- 1 Differential requirements for HIV-1 Vif-mediated APOBEC3G degradation and
- 2 RUNX1-mediated transcription by CBFβ
- 3
- 4
- 5 Juan Du¹*, Ke Zhao¹*, Yajuan Rui¹, Peng Li¹, Xiaohong Zhou^{1,2}, Wenyan Zhang¹ and Xiao-
- 6 Fang Yu^{1,2•}
- 7
- 8 ¹Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin
- 9 130061, China;
- 10 ²Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School
- 11 of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
- 12
- 13 *These authors contribute equally
- 14 Corresponding author: xfyu@jhsph.edu
- 15

16 Abstract

17

18	Core binding factor beta	a transcription regu	lator through RUN	X binding, was recently
----	--------------------------	----------------------	-------------------	-------------------------

- 19 reported critical for Vif function. Here, we mapped the primary functional domain important
- 20 for Vif function to amino acids 15 to 126 of CBFβ. We also revealed that different lengths
- 21 and regions were required for CBF β assisting Vif or RUNX. The important interaction

22 domains that are uniquely required for Vif but not RUNX functions represent novel targets

23 for the development of HIV inhibitors.

24

25	Core binding factor β (CBF β) regulates host genes specific to hematopoiesis and osteogenesis
26	$(1, 6, 31)$ by forming heterodimers with CBFa (i.e., RUNX). CBF β does not function by
27	binding DNA directly (1); instead, it greatly enhances the affinity of RUNX for DNA,
28	specifically with the core binding sites of various promoters and enhancers (35) such as the
29	MCSFR promoter (25). This enhancement would affect the transcription of various genes in
30	human cells, resulting in the regulation of cell differentiation and proliferation (22, 31).
31	
32	It has recently been shown by several research groups (10, 11, 13, 38, 39) that CBF β is also a
33	crucial determinant of the proper functioning of the viral infectivity factor (Vif) of HIV-1.
34	HIV-1 Vif is necessary for viral survival in the host, since it serves to inactivate the host
35	restriction factors (APOBEC3 proteins) present in HIV-1's natural target cells, including
36	macrophages and CD4+ T cells (2, 3, 5, 8, 9, 14, 18, 23, 24, 26-29, 34). Vif hijacks the
37	cellular Cullin5-ElonginB-ElonginC proteins to form a virus-specific E3 ubiquitin ligase
38	complex (36) that targets APOBEC proteins (such as APOBEC3G [A3G]) for proteasomal
39	degradation (4, 16, 17, 19-21, 30, 32, 36, 37). However, Vif's contribution to A3G
40	degradation is almost completely abolished when the expression of CBF β is silenced (13, 38).
41	Furthermore, mutations in Vif that disrupt CBF β binding prevent Vif from suppressing the
42	antiviral activity of A3G. CBF β interacts specifically with HIV-1 Vif to uniquely control its
43	interaction with Culllin5, but not with ElonginB/ElonginC or A3G. Both wild-type CBF β
44	(either isoform 1-182 or isoform 1-187) and C-terminal truncated CBF β (residues 1-140)
45	interact with Vif in vitro, and Vif's solubility is greatly improved when it is co-expressed
46	with CBF β (39). CBF β has been found to influence HIV-1 Vif's stability (13), Cul5 binding
47	(38), and mediation of A3G degradation (10, 11, 13, 38, 39).
48	

