characteristics according to Boyce
(1984) and LeBlanc and Farhangian (1981).

Based on two unproven conjectures, Horowitz (1989) proposed a modification to the Evans’ algorithm with
the intent of reducing computational times and memory requirements. However, as noted by Huang and Lam
(1992), Horowitz’s modified algorithm does not always converge to the optimal solution. To rectify the prob-
lem, Huang and Lam (1992) proposed a further modification to Horowitz’s modified algorithm and provided
rigorous proof of convergence. On the other hand, Lundgren and Patriksson (1998) proposed a solution
method, which combines the Evans’ algorithm and the disaggregate simplicial decomposition (DSD) method
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developed by Larsson and Patriksson (1992). This method is expected to have better computational efficiency
and higher solution accuracy than the Evans’ algorithm since the algorithm operates in the path-flow domain.
However, combination of the Evans’ algorithm and the second-order DSD algorithm may cause non-
convergence.

Recently, Bar-Gera and Boyce (2003), Bar-Gera and Boyce (2006) extended the OB algorithm for solving
the CDA model as a fixed point problem. Compared to the Evans’ algorithm, the OB algorithm was more
effective in achieving highly accurate solutions. When implementing the OB algorithm, it was observed that
the step-size determination in the OD flow update step has a significant influence on the performance of
the algorithm. As a means to improve the efficiency of the OB algorithm, this paper adopts the modified line
search strategy proposed by Huang and Lam (1992) for the Evans’ algorithm. This strategy is expected to be
effective in improving the performance of the OB algorithm for solving the CDA model.

The rest of the paper is organized as follows. In the next section, a summary of Evans’ CDA model and the
OB algorithm is provided. The improved OB algorithm with a modified OD flow update method for the dou-
bly constrained CDA problem is presented in Section 3. Convergence proof of the improved OB algorithm is
provided Section 4. Some preliminary computational results are presented in Section 5 to demonstrate the
effect of the modified OD flow update strategy embedded in the OB algorithm. Some concluding remarks
are discussed in Section 6.

2. Summary of Evans’ formulation and OB algorithm

This section provides a summary of Evans’ formulation and the origin-based algorithm for solving the
CDA model. The presentation in this summary section follows Evans (1976), Huang and Lam (1992), Bar-
Gera and Boyce (2003) and Yim (2005). Notation is provided firstly for convenience, followed by the convex
programming formulation and the OB algorithm for the CDA model.

2.1. Notation

N is the set of nodes in the network
A is the set of links in the network
Z is the set of zones in the network
Zp is the set of destinations for origin p

Zq is the set of origins for destination q

Ap is a restricting subnetwork for origin p

ah is the head node of link a

at is the tail node of link a
lcnj is the last common node to node j

NBj is the non-basic approaches to node j

dpq is the OD flow from origin p to destination q; d ¼ ð. . . ; dpq; . . .Þ
Op is the number of trips per unit time that begin at origin p

Dq is the number of trips per unit time that end at destination q

rp is a balancing factor for origin p

sq is a balancing factor for destination q

xa is the traffic flow on link a; x ¼ ð. . . ; xa; . . .Þ
caðxaÞ is the travel cost on link a with traffic flow xa and assumed to be a continuous, strictly increasing func-

tion; c ¼ ð. . . ; caðxaÞ; . . .Þ
xap is the traffic flow on link a from origin p

aap is the approach proportion of link a from origin p; a ¼ ð. . . ; aap; . . .Þ; 0 6 aap 6 1;
P

a2A
ah¼i

aap ¼
1; 8i 2 N ; p 2 Z

gjp is the traffic flow to node j from origin p

oip is the maximum cost to node i from origin p

uij is the minimum cost of traveling from node i to node j
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la is the average cost for link a

ma is the approximated derivative of la with respect to flow on link a

rj is the average cost to node j

qj is the approximated derivative of rj with respect to flow to node j
IMain is the number of main iterations
IInner is the number of inner iterations
b is the impedance factor
H is an algorithmic map
2.2. Convex programming formulations

The constraints of the trip distribution and assignment problem are given as follows:
xap P 0 8a 2 A; p 2 Z; ð1Þ

xa ¼
X
p2Z

xap 8a 2 A; ð2Þ

dpq P 0 8p 2 Z; q 2 Zp; ð3ÞX
a2A
at¼p

xap �
X
a2A
ah¼p

xap ¼ Op 8p 2 Z; ð4Þ

X
a2A
ah¼q

xap �
X
a2A
at¼q

xap ¼ dpq 8p 2 Z; q 2 Zp; ð5Þ

X
a2A
ah¼i

xap �
X
a2A
at¼i

xap ¼ 0 8p 2 Z; i 2 N ; i 62 Zp [ fpg; ð6Þ

X
q2Zp

dpq ¼ Op 8p 2 Z; ð7Þ

X
p2Zq

dpq ¼ Dq 8q 2 Z; ð8Þ

upp ¼ 0 8p 2 Z; ð9Þ

upah
6 upat

þ caðxaÞ 8p 2 Z; a 2 A; ð10Þ

upah
¼ upat

þ caðxaÞ; if xap > 0; a 2 A; ð11Þ

dpq ¼ rpOpsqDq expð�bupqÞ 8p 2 P; q 2 Zp: ð12Þ
If Op;Dq and b are given, then conditions (3), (7), (8) and (12) define the trip distribution problem. This prob-
lem is also called the doubly constrained gravity model with a negative exponential deterrence function, and a
unique and optimal solution (d�pqÞ can be obtained for the doubly constrained gravity model by using the iter-
ative method from Fratar (1954). An equivalent minimization optimization program for the trip distribution
problem can be written as follows:
Min GðdÞ ¼
X
p2Z

X
q2Zp

dpqðln dpq þ bupq � 1Þ

s:t: ð3Þ; ð7Þ and ð8Þ:
ð13Þ
As GðdÞ is a strictly convex function with respect to d, the solution to this problem is unique (Theorem 1 of
Evans, 1973).
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If dpq and caðxaÞ are known, then conditions (1), (2), (4), (5), (6), (9), (10) and (11) define the traffic assign-
ment problem. These conditions represent the first Wardrop principle (1952), and are equivalent to the Kuhn–
Tucker necessary conditions of the following convex minimization program:
Min HðxÞ ¼
X
a2A

Z xa

0

caðxÞdx

s:t: ð1Þ; ð2Þ; ð4Þ; ð5Þ and ð6Þ:
ð14Þ
Function HðxÞ is a strictly convex function with respect to x, as caðxaÞ is a strictly increasing function for all
a 2 A. The solution to this problem is unique in terms of the link flows, but it is not unique in terms of the link
flows by origin.

By using the separable convex programming theory of Rockafellar (1967), Evans (1976) defined a convex
minimization program that combines the trip distribution problem and the traffic assignment problem into the
following minimization program with a strictly convex objective function:
Min P ðx; dÞ ¼
X
a2A

Z xa

0

caðxÞdxþ 1

b

X
p2Z

X
q2Zp

dpqðln dpq � 1Þ

s:t: ð1Þ–ð8Þ:
ð15Þ
To solve the above minimization program, Evans (1976) developed a descent algorithm based on the partial
linearization method, which guarantees to converge to the unique, optimal solution. The next subsection dis-
cusses a recent development using the OB algorithm for solving the CDA model formulated as a convex
minimization program.
2.3. Origin-based algorithm for solving the CDA model

Recent research on the OB algorithm (Bar-Gera, 2002) demonstrated that it is one of the state-of-the-art
algorithms for solving the traffic assignment problem. There are two key steps in this algorithm: (1) restricting
the origin-based subnetworks to be acyclic and (2) shifting flows within the acyclic subnetwork using cost devi-
ations. Since the restricting subnetwork is always a-cyclic for a given origin, it permits a simple route flow
Initialization:
Find the initial OD flows  
for each p  in Z  do 

=pA tree of minimum cost routes from p

=apf All-or-Nothing assignment using pA  with the initial OD flows 

end for 

Main Loop: 
for 1=n  to number of main iterations ( IMain)

Update O-D flows, retain route proportions 
 Update approach proportions { }apα  for each link a

  for p  in Z  do 

  Update restricting subnetwork pA

  Update approach proportions { }apα  for each link a

 end for 
 for 1=m  to number of inner iterations (      )InnerI

  for each p  in Z  do 

   Update approach proportions { }apα  for each link a

  end for 
 end for 

end for 

Fig. 1. Origin-based algorithm for the CDA model (Bar-Gera and Boyce, 2003).
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interpretation, enables a definition of cost, and allows for a definition of topological order. Using the
approach proportions, the memory required to store routes is significantly reduced. The OB algorithm is con-
sidered suitable for large-scale networks due to its computational efficiency and modest memory requirements.

In the implementation of the OB algorithm for the traffic assignment problem, it starts with trees of min-
imum cost routes as restricting subnetworks. Then, it considers the flows from each origin separately in a
sequential order. For each origin, the restricting subnetwork is updated, and the origin-based approach pro-
portions are adjusted within the given restricting subnetwork. Extending the OB algorithm to account for the
trip distribution step requires adding a procedure to update the OD flows while keeping the route proportions
fixed (Bar-Gera and Boyce, 2003), as shown in Fig. 1.

Experimental results in Bar-Gera and Boyce (2003) have demonstrated the effectiveness of the OB algo-
rithm in achieving highly accurate solutions as compared to the Evans’ algorithm and the four-step procedure
with a ‘‘feedback’’ mechanism. In the next section, we will further study the OB algorithm to solve the doubly
constrained CDA problem.
3. Modified OD flow update method

When implementing the OB algorithm, we observed that the step-size determination in the OD flow update
step has a significant influence on the performance of the algorithm. Similar findings were also observed in the
Evans’ algorithm (Horowitz, 1989; Huang and Lam, 1992) and in the OB algorithm (Bar-Gera and Boyce,
2003). Majority of the computational times spent in the step-size determination is controlled by the trip dis-
tribution term in Eq. (15) since it is nearly flat with respect to the step size. As a means to improve the effi-
ciency of the OB algorithm, we adopt the modified line search strategy proposed by Huang and Lam
(1992) embedded in the OB algorithm for solving the CDA model. The modified OD flow update method
(MODFUM) for a given iteration n is given as follows.

(1) Solve the doubly constrained gravity model to find the new auxiliary trip distribution vn
pq (see Ortuzar

and Willumsen, 2001).
(2) Find the new auxiliary link flow yn

a using vn
pq.

(3) Let
Mðxn�1; yn; dnÞ ¼
X
a2A

caðxn�1
a Þyn

a þ
1

b

X
p2Z

X
q2Zp

dn
pqðlog dn

pq � 1Þ: ð16Þ

If Mðxn�1; xn; vnÞ ¼ Mðxn�1; yn; dnÞ, then (xn; vnÞ is the optimal solution and the procedure is terminated;
otherwise go to Step (4).
(4) Compute
Dn1 ¼
1

b

X
p2Z

X
q2ZP

ðvn�1
pq log vn�1

pq � dn
pq log dn

pqÞ: ð17Þ

If Dn1 ¼ 0, then set xn;k
a ¼ ð1� kÞxn�1

a þ kyn
a, and solve the following one-dimensional line search problem

to obtain the step size k�

Min
k

HðkÞ ¼
X
a2A

Z xn;k
a

0

caðxÞdx: ð18Þ

Set

xn
a ¼ ð1� k�Þxn�1

a þ k�yn
a; ð19Þ

dn
pq ¼ ð1� k�Þdn�1

pq þ k�vn
pq; ð20Þ

where k 2 ½0; 1� and xn�1
a and dn�1

pq are the link flows and OD flows at iteration n � 1. Set n to n + 1 and
return; otherwise go to Step (5).
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(5) If Dn1 > 0, then compute
Dn2 ¼
X
a2A

caðxn�1
a Þðyn

a � xn�1
a Þ: ð21Þ

If Dn2 < 0, then solve the one-dimensional line search problem (18) to obtain the step size k� and update
ðxn

a; d
n
pqÞ using (19) and (20). Set n to n + 1 and return; otherwise solve the original one-dimensional line

search problem to obtain k�

Min
k

Pðxn;k; vn;kÞ ¼
X
a2A

Z xn;k
a

0

caðxÞdxþ 1

b

X
p2Z

X
q2Zq

vn;k
pq ðlog vn;k

pq � 1Þ: ð22Þ

Update ðxn
a; d

n
pqÞ using (19) and (20), Set n to n + 1 and return; otherwise go to Step (6).
(6) Since Dn1 < 0, solve problem (18) to obtain k�, use (19) and (20) to update ðxn
a; dn

pqÞ, and compute
hn1 ¼
X
a2A

Z xn�1
a

0

caðxÞdx�
X
a2A

Z xn
a

0

caðxÞdx; ð23Þ

hn2 ¼
1

b

X
p2Z

X
q2Zp

dn�1
pq ðlog dn�1

pq � 1Þ �
X
p2Z

X
q2Zp

dn
pqðlog dn

pq � 1Þ
" #

: ð24Þ
If hn2 P 0, return; otherwise.
If hn2 < 0 and jhn1jP jhn2j, return; otherwise.
If hn2 < 0 and jhn1j < jhn2j, then solve problem (22) to obtain the step size k�, update ðxn

a; d
n
pqÞ using (19)

and (20), and return.
With the above MODFUM, the improved OB algorithm implementation for the CDA model is
described as follows.

Initialization

(1) Find the initial OD flow d0
pq using the minimum route cost upq by solving the doubly constrained gravity

model.
(2) Find the initial restricting subnetwork A0

p for each origin p 2 Z using any shortest path algorithm (e.g.,
Dijkstra’s algorithm).

(3) Find the origin-based link flows x0
ap for each origin p 2 Z by performing an all-or-nothing assignment to

obtain the initial link flow pattern.
(4) Update the link costs using the initial link flow pattern.
(5) Initialize the origin-based node flows g0

jp for each origin p 2 Z.
(6) Initialize the origin-based approach proportions a0

ap for each origin p 2 Z.
Main loop

For n = 1 to number of main iterations ðIMainÞ

for p in Z do

Update restricting subnetwork Ap
(1) Remove all of links with aap ¼ 0 in the restricting subnetwork Ap.
(2) Compute the maximum cost oip to each node i from the origin p.
(3) Add link (i, j) that satisfies oip < ojp to the restricting subnetwork Ap.
(4) Find the last common node lcnj to node j in the restricting subnetwork Ap.
Update approach proportions faapg for each link a

Compute the step size k ¼ 2�k; k ¼ 0; 1; 2; . . ., repeat the following Steps (1)–(4) until it satisfiesX
a2A

Dxacaðxa þ kDxaÞ > 0: ð25Þ



(1) Compute the following average costs

(1.1) Compute the average cost to all nodes:
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rpða; cÞ ¼ 0; ð26Þ
rjða; cÞ ¼

X
a2Ap
ah¼j

aala a; cð Þ 8j 62 P: ð27Þ
(1.2) Compute the average approach cost for all links:
laða; cÞ ¼ ca þ rat ða; cÞ ¼ ca þ
X
a02Ap

a0h¼at

aa0la0 ða; cÞ: ð28Þ
(2) Compute the Hessian approximations
(2.1) Compute the derivative of the average cost to all nodes:
qpða; c0Þ ¼ 0; ð29Þ
qjða; c0Þ ¼

X
a2Ap
ah¼j

a2
avaða; c0Þ 8j 62 P: ð30Þ
(2.2) Compute the derivative of the average approach cost for all links:
maða; c0Þ ¼ c0a þ qat
ða; c0Þ ¼ c0a þ

X
a02Ap

a0
h
¼at

a2
a0ma0 ða; c0Þ: ð31Þ
(3) Compute the desirable amount of flow proportion Ha!b
1 ða; c; c0Þ to be shifted between two alterna-

tive approaches a and b, ab ¼ bb ¼ j.
Ha!b
1 ða; c; c0Þ ¼

minðaa; k
xa!bða;c;c0Þ

gjpðaÞÞ
; gjp > 0

aa; gjp ¼ 0;la > lb

½0; aa�; gjp ¼ 0;la ¼ lb;

8><
>: ð32Þ

where the desirable shifted flow xa!bða; c; c0Þ is defined as

xa!bða; c; c0Þ ¼
laða; cÞ � lbða; cÞ

maxðem; maða; c0Þ þ maða; c0Þ � 2qlcnj
ða; c0ÞÞ ; ð33Þ

where em is a small positive constant to overcome the ‘‘zero’’ derivative estimation problem.

(4) Aggregate shifts from approaches to the same node j.
Hj:b
1 ða; c; c0Þ ¼ Da :

Daa 2 �Ha!b
1 ða; c; c0Þ 8a 2 NBj;

Daa ¼ �
P

a2NBj

Daa;

Daa0 ¼ 0; a0 6¼ j;

8>><
>>: ð34Þ
end for
for m = 1 to number of inner iterations ðI InnerÞ
for each p in Z do
Update approach proportions faapg for each link a (same as above).

end for
end for
end for
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4. Convergence of the improved origin-based algorithm

Before proving the convergence of the OB algorithm with the MODFUM for solving the doubly
constrained CDA model, we first recall some intermediate results from Huang and Lam (1992):

Lemma 1. Given xn�1, steps (1) and (2) of the MODFUM in Section 3 is equivalent to finding a solution for the

following convex minimization program:
Min Mðxn�1; yn; dnÞ ¼
X
a2A

caðxn�1
a Þyn

a þ
1

b

X
p2Z

X
q2Zp

dn
pqðlog dn

pq � 1Þ

s:t: X ¼ fðyn; dnÞjð1Þ–ð8Þ are satisfiedg:
Lemma 2. Denote the optimal solution of the problem given above by ðyn; dnÞ. If ðxn�1; vn�1Þ is a non-optimal

point in X, then
Mðxn�1; yn; dnÞ < Mðxn�1; xn�1; vn�1Þ: ð35Þ
If the inequality in (35) changes to equality, then ðxn�1; vn�1Þ is a unique, optimal solution for problem (22).

Lemma 3. Denote a strictly convex function as
HðkÞ ¼
X
a2A

Z xn;k
a

0

caðxÞdx; ð36Þ
where xn;k
a ¼ ð1� kÞxn�1

a þ kyn
a. Then Mink2½0;1� HðkÞ exists if and only if
dH
dk

����
k¼0þ

< 0: ð37Þ
Lemma 4. At every iteration, dH
dk

��
k¼0þ

< Dn1.

Proof. From the definition of derivative,
dH
dk
¼
X
a2A

ca½ð1� kÞxn�1
a þ kyn

a�ðyn
a � xn�1

a Þ:
Hence,
dH
dk

����
k¼0þ
¼ Dn2:
From (35),
X
a2A

caðxn�1
a Þyn

a þ
1

b

X
p2Z

X
q2Zp

dn
pqðlog dn

pq � 1Þ <
X
a2A

caðxn�1
a Þxn�1

a þ 1

b

X
p2Z

X
q2Zp

vn�1
pq ðlog vn�1

pq � 1Þ: ð38Þ
Note that
P

p2Z

P
q2Zp

dn
pq ¼

P
p2Z

P
q2Zp

vn�1
pq ; therefore,
Dn2 <
1

b

X
p2Z

X
q2ZP

ðvn�1
pq log vn�1

pq � dn
pq log dn

pqÞ:
That is,
dH
dk

����
k¼0þ

< Dn1: �
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Theorem 1. The MODFUM given in Section 3 guarantees that dn is in a non-increasing direction.

Proof. There are three cases based on Dn1:

Case 1. Dn1 ¼ 0According to Lemma 3, there exists a unique solution k 2 ½0; 1� for the new one-dimensional
minimization problem when dH

dk

��
k¼0þ

< 0. Let
xn
a ¼ ð1� kÞxn�1

a þ kyn
a and dn

pq ¼ ð1� kÞdn�1
pq þ kvn

pq:
Then,
X
a2A

Z xn
a

0

caðxÞdx <
X
a2A

Z xn�1
a

0

caðxÞdx: ð39Þ
By the convexity of function f ðxÞ ¼ xðlog x� 1Þ, it follows that
X
p2Z

X
q2Zp

dn
pqðlog dn

pq � 1Þ < ð1� kÞ
X
p2Z

X
q2Zp

dn�1
pq ðlog dn�1

pq � 1Þ þ k
X
p2Z

X
q2Zp

vn
pqðlog vn

pq � 1Þ:
Thus,
X X X X

p2Z q2Zp

dn
pqðlog dn

pq � 1Þ <
p2Z q2Zp

dn�1
pq ðlog dn�1

pq � 1Þ: ð40Þ
Adding (39) and (40) gives
P ðxn; dnÞ < Pðxn�1; dn�1Þ: ð41Þ

Case 2. For Dn1 > 0, there are two subcases:

(i) Dn2 < 0. Similar to Case 1, (41) is satisfied.
(ii) 0 6 Dn2 < Dn1. From Lemma 3 and Lemma 4, it shows that if dH

dk

��
k¼0þ

P 0, then k takes its lowest
bound for minimizing HðkÞ since HðkÞ is strictly convex on ½0; 1� (i.e., if k = 0, it implies that
xn ¼ xn�1 and dn ¼ dn�1Þ. Therefore, the new feasible solution is no better than the old one. In
this situation, a deadlock occurs. The algorithm should return to use (22) to find the new
ðxn; dnÞ in order to guarantee (41) is satisfied.
Case 3. For Dn1 < 0, there are three subcases:
(i) hn2 P 0. Similar to Case 1, (41) is satisfied.

(ii) hn2 < 0 and jhn1jP jhn2j. Similar to Case 1, (41) is satisfied when jhn1j ¼ jhn2j and
P ðxn; dnÞ ¼ Pðxn�1; dn�1Þ.

(iii) hn2 < 0 and jhn1j < jhn2j. From Lemma 3 and Lemma 4, it shows that hn1 þ hn2 < 0. That is,
P ðxn; dnÞ > Pðxn�1; dn�1Þ;
which implies the new solution is worse than the old one. Therefore, the algorithm should return to
use (22) to find the new ðxn; dnÞ in order to guarantee (41) is satisfied.

From the above analysis of different cases, it shows that the MODFUM embedded in the OB algorithm can
guarantee the new solution to be a non-increasing sequence. That is,
P ðxn; dnÞ 6 P ðxn�1; dn�1Þ: �
In the implementation of the above OB algorithm with the MODFUM, link array x at each iteration is essen-
tially determined by the current OD flow d and the current approach proportion array a. Let A ¼ Nðd; aÞ be
the set of restricting subnetworks for the next iteration, and anext 2 Haðd; aÞ be the approach proportion for
the next iteration. From Bar-Gera (2002) and Bar-Gera and Boyce (2003), A and Ha have the following
properties:
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Lemma 4. If anext 2 Haðd; aÞ, then P ½xðd; anextÞ; d� 6 P ½xðd; aÞ; d�. Equality may hold only if xðd; anextÞ 6
xðd; aÞ.

Lemma 5. For a sequence with restricting subnetworks A, the mapping Haðd; aÞ is close. That is, if
ak ! a�; âk ! â�; Nðd; akÞ ¼ A; âk 2 Haðd; akÞ;

then â� 2 Haðd; a�Þ.

From the algorithm, define
HdðdkÞ ¼ fdk
pq ¼ ð1� kÞdk�1

pq þ kvk
pq : k satisfies ð22Þg:
Lemma 6. For a converging sequence dk ! d�, the mapping HdðdkÞ is close.

Lemma 7. Given akþ1 2 Ha, dkþ1 2 Hd and a subsequence K such that
Nðdkþl; akþlÞ ¼ A�l; akþl ! a�l; xðd�l; a�lÞ ¼ x� 8k 2 K 81 6 l 6 jN j:

Every limit point of fakg satisfies the user-equilibrium conditions.

Theorem 2. The improved OB algorithm converges to the optimal solution of the doubly constrained CDA
problem.

Proof. In fact, there exists a subsequence K such that
Nðdkþl; akþlÞ ¼ A�l; akþl ! a�l; dkþl ! d�l 8k 2 K 81 6 l 6 jN j;

which satisfies akþ1 2 Ha from Lemmas 5 and 6. From Theorem 1 and Lemma 4, it is found that the objective
function is a monotonically non-increasing bounded sequence. Therefore, P ðd�l; a�lÞ ¼ P �. Furthermore,
a�l ¼ a�, d�l ¼ d�, xðd�l; a�lÞ ¼ x�. From Lemma 7, every limit point of fakg satisfies the user-equilibrium con-
ditions. Therefore, ðx�; d�Þ are the optimal solutions of the doubly constrained CDA problem. h
5. Numerical experiment and analysis

In order to test the improved OB algorithm with the MODFUM for solving the doubly constrained CDA
problem presented in Section 3, the well-known Sioux Falls network (LeBlanc et al., 1975) is used as an illus-
tration to carry out the numerical experiment and analysis. The Sioux Falls network consists of 24 nodes, 76
links, and 528 OD pairs. The characteristics of the network and OD demands can be found in LeBlanc et al.
(1975) or Yim (2005). The impedance factor for trip distribution is set at 0.1. This numerical experiment was
conducted with double precision arithmetic on an Intel� Pentium� 4 CPU 1.75 GHz, 512 MB RAM, using the
Microsoft Window XP (SP2) operating system. All of the coding was carried out in Compaq Visual Fortran
Professional Edition 6.1.0. The precision of any given approximate solution ðx; dÞ can be measured by the rel-
ative gap of trip distribution and the relative gap of traffic assignment as follows:
RG TDn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p

P
qðvn

pq � dn
pqÞ

2
q

P
p

P
qdn

pq

;

RG TRn ¼ jHðx
nÞ � BLBnj
BLBn ;
where BLBn ¼ maxn06n½Hðxn0 Þ þ rHðxn0 Þðyn0 � xnÞ�. The stopping criterion for both relative gaps (traffic
assignment and trip distribution) is set at 1.0E�15.

The experiment conducted in this section is mainly to examine the difference between the original and
improved OB algorithms, the effect of the number of inner iterations ðI InnerÞ and the tradeoff between the
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number of main iterations ðIMainÞ and the number of inner iterations ðI InnerÞ on the overall convergence of the
OB algorithms. For a fixed IMain ¼ 200 and I Inner ¼ 15, Figs. 2 and 3 show the overall solution convergence
and the relative gap of trip distribution in log scale versus computation time for both the original and
improved OB algorithms. It is clear from the figures that the improved OB algorithm has a faster convergence
compared to the original OB algorithm.

It has been found that updating the restricting subnetwork requires much more computational effort than
updating the approach proportions and shifting the flows (Bar-Gera, 2002). Thus, an inner iteration loop is
added to perform several updates of the approach proportions and flow shifts after each update of the restrict-
ing subnetwork. This strategy is similar to performing the equilibration step with a restricted path set several
times in the master problem before returning to the column generation step of the disaggregate simplicial
decomposition algorithm (Larsson and Patriksson, 1992). The next few figures and tables examines the effect
of the number of inner iterations ðI InnerÞ and the tradeoff between IMain and IInner for a fixed computation bud-
get. Figs. 4 and 6 show the relative gaps of traffic assignment and trip distribution in log scale versus main loop
and CPU time for different number of iterations for the inner loop of the OB algorithm (with IMain ¼ 200Þ,
while Figs. 5 and 7 show the same information for the improved OB algorithm. From the figures, it is found
that inner iterations IInner have a clearly effect for the convergence of relative gap. With the fixed IMain, the
convergence of relative gap might be increases with different scales with the increase of IInner. For example,
in Fig. 7, the convergence of relative gap of trip distribution improves clearly when changing IInner from 10
to 15, however, the convergence changes little when changing IInner from 15 to 20. Furthermore, it is sure that
the CPU time will need longer when increasing the inner iterations IInner.
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Fig. 2. Overall solution convergence versus CPU time.
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Fig. 3. Relative gap of trip distribution versus CPU time.
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Fig. 4. Relative gap of traffic assignment versus main loop for the OB algorithm.
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Fig. 5. Relative gap of traffic assignment versus main loop for the improved OB algorithm.
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Fig. 6. Relative gap of trip distribution versus CPU time for the OB algorithm.
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Tables 1–3 report the effect of computation allocations between IMain and IInner for three levels of compu-
tation budget (i.e., IMain � I InnerÞ: 1600, 3000 and 4000. In general, the relative gaps of traffic assignment and
trip distribution for both OB algorithms decrease as the number of inner iterations increases. Between the two



Fig. 7. Relative gap of trip distribution versus CPU time for the improved OB algorithm.
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OB algorithms, the improved OB algorithm appears to have smaller relative gaps compared to those of the
original OB algorithm. From the limited results shown here, it seems the combination of IMain ¼ 200 and
I Inner ¼ 15 (shown in Figs. 2 and 3) can achieve a good balance between convergence accuracy and efficiency.
Further, when the total computation budget is fixed (see Tables 1–3), it appears there is an optimal combina-
tion of IMain and IInner to balance the convergence accuracy and computation efficiency. For a computation
budget of 1600 in Table 1, IMain ¼ 100 and I Inner ¼ 16 is best. Similarly, IMain ¼ 200 and I Inner ¼ 20 is best
for a computation budget of 3000 in Table 2, and IMain ¼ 150 and I Inner ¼ 20 is best for a computation budget
of 4000 in Table 3. However, it should be noted that these results are network dependent (i.e., size of network,
network characteristics, demand level, etc.). It may not be generalized to other networks.
Table 1
Effect of computation allocations between IMain and IInner for a computation budget of 1600

ML NO ML time IL NO IL time RG_TA RG_TD

320 545.187 5 428.76 1.26E�10 8.32E�12
160 462.594 10 406.852 2.18E�12 2.58E�12
100 212.219 16 196.234 1.10E�10 1.70E�10
80 469.485 20 441.251 1.20E�12 3.14E�14
40 563.25 40 548.72 2.88E�12 3.43E�16
20 577.062 80 569.733 1.36E�10 2.71E�16

Table 2
Effect of computation allocations between IMain and IInner for a computation budget of 3000

ML NO ML time IL NO IL time RG_TA RG_TD

600 488.689 5 389.338 7.05E�11 5.70E�11
300 415.968 10 367.9 3.81E�12 4.18E�12
200 412.859 15 380.376 9.36E�14 1.10E�13
150 398.546 20 374.431 2.27E�14 3.87E�14
75 457.781 40 445.438 3.10E�15 2.32E�15
50 945.797 60 930.984 1.36E�11 0.00E+00
25 1080.984 120 1071.888 2.09E�10 1.38E�15
10 973.937 300 970.5 3.00E�10 2.56E�16



Table 3
Effect of computation allocations between IMain and IInner for a computation budget of 4000

ML NO ML time IL NO IL time RG_TA RG_TD

800 679.546 5 542.868 8.11E�11 5.38E�11
400 596.968 10 528.52 3.91E�12 1.09E�11
200 536.766 20 504.16 2.62E�14 1.17E�13
100 (78)a 879.767 40 856.204 4.35E�16 1.37E�15
50 761.407 80 752.69 1.07E�11 5.54E�16
20 1533.703 200 1526.343 9.32E�11 1.04E�15

ML NO = Main loop number,
ML time = Total main loop time,
IL NO = Inner loop number,
IL time = Total inner loop time,
RG_TA = Relative gap of traffic assignment,
RG_TD = Relative gap of trip distribution.

a Convergence is reached at the 78th iteration.
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6. Conclusions

Much of the attention has recently been focused on the OB algorithm due to its modest memory require-
ments, computational efficiency and ability to achieve highly accurate detailed solution. As a further improve-
ment, this paper presented a modified OD flow update strategy embedded in the OB algorithm for solving the
CDA problem. Convergence proof of the improved OB algorithm was provided. Initial computation results
indicated that the modified OD flow update strategy could enhance the OB algorithm if proper choice of the
numbers of main iterations and inner iterations was selected. How to determine suitable numbers of main iter-
ations and inner iterations to balance the convergence accuracy and computation efficiency deserves further
attention. In addition, more work is needed to examine the efficiency of the improved OB algorithm on larger
networks.
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