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This study develops a health-risk-based groundwater
management (HRGM) model. The model incorporates the
considerations of environmental quality and human health risks
into a general framework. To solve the model, a proxy-based
optimization approach is proposed, where a semiparametric
statistical method (i.e., clusterwise linear regression) is used to
create a set of rapid-response and easy-to-use proxy modules
for capturing the relations between remediation policies
and the resulting human health risks. Through replacing the
simulation and health risk assessment modules with the proxy
ones, many orders of magnitude of computational cost can
be saved. The model solutions reveal that (i) a long remediation
period corresponds to a low total pumping rate, (ii) a stringent
risk standard implies a high total pumping rate, and (iii) the
human health risk associated with benzene would be significantly
reduced if it is regarded as constraints of the model. These
implications would assist decision makers in understanding the
effects of remediation duration and human-health risk level
on optimal remediation policies and in designing a robust
groundwater remediation system. Results from postoptimization
simulation show that the carcinogenic risk would decrease
to satisfy the regulated risk standard under the given remediation
policies.

Introduction
Groundwater can be contaminated by petroleum hydrocar-
bons discharged into the subsurface due to leakage of
underground storage tanks and pipelines. The contamination
may pose a significant threat to human and ecological health
since the petroleum hydrocarbons migrate through the
subsurface environment as nonaqueous phase liquids (NA-
PLs). A large number of remediation techniques have been
developed to clean up contaminated sites. One problem
associated with these remediation actions is the deficiency
in understanding processes controlling the fate of contami-
nants, probably leading to a large inflation of expenses (1).

Various simulation-based groundwater management mod-
els were therefore developed in order to improve remediation
efficiency (2-22). Recently, risk-based decision analysis has
been increasingly introduced into the models to ensure that
the risks to human health and the environment associated
with a contaminated site can be reduced to acceptable levels
(23-27). For instance, Smalley (23) used a noise genetic
algorithm to incorporate parameter uncertainty and vari-
ability within a risk-based framework for in situ bioreme-
diation design. Wong and Yeh (25) presented a systematic
approach for the management of groundwater supply systems
based on stochastic health risk assessment. Yan and Minsker
(27) proposed an adaptive neural network genetic algorithm
to support optimal groundwater remediation design con-
sidering the effect of carcinogenic health risk for the removal
of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and TNT
(2,4,6-trinitrotoluene) in groundwater.

Many variables in groundwater management systems can
be either continuous or discrete, and relations among them
can be either linear or nonlinear (28, 29). Nevertheless,
conventional methods such as regression and artificial neural
networks can hardly reflect such complicated characteristics
and relationships efficiently (29). Thus, Huang proposed a
stepwise cluster analysis (SCA) method for dealing with
discrete and nonlinear relationships in an air quality
forecasting system (28). Huang et al. presented an integrated
simulation, statistical, and nonlinear optimization system
for supporting real-time dynamic modeling and process
control of bioremediation systems at petroleum-contami-
nated sites (29); in the system, SCA was introduced to generate
a number of approximated statistical models instead of the
simulation models. He et al. also advanced a nonlinear
stochastic programming model for optimizing surfactant-
enhanced aquifer remediation processes under parameter
uncertainty (30); the model was solved based on the proxy
modules created by SCA.

However, SCA can only account for the differences
between rather than within clusters, potentially leading to
increased prediction errors. It is thus desirable to improve
the method to mitigate the effects of prediction errors on
decision results. This study aims to present a new semi-
parametric statistical method (clusterwise linear regression,
CLR), through which a set of proxy modules can be created
to capture the relations between remediation policies (e.g.,
pumping rate) and remediation performance (e.g., human-
health risk level). To accelerate the optimization process,
the modules are incorporated into a health-risk-based
groundwater management (HRGM) model. A petroleum-
contaminated site located in Western Canada is subsequently
applied to illustrate the model’s performance in identifying
optimal groundwater remediation policies.

Materials and Methods
Study Site. The study site is located in west central
Saskatchewan, north of Kindersley, approximately 350 km
northwest of Regina, Canada (Figure 1). In the past, the site
has acted as a gathering system, treatment center, and
compressor station for natural gas. Due to leakage, drainage,
and blow-down fluids from the underground facilities,
significant hydrocarbon impacts have been presented; some
of them have adversely affected the environmental quality
of the soil and groundwater. The past monitoring program
has suggested three principal contaminant sources (Figure
S1 of the Supporting Information), including losses from the
operation of the gas plant on the west side of the site (S1),
a disposal pit formerly located in the northeast quadrant of
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the site (S2), and losses from recirculating pump failures
which is close to S1 (S3).

To remediate the site, a couple of remediation actions
have been initiated since 2005. The remediation process was
divided into two stages. In the first stage, dual phase vacuum
extraction (DPVE) was commissioned on May 5, 2005 and
operated until the pump seized on October 5, 2005. The DPVE
system operated a total of approximately 1514 of a possible
3667 h over this duration. In this stage, approximately 3400
L of petroleum hydrocarbons (PHC) were recovered from
the subsurface. The total PHC recovery volume was parti-
tioned into the four phases as follows: 99% in the vapor phase,
1% in the biodegradation phase, less than 1% in the dissolved
phase, and less than 1% in the liquid phase.

While the majority of PHC was typically removed, water
samples from the site indicated that the DPVE system could
only reduce total petroleum hydrocarbon concentrations to
over 1400 µg/L. This level was much higher than the
guidelines issued by the CCME (32) and SERM (33). Residual
phase (trapped in the pore spaces) existing as LNAPL (light
nonaqueous phase liquid) and BTEX (benzene, toluene, ethyl-
benzene, and xylenes) dissolved in groundwater were
regarded as long-term and stable contamination sources.
Therefore, a pump-and-treat (PT) system was recommended
in the second stage for further removal of BTEX dissolved in
the groundwater. This study focused on the optimal design
of the proposed PT system based on the site characteristics
after implementing a period of DPVE practice. Factors
determining the efficiency of a PT system mainly can involve
concentrations of the injected and extracted contaminants
as well as the pumping rates at the remediation wells.
Nonetheless, the remediation policy to be optimized only
targeted the pumping rates of remediation wells. As shown
in Figure S1 of the Supporting Information, 2 injection and
4 extraction wells were installed in or around the contaminant
plume, while 8 wells were used to monitor contaminant
concentrations.

The site investigation results revealed that nonflow
boundary conditions were assigned at the top and bottom
of the simulation domain, forming a steady groundwater
from northeast to southwest. The hydraulic gradient was
estimated to be 0.003. The site was considered as a three-
dimensional heterogeneous domain with an area of 270 ×
225 m2 and a depth of 10 m. Horizontally, each layer was
discretized into 54 × 45 grid blocks, with each one havign
dimensions of 5 and 5 m in x and y directions, respectively.

Vertically, the simulation domain was discretized into four
layers, with each one being 1, 2, 3, and 4 m in z direction,
respectively. The total number of grids in the domain is 9720
(54 × 45 × 4). According to the previous investigation results,
the site possesses complex soil types including clay till, silty
clay, and sandy soil (34). Distribution of soil types is presented
in Figure S2 of the Supporting Information. It was known
that layers 2, 3, and 4 are located in the saturated zone, and
layer 1 is situated in the unsaturated zone. Since the most
serious plume in groundwater was mainly detected in the
layer 2, the design effort was merely based on the simulation
results for this layer.

Framework of the Study Method. Figure 2 shows the
framework of the study method. The first step is site
characterization, which attempts to identify aquifer property,
system domain, remediation scenarios, and modeling pa-
rameters. Simulation (Section S1 of the Supporting Informa-
tion) and health risk assessment (Section S2 of the Supporting
Information) are performed to predict contaminant con-
centrations and the resulting carcinogenic and noncarci-

FIGURE 1. Site location map.

FIGURE 2. Framework of the study method.
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nogenic risk levels, respectively. Subsequently, numerical
experiments are conducted to select and identify statistical
samples comprising explanatory and response variables
representing remediation policies and remediation perfor-
mance, respectively. The statistical samples are obtained
through computer-assisted randomly sampling within the
ranges of pumping rates. Then, a set of proxy modules is
created by CLR to capture the relations between remediation
policies and remediation performance. With the obtained
modules, health risk levels are estimated in terms of the
outputs of the proxy modules, and then the HRGM model
is solved through a simulated annealing algorithm (31, 35).
Finally, postoptimization simulation is also employed to
predict contaminant concentrations and evaluate the as-
sociated health risk under the identified optimal remediation
policies.

Health-Risk-Based Groundwater Management Model.
The model is formulated as follows:

Minimize
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where TR is total pumping rate for all injection/extraction
wells; Qi,t

In and Qj,t
Ex are pumping rates for the ith injection well

and the jth extraction well for the t-year pumping period,
respectively; Qi,max

In and Qj,max
Ex are maximum pumping rates

for the ith injection well and the jth extraction well; ck,t is
contaminant concentration of the kth monitoring well after
t years of pumping, which is computed through the simula-
tion module and determined by decision variables Qi,t

In and
Qj,t

Ex; cmax is the environmental standard denoted as maximum
acceptable contaminant concentration; ELCRk,t and HQk,t are
excess lifetime cancer risk and hazard quotient at exposure
location k and time t, respectively, and are estimated in terms
of the health risk assessment modules which will be presented
later; ELCRmax and HQmax are risk standards denoted as
maximum tolerable excess lifetime cancer risk and hazard
quotient, respectively; i () 1, 2, ... I), j () 1, 2, ... J), k () 1,
2, ... K) are indexes representing injection well, extraction
well, and monitoring well, respectively.

Objective (1a) is represented as the total pumping rate of
all remediation wells. Environmental constraint (1b) requires
that the contaminant concentrations at the monitoring wells
should be less than the environmental standard. Constraints
(1c) and (1d) are incorporated to reduce the human-health
risk to an allowable level (i.e., risk standard). Technical
constraints (1e) and (1f) are provided to limit the injection
and extraction pumping rates within a practical operating
interval between a lower and an upper bound. The lower
bound is set to zero in this study, while the upper bound is
determined according to technical alternatives and site
characteristics. Additionally, the sum of pumping rates at all
injection wells should equal that at all extraction wells (i.e.,
constraint (1g)), such that the groundwater can flow directly
toward the plume interior under a stable hydraulic gradient.

Clusterwise Linear Regression. The essence of this
approach is to divide the fitting samples into a set of clusters
that have significant differences, based on a given statistical
criterion; each cluster is then assigned to a polynomial
regression equation (this study used linear regression)
representing a type of underlying relationship between
variables. CLR is divided into five steps: criterion establish-
ment for clusters splitting and mergence, cluster splitting,
cluster mergence, regression analysis, and example forecast-
ing. The first step is to provide a criterion for determining
whether the samples can be divided into two clusters and
whether the two clusters can be merged into one. The second
step is to split the clusters in terms of the identified optimal
cutting points. When all clusters are split, clusters mergence
is then conducted in the third step, with the purpose of
checking whether or not any of the two subclusters can be
classified into one under a given F-test criterion. The fourth
step is to use regression analysis to capture the relationships
for each of the generated tip clusters. The last step is to
forecast contaminant concentrations and carcinogenic risk
under the given remediation policies. Tip cluster search and
response level estimation should be conducted in this step.
Section S3 of the Supporting Information details the pro-
cedures of the CLR method.

CLR is different from parametric approaches such as
polynomial regression analysis which merely tackles isotropic
functions (36) (i.e., the relation between remediation policies
and the resulting remediation performance is fixed). CLR
can output a set of anisotropic functions, which means that
the functions may vary with remediation policies. It has
advantages in (i) the capability to deal with continuous and
discrete variables, as well as nonlinear relationships among
the variables (29, 30); and (ii) the enhanced suitability in
being applied to such cases where no knowledge about the
specific relationships between explanatory and response
variables is available.

CLR is also different from nonparametric approaches such
as SCA and decision trees (DT) methods (37). By simply using
the average response level of all samples classified into the
same cluster as the forecasting value, SCA and DT methods
cannot reveal implicated relationships within clusters. In
contrast, CLR assigns a different regressor (linear or non-
linear) to each of the tip clusters, by which the differences
not only between but also within the tip clusters can be
simultaneously reflected. In general, CLR has the advantages
in (i) avoiding the piecewise nature of the cluster trees (37);
(ii) providing finer analysis for the difference not only between
clusters but also within the clusters; and (iii) having a
reasonable result interpretation since any variation of the
explanatory variables will cause a change in the response
level.

CLR also differs from the DT method in cluster splitting.
On the one hand, cluster mergence is not considered by DT,
which may generate unnecessary tip clusters that have no
significant differences. On the other hand, criteria determin-
ing whether the cluster should be cut only rely on nonlinear
optimization algorithm, probably lowering the convergence
speed or causing solutions to be trapped to local minima.
Conversely, CLR uses the exact F-test as the criterion, ensuring
that the probability of each classification error is lower than
an acceptable level (5% in this study). Artificial neural network
(ANN) may also be used for creating proxy modules; however,
they are very suitable for the cases with abundant fitting
samples. When insufficient data are used, overfitting may
occur, i.e., very small errors in the fitting process might result
in large errors in the forecasting process (38).

Results and Discussion
Modeling calibration and verification, as important steps of
this modeling study, were undertaken based on monitoring
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data from 2001 to 2003. The site information and contami-
nation conditions in 2001 and 2002 were used for estimating
modeling parameters, while those in 2002 and 2003 were
used to verify the simulation module. Table S1 of the
Supporting Information shows part of the input parameters
determined through such modeling calibration and verifica-
tion. Errors of the simulated benzene concentrations range
from-13.8 to 248.9 µg/L, with a mean absolute error of 72.78
µg/L, and a mean relative error of 30.02%. This revealed that
the error levels are generally acceptable for the simulation
of benzene.

Before producing proxy modules through CLR, the
pumping rates (explanatory variables) were normalized
between 0 and 1 by dividing their values by 100 to reduce
computational errors. Also, the natural logarithms of con-
taminant concentrations were considered as the outputs of
proxy modules to avoid scaling problems. Each proxy module
merely outputs the concentrations at one monitoring well
after a period of pumping. In this study, a total of 18 proxy
modules were developed for the three pumping periods (i.e.,
5, 10, and 15 years). Remediation schedules with longer or
shorter periods were not considered because shorter periods
could hardly guarantee the environmental and risk standards
to be satisfied and longer ones would be less efficient.

In the optimization, the environmental standard (for
benzene) was determined to be 500 µg/L (for agricultural
areas) in terms of the guideline issued by SERM (33). To
examine the effects of risk levels on the optimized pumping
strategies, the carcinogenic risk standard was assumed to be
varied from 3 × 10-5 to 1 × 10-4. Note that the noncarci-
nogenic risk was not included in the optimization process,
as it was found that the HQ level would be less than 1 once
the ELCR level was lower than the standard.

Figure S4 of the Supporting Information shows the
predicted benzene concentration distributions after 5, 10,
and 15 years of natural attenuation. It is indicated that the
predicted peak concentration would be around well BH118,
with the respective concentrations being 2.79, 2.40, and 2.19
times the environmental standard. Figure S5 of the Sup-
porting Information gives the predicted benzene carcinogenic
risk distributions over the domain. The predicted peak ELCR
levels would be, respectively, 145, 124, and 105 times a risk
standard of 1.0 × 10-5. Apparently, the times of peak ELCR
levels exceeding risk standard are much greater than those
of benzene concentrations exceeding environmental stan-
dard. Therefore, the human-health risk should be paid more
attention than environmental quality when determining
optimal remediation policies for the site.

Figure 3 presents the optimal remediation policies ac-
cording to the three remediation periods. It is found that the
six wells would play different roles in remediating the
groundwater. For the 5-year remediation policy, well-pair
M3 and M5 would be the most important contributors (Figure
3a). Approximately 30% of the total pumping rate would be
from well M5, while well M3 would have to be fully operated
(i.e., its pumping rate need to be equal to or near 100 m3/d
when the risk standard ranges from 3 × 10-5 to 1 × 10-4.
Well-pair M1 and M2 would have medium contribution to
the remediation through extracting (or injecting) parts of
contaminated (or clean) water. In comparison, well-pair M4
and M6 would not be operated due to their negative
hydrogeological conditions. If the remediation duration
increases to 10 years, the specific pumping policy would be
slightly different from that under the 5-year duration (Figure
3b). It is well-pair M1 and M3 that would significantly affect
the remediation. When the risk standard is 3 × 10-5, the
optimal pumping rates at wells M1 and M3 would be 100
and 73.49 m3/d, respectively; when it rises to 1 × 10-4,
however, their pumping rates would be reduced by 82.19%
and 60.55%, respectively. The pumping rates of well-pair M4

and M6 would still be zero under this policy. For the
remediation duration of 15 years, the optimal remediation
policy would be similar to that for the 10-year duration except
that well M6 would be used when the risk standard is rather
high (larger than 6 × 10-5) (Figure 3c).

Figure 4 presents the optimal total pumping rate versus
carcinogenic risk level for the three remediation periods. It
is obvious that a long-term remediation period corresponds
to a low total pumping rate. This could be interpreted by the
following mechanism. When the pumping period is short,
large amounts of contaminants need to be extracted to lower
the benzene concentrations as the natural degradation of
the aquifer cannot be fully capitalized. The growth of
extraction rates would correspondingly enhance the injection
rates in order to maintain a stable hydraulic gradient of the
aquifer. The increases in both extraction and injection rates
would thus cause the rise of total pumping rate. It is also
observed that a stringent risk standard would lead to a high
total pumping rate. For example, when the risk standard
decreases from 1 × 10-4 to 3 × 10-5, the total pumping rate
would respectively increase by 31.02, 2.44, and 3.09% under

FIGURE 3. Optimal pumping of the wells for the 5-, 10-, and
15-year remediation policies, where no-risk means the policy
obtained from the model without health-risk constraints.

FIGURE 4. Optimal total pumping rate, where no-risk means the
policy obtained from the model without health-risk constraints.
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the 5, 10 and 15-year remediation policies. This is because
a stringent risk standard requires an increased amount of
contaminant to be removed, leading to the enhancement of
the total pumping rate under a given remediation period.

Figure 4 compares the optimal remediation policies under
health-risk consideration to those without such a concern.
It is indicated that the total pumping rate would be intensively
increased when health risk is considered. For instance, given
a risk standard of 3 × 10-5, the total pumping rate would be
307.15 m3 per day under the 5-year remediation policy; this
is 48.31% higher than that obtained from the model without
risk-related constraints. Despite potential high remediation
costs caused by the enhanced pumping rates, it could be
much preferable to decision makers and local residents in
terms of simultaneously improving environmental quality
and reducing human-health risk.

To examine the performance of identified optimal re-
mediation policies, postoptimization simulation was then
conducted to evaluate the environmental quality (indicated
by the predicted contaminant concentrations after the
suggested remediation actions) and the resulting health risks.
Figure S5 of the Supporting Information presents the
predicted carcinogenic risks after a 5-year period of reme-
diation. As shown in Figure S5b-d, the peak risk levels under
the three risk standards would be less than 3 × 10-5, 6 × 10-5,
and 1 × 10-4, respectively. These are all lower than the peak
risk level (i.e., 1.4 × 10-3) obtained through the model without
risk considerations (Figure S5a). This demonstrates that the
health risk exposure to benzene would be significantly
reduced through HRGH. Similar conclusions can also be
summarized for the 10- and 15-year remediation policies
(Figures S6 and S7). Although not shown in this study, the
simulated benzene concentrations would meet the envi-
ronmental standard of 500 µg/L, and the resulting noncar-
cinogenic risk (HQ) would be less than the HQ risk standard
of 1.0.

The environmental standard should be determined in
terms of governmental environmental guidelines, which vary
for different countries, states, and provinces. For example,
the guidelines for xylenes are 20, 40, 300, 400, 530, 1800, and
10,000 µg/L in Sweden, New Jersey, Canada, Japan, North
Carolina, California, and Illinois, respectively (39). They are
also dissimilar in different areas and functionalities. For
instance, the guideline for benzene is 500 and 5000 µg/L,
respectively, for agriculture and forest areas, as well as 300
and 5 µg/L for freshwater aquatic life and drinking water,
respectively (32). Despite various alternatives, which one
should be selected mainly relies on decision makers with
regard to the goals and local nature. As the findings of this
study were merely obtained based on the standard of 500
µg/L, cares should be taken when other environmental
standards need to be satisfied.

According to World Health Organization (40), a value of
1 × 10-5 for ELCR is suggested as a tolerable carcinogenic
risk level. This level implies that the probability of the impact
on human health (i.e., developing cancer) would be less than
1 out of 100,000 people who use the onsite groundwater as
the drinking water source. However, this regulation is not
always exclusive, as a risk level between 1 × 10-6 and 1 ×
10-4 or higher does not absolutely correspond to an observed
adverse health effect (41). This study investigated the effects
of risk standards from 3 × 10-5 to 1 × 10-4 on optimal
remediation policies. If more stringent standards need to be
satisfied, more applicable actions would be suggested, such
as increasing remediation duration and the number of wells,
implementing enhanced remediation techniques (e.g., air
sparging, surfactant-enhanced remediation aquifer, chemical
oxidation, etc.). Future works might thus be concentrated
on examining the feasibility of applying these techniques,

evaluating the associated operation and maintenance costs,
and identifying the optimal remediation policies.

Heterogeneity of the contaminated aquifer was caused
by spatially varied soil types; however, the aquifer properties
were assumed to be homogeneous within an identical type
of soil. Future studies would thus be undertaken by incor-
porating additional geophysical data into parameter estima-
tion for better site characterization (42). Moreover, the
statistical samples were obtained through the Monte Carlo
(MC) sampling technique, so the optimization results could
be affected by the quality of MC samples. Latin hypercube
sampling (LHS), as another sampling technique, can also be
used for dealing with random simulation problems and saving
computational efforts. Examining whether LHS has higher
computational efficiency than MC in handling random
variables also deserves study.

Identification of proxy modules capable of evaluating the
health risks associated with other contaminants existing as
DNAPLs (e.g., TCE and PCE) also deserves attention in future
studies. For PT systems, the remediation would last for a
long time as the contaminants continuously dissolve in the
groundwater until the residual oil phase is finally exhausted.
Therefore, enhanced remediation techniques such as biore-
mediation would be useful in speeding up the remediation
process. The results obtained from this study may provide
implications in identifying optimal remediation policies for
these techniques.

Prediction errors of proxy modules may exist, probably
due to the limitation of the CLR method. To mitigate the
effects of prediction errors on optimization results, integrated
statistical techniques such as multiple regression and artificial
neural network could be used to create proxy models.
Through fusing the advantages of these techniques, the effect
of estimation errors on decision making can be significantly
reduced. Actually, any statistical method that performs
exceptionally satisfactory in one situation may not be effective
in others (43). This implies that any proxy module may hardly
be of universal superiority under all situations. Therefore,
when extending this effort to other sites, the model’s training
and predicting accuracy need to be retested.

Implications
Based on the simulation and risk assessment results, a health-
risk-based groundwater management model was developed.
It incorporated the considerations of environmental quality
and human-health risks into the same framework. While this
effort was specifically undertaken for optimizing petroleum-
contaminated groundwater remediation, it could offer some
useful implications for other systems with different reme-
diation measures as well as environmental and health
concerns. Many statistical methods such as parametric
regression (3, 44) and nonparametric regression (8, 9, 27, 45)
can also be used to create proxy modules; however, the
difficulty in simultaneously dealing with nonlinear and
discrete relations between remediation policies and reme-
diation performance stimulated the development and ap-
plication of the CLR method.

The proxy modules created by CLR provide a bridge
directly linking the health risk assessment to the optimization
process. This bridge is effective in mitigating the compu-
tational efforts in optimization processes. Through replacing
the simulation and health risk assessment modules with the
proxy ones, many orders of magnitude of computational cost
was saved. Take this case for an example. One simulation
requires an averare of 5 min CPU time to evaluate the risk
levels under one remediation policy. Assuming that the
optimization process needs 1500 simulation calls to find the
optimal solution, a general optimization method not using
proxy modules then requires about 125 h of CPU time. In
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comparison, approximately 3000 simulations can be ac-
complished per second through the developed proxy mod-
ules; thus the optimal solution could be obtained within one
second.

The optimization results revealed that (i) a long reme-
diation period corresponds to a low total pumping rate, (ii)
a stringent risk standard implies a high total pumping rate,
and (iii) the human-health risk associated with benzene
contamination would be significantly reduced if HRGM is
used. Furthermore, although the remediation cost would rise
due to the increased total pumping rate, it could be preferable
to decision makers and local residents due to the model
simultaneously improving environmental quality and reduc-
ing human-health risk. These implications would assist
decision makers in understanding the effects of remediation
duration and human-health risk level on optimal remediation
policies and in designing a robust groundwater remediation
system.

Results from postoptimization simulation indicated that
the noncarcinogenic risk (HQ) would have satisfied the risk
standard of 1.0 once the carcinogenic risk (ELCR) met the
regulated risk standard. Therefore, HQ was not included in
the optimization process in this study. However, care should
be taken when extending this approach to other practical
sites as the associated parameters for evaluating carcinogenic
and noncarcinogenic risks could vary by case and be subject
to complex uncertainties.
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