49	In the current study, we have further examined several internal regions of CBF β that are
50	crucial either for assisting Vif or regulating RUNX activity. By testing both N- and C-
51	terminal truncation mutants of $CBF\beta$, we have also identified a minimally functional
52	fragment of CBF β that can mediate the Vif-induced degradation of A3G. Overall, we have
53	demonstrated that different domains of CBF β are required for the protein's Vif- and RUNX-
54	related functions, indicating that the CBF β -Vif interaction and CBF β -RUNX binding require
55	different domains of CBF β and suggesting new possibilities for anti-HIV-1 drug design.
56	
57	CBFβ1-126 is fully functional in the Vif-induced depletion of A3G
58	The interaction between C-terminal truncated CBF β and the Vif protein <i>in vitro</i> (39)
59	triggered our interest in examining these $CBF\beta$ variants for their potency in contributing to
60	Vif function. PCR was performed with pCBFβ-myc (38) as the template. The purified
61	product was inserted into pcDNA3.1(-)(Invitrogen)to generate pCBFβ-HA. pCBFβ1-141-HA,
62	pCBF β 1-135-HA, pCBF β 1-130-HA, pCBF β 1-126-HA, and pCBF β 1-120-HA were then
63	constructed from pCBF β -HA by site-directed mutagenesis and confirmed by DNA
64	sequencing (Fig. 1A).
65	
66	To determine the relative potency of CBF β mutants with regard to their effects on Vif-
67	mediated A3G degradation, we co-transfected HEK293T cells with the C-terminal truncated
68	$CBF\beta$ constructs and Vif- and A3G-expressing vectors; the expression of endogenous $CBF\beta$
69	had been depleted in these cells by the introduction of shRNA (CloneID TRCN0000016644,
70	TRCN0000016645, obtained from Open Biosystems). In brief, CBFβ-knockdown HEK293T
71	cells at 80% confluency were co-transfected with 300ng of A3G-HA plasmid, 900ng of Vif-
72	myc plasmid (both gifts of Dr. K. Strebel), and $1\mu g$ of one of the CBF β -HA variant
73	constructs. Cells were harvested at 48h post-transfection. Western blotting was carried out

75 antibody (Covance, MMS-101P) to detect Vif.

76

The interactions between CBF β variants and Vif were then characterized by co-

78 immunoprecipitation (Co-IP). Cells were harvested at 48h post-transfection, washed with

79 1×PBS, and suspended in lysis buffer (50mM Tris-HCl, pH 7.5, 150mM NaCl, and 0.5%-

80 1.5% NP40, supplemented with Roche protease inhibitor cocktail). Samples were sonicated

81 at 15% power for 60s with a 3-s break every 3s, then centrifuged to obtain a clear supernatant.

82 Input samples were incubated with HA-labeled beads (Roche) for 3h, then washed several

83 times with Wash Buffer (20mM Tris-HCl, pH 7.5, 100mM NaCl, 0.1mM EDTA, and 0.05%

Tween-20). The samples were then eluted with 100mM glycine-HCl, pH 2.5.

85

We first discovered that CBF β 1-141 could still inactivate A3G in the presence of Vif (Fig. 86 87 1B); this inhibition was later determined to be due to a potent interaction between $CBF\beta1$ -88 141 and Vif (Fig. 1C) that resembled our previously reported finding in E. coli (39). Further 89 study revealed that a deletion of amino acid residues 127-182 or fewer residues of (CBFβ1-90 135, 1-130, and 1-126) had very little impact on CBF β 's ability to assist Vif, suggesting that 91 the long C-terminal tail of CBF β is not required for the Vif-induced degradation of A3G or 92 even for binding to Vif (Fig. 1B-D). However, a further deletion of six more residues at the 93 C-terminus (CBF\beta1-120) almost completely abolished the ability of CBF\beta to contribute to 94 Vif-induced A3G degradation (Fig. 1B). Our co-IP results indicated that these six residues 95 (121-126) were critical for the interaction of CBF β with Vif (Fig. 1D). Therefore, binding to 96 Vif is critical for CBF^β enhancement of Vif function. Vif expression appears quite variable, 97 depending on the co-transfected CBF^β variant. However, there is no direct correlation 98 between Vif function and the ability of CBF^β truncations to enhance Vif expression. For

- 101
- 102

105	Corpr-150, but not 1-120, can tuny support ROWAT-mediated gene transcription
104	Inside eukaryotic cells, CBF ^β has a natural binding factor named RUNX, and CBF ^β -RUNX

CRERI 130 but not 1 126 can fully support DUNY1 modiated gave transcription

- 105 binding has been shown to be essential for regulation of host gene expression (7, 12). It
- 106 would therefore be interesting to determine whether a CBF β variant that is able to assist Vif
- 107 could still regulate a RUNX1-mediated promoter. Therefore, we transfected CBFβ-

108 knockdown HEK293T cells with 500ng of a firefly luciferase MCSFR promoter construct

109 (pMCSFR-luc) (15), 500ng of the RUNX1c-myc plasmid (a gift of Dr. A. Friedman), and

110 lug of each CBFβ-HA variant construct in triplicate. Forty eight hours post transfection, the

111 cells were lysed, and the luciferase activity was quantified with the Promega Dual-Luciferase

113

114 Surprisingly, although CBFβ1-126 was fully functional in terms of the Vif-induced

degradation of A3G, it lost the ability to regulate RUNX1 (a >2-fold decrease); in contrast,

116 all other longer variants, including CBFβ1-130, maintained their ability to regulate RUNX1

117 (Fig. 2A). Further investigation suggested that although binding to RUNX was detected for

all the other functional CBF β variants (Fig. 2B), CBF β 1-126 and 1-120 were unable to bind

119 RUNX1 efficiently (Fig. 2B). Therefore, we conclude that different lengths of CBFβ are

120 required for its role in Vif function and for its role in RUNX function, with residues 127-130

121 being essential for RUNX1-mediated gene transcription.

122

123 CBFβ acts through different domains in its interactions with Vif and RUNX1

¹¹² Reporter Assay System (Promega) according to the manufacturer's protocol.

124	The differing potencies of CBF β 1-126 and CBF β 1-130 with regard to RUNX1 led us to
125	hypothesize that CBF β may function through different domains in assisting Vif and RUNX1.
126	We therefore tested this hypothesis using CBF β d2-14 and d69-90 (Fig. 3A), which were
127	previously reported to have differing abilities to bind Vif (38). Consistently, CBF β variant
128	d2-14, which could still bind Vif, was fully functional in assisting with the degradation of
129	A3G (Fig. 3B and 3C), indicating that the first 14 residues of CBF β are also dispensable for
130	Vif assistance. In contrast, CBF β variant d69-90 failed to bind Vif and assist in degrading
131	A3G (Fig. 3B and 3C), confirming that the CBF β -Vif interaction is essential for the
132	downstream degradation of A3G. The RUNX1-mediated promoter test presented a different
133	story, however, with d2-14, but not d69-90, failing to bind RUNX and support RUNX
134	function (Fig. 3D and 3E). Therefore, CBF β indeed interacts with RUNX and Vif through
135	different binding regions.
136	
150	
137	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G
137 138	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85)
137 138 139	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38),
137 138 139 140	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several
137 137 138 139 140 141	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several mutations into Loop3: pCBFβLoop3.1-HA, pCBFβLoop3.2-HA, and pCBFβLoop3.3-HA
137 138 139 140 141 142	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several mutations into Loop3: pCBFβLoop3.1-HA, pCBFβLoop3.2-HA, and pCBFβLoop3.3-HA were synthesized and sequenced by Shanghai Generay Biotech Co., Ltd (Shanghai,
 137 138 139 140 141 142 143 	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several mutations into Loop3: pCBFβLoop3.1-HA, pCBFβLoop3.2-HA, and pCBFβLoop3.3-HA were synthesized and sequenced by Shanghai Generay Biotech Co., Ltd (Shanghai, China)(Fig. 4A). Further tests indicated that only the first six amino acids of Loop3 were
 137 138 139 140 141 142 143 144 	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several mutations into Loop3: pCBFβLoop3.1-HA, pCBFβLoop3.2-HA, and pCBFβLoop3.3-HA were synthesized and sequenced by Shanghai Generay Biotech Co., Ltd (Shanghai, China)(Fig. 4A). Further tests indicated that only the first six amino acids of Loop3 were important for the degradation of A3G, since mutations in this area led to a partial rescue of
 137 138 139 140 141 142 143 144 145 	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several mutations into Loop3: pCBFβLoop3.1-HA, pCBFβLoop3.2-HA, and pCBFβLoop3.3-HA were synthesized and sequenced by Shanghai Generay Biotech Co., Ltd (Shanghai, China)(Fig. 4A). Further tests indicated that only the first six amino acids of Loop3 were important for the degradation of A3G, since mutations in this area led to a partial rescue of A3G in the presence of Vif (Fig. 4B and 4D). We did notice that the expression of Loop3.1 in
 137 138 139 140 141 142 143 144 145 146 	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several mutations into Loop3: pCBFβLoop3.1-HA, pCBFβLoop3.2-HA, and pCBFβLoop3.3-HA were synthesized and sequenced by Shanghai Generay Biotech Co., Ltd (Shanghai, China)(Fig. 4A). Further tests indicated that only the first six amino acids of Loop3 were important for the degradation of A3G, since mutations in this area led to a partial rescue of A3G in the presence of Vif (Fig. 4B and 4D). We did notice that the expression of Loop3.1 in Fig. 4B was less than wild type CBFβ, so a dose manner was applied to wild type CBFβ and
 137 138 139 140 141 142 143 144 145 146 147 	Loop3, but not other loops of CBFβ, is important for the inactivation of A3G CBFβd69-90, whose deletion covers the majority of the longest loop (Loop3, residue 68-85) in the published CBFβ structure (PDB: 1H9D) (33), is deficient for Vif binding (38), indicating the importance of this loop for Vif binding. We therefore introduced several mutations into Loop3: pCBFβLoop3.1-HA, pCBFβLoop3.2-HA, and pCBFβLoop3.3-HA were synthesized and sequenced by Shanghai Generay Biotech Co., Ltd (Shanghai, China)(Fig. 4A). Further tests indicated that only the first six amino acids of Loop3 were important for the degradation of A3G, since mutations in this area led to a partial rescue of A3G in the presence of Vif (Fig. 4B and 4D). We did notice that the expression of Loop3.1 in Fig. 4B was less than wild type CBFβ, so a dose manner was applied to wild type CBFβ and we again observed the inability of Loop3.1 in assisting Vif (Fig. 4C). Consisting of

149

150 Loop4 to identify other potential Vif binding domains (Fig. 5A). Loop5 was excluded because of its possible interaction with RUNX according to the reported crystal structure 151 (33). Analysis of Loop1, Loop2, and Loop4 mutants indicated that these areas were not 152 153 important for either Vif-mediated degradation of A3G or for RUNX1-mediated regulation of 154 gene expression (Fig. 5B-E). It is possible that these loop mutants may have an increased 155 affinity for Vif (Fig. 5C). 156 157 In this study, we have now for the first time screened both N- and C-termini of CBF β for a 158 primary functional domain that is important for Vif function. Our results with C-terminal 159 truncations of different lengths suggested that the entire C-terminal tail, together with the last 160 helix (H4), is not required for assisting Vif; our examination of CBFβd2-14, on the other 161 hand, revealed that residues 2-14 of CBF β are also dispensable. Therefore, we conclude that 162 CBF β 15-126 contains the minimum fragment required for CBF β to maintain the ability to 163 assist in the Vif-induced degradation of A3G. 164 165 $CBF\beta$ is essential for mouse embryo development. It was surprising that we connected 166 functional CBF^β truncations such as CBF^β1-126 and CBF^β1-130 to Vif and RUNX, 167 respectively, since it has been reported that CBFB155 isoform composed with CBFB1-133 168 plus 161-182 cannot restore the development of murine embryos (35). Since we have 169 determined that the C-terminal tail of CBFB (131-182) is dispensable for both Vif-induced 170 A3G degradation and RUNX1-mediated transcription of the MCSFR promoter, it is possible 171 that the C-terminal tail of CBFB has a novel function in embryo development. It is also 172 possible that different domains on CBFB are required for the regulation of different host 173 genes.

Similar tests were also performed with other CBF_β loops including Loop1, Loop2, and

174 We have previously reported that loop3 of CBF^β may be important for Vif binding (38). In 175 the current study, we have determined that the first six amino acids (68-73) in loop3 of CBF β 176 are important for Vif binding and function. During the preparation of this paper, Hultquist et 177 al. reported their findings (11), which shared some similarities with ours. For example, they 178 observed that CBFβF68D was defective for Vif binding and function. It is not clear whether 179 only F68 in loop3 is important for Vif binding and function. We observed that CBFβF68S 180 could still support Vif function (data not shown). Further study will be required to determine 181 the importance of amino acids 69-73 of CBFB in Vif binding/function. 182

183 Various distinct regions of CBF^β were shown in this study to be important either for Vif's 184 ability to degrade A3G or for RUNX-mediated regulation of host genes. However, no regions 185 yet have been discovered that have an impact on both functions of CBFβ. Hultquist et al. 186 recently screened a series of CBF^β mutants and also found no mutants that affected both the 187 Vif-related and RUNX-related activities (11). In addition, according to the known structure 188 of the binding between CBF^β and RUNX, the region (loop3) of CBF^β that was found to be 189 critical for Vif binding has no contact with RUNX1. Therefore, the one protein, CBF^β, must 190 fulfill different requirements for HIV-1 Vif-mediated A3G degradation and RUNX1-191 mediated transcription. A more detailed understanding of the CBFB-Vif binding interface 192 should provide crucial information for designing anti-HIV-1 drugs that will not interrupt the 193 normal CBFβ-RUNX function in human cells. 194

195 Acknowledgement

- 196 We thank Drs. K. Strebel, A. Friedman, and S.L. Evans for critical reagents; S.L. Evans, J.
- 197 Hou, and L. Li for technical assistance; R. Markham, J. Margolick and J. Bream for
- 198 thoughtful discussions; and D. McClellan for editorial assistance. This work was supported in

- 199 part by funding from the Chinese Ministry of Science and Technology (2012CB911100) and
- 200 Chinese Ministry of Education (IRT1016), the Key Laboratory of Molecular Virology, Jilin
- 201 Province (20102209), China, and a grant (2R56AI62644-6) from the NIAID.

202

203 References

204	1.	Adya, N., L. H. Castilla, and P. P. Liu. 2000. Function of CBFbeta/Bro proteins.
205		Semin Cell Dev Biol 11:361-8.
206	2.	Bieniasz, P. D. 2004. Intrinsic immunity: a front-line defense against viral attack. Nat
207		Immunol 5 :1109-15.
208	3.	Chiu, Y. L., and W. C. Greene. 2008. The APOBEC3 cytidine deaminases: an
209		innate defensive network opposing exogenous retroviruses and endogenous
210		retroelements. Annu Rev Immunol 26: 317-53.
211	4.	Conticello, S. G., R. S. Harris, and M. S. Neuberger. 2003. The Vif protein of HIV
212		triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr
213		Biol 13: 2009-13.
214	5.	Cullen, B. R. 2006. Role and mechanism of action of the APOBEC3 family of
215		antiretroviral resistance factors. J Virol 80:1067-76.
216	6.	de Bruijn, M. F., and N. A. Speck. 2004. Core-binding factors in hematopoiesis and
217		immune function. Oncogene 23:4238-48.
218	7.	Durst, K. L., and S. W. Hiebert. 2004. Role of RUNX family members in
219		transcriptional repression and gene silencing. Oncogene 23:4220-4.
220	8.	Goff, S. P. 2004. Retrovirus restriction factors. Mol Cell 16:849-59.
221	9.	Harris, R. S., and M. T. Liddament. 2004. Retroviral restriction by APOBEC
222		proteins. Nat Rev Immunol 4:868-77.
223	10.	Hultquist, J. F., M. Binka, R. S. LaRue, V. Simon, and R. S. Harris. 2012. Vif
224		proteins of human and simian immunodeficiency viruses require cellular CBFbeta to
225		degrade APOBEC3 restriction factors. J Virol 86:2874-7.
226	11.	Hultquist, J. F., R. M. McDougle, B. D. Anderson, and R. Harris. 2012. HIV-1
227		Vif and the RUNX Transcription Factors Interact with CBFbeta on Genetically
228		Distinct Surfaces. AIDS Res Hum Retroviruses.
229	12.	Ito, Y. 2004. Oncogenic potential of the RUNX gene family: 'overview'. Oncogene
230		23: 4198-208.
231	13.	Jager, S., D. Y. Kim, J. F. Hultquist, K. Shindo, R. S. LaRue, E. Kwon, M. Li, B.
232		D. Anderson, L. Yen, D. Stanley, C. Mahon, J. Kane, K. Franks-Skiba, P.
233		Cimermancic, A. Burlingame, A. Sali, C. S. Craik, R. S. Harris, J. D. Gross, and
234		N. J. Krogan. 2012. Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-
235		1 infection. Nature 481: 371-5.
236	14.	Jarmuz, A., A. Chester, J. Bayliss, J. Gisbourne, I. Dunham, J. Scott, and N.
237		Navaratnam. 2002. An anthropoid-specific locus of orphan C to U RNA-editing
238		enzymes on chromosome 22. Genomics 79: 285-96.
239	15.	Kamikubo, Y., L. Zhao, M. Wunderlich, T. Corpora, R. K. Hyde, T. A. Paul, M.
240		Kundu, L. Garrett, S. Compton, G. Huang, L. Wolff, Y. Ito, J. Bushweller, J. C.
241		Mulloy, and P. P. Liu. 2010. Accelerated leukemogenesis by truncated CBF beta-
242		SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 17:455-68.

243	16.	Liu, B., X. Yu, K. Luo, Y. Yu, and X. F. Yu. 2004. Influence of primate lentiviral
244		Vif and proteasome inhibitors on human immunodeficiency virus type 1 virion
245		packaging of APOBEC3G. J Virol 78:2072-81.
246	17.	Luo, K., Z. Xiao, E. Ehrlich, Y. Yu, B. Liu, S. Zheng, and X. F. Yu. 2005. Primate
247		lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5-
248		E3 ligase through a HCCH motif to suppress APOBEC3G. Proc Natl Acad Sci U S A
249		102: 11444-9
250	18	Malim, M. H., and M. Emerman, 2008 HIV-1 accessory proteinsensuring viral
251	10.	survival in a hostile environment. Cell Host Microbe 3 :388-98
252	19	Marin M K M Rose S L Kozak and D Kahat 2003 HIV-1 Vif protein hinds
252	1).	the editing enzyme APOREC3G and induces its degradation. Nat Med 9 :1398-403
253	20	Mehle A I Concelves M Sente-Marte M McPike and D Cabuzda 2004
255	20.	Phoenbarylation of a noval SOCS hav regulates assembly of the HIV 1 Vif Cult
255		complex that promotes APOREC3C degradation Games Day 18:2861.6
250	21	Mable A B Streak D Anauta C Zhang M MaBike and D Cabuzda 2004
257	21.	Vif avaragement the innote antiviral activity of ADODEC2C by promoting its
250		degradation in the ubiquitin protocome nothway. I Dial Cham 270,7702.8
239	22	Mixegene K & Moode and T Imamune 2004 Coordinate regulation of coll
200	22.	Miyazono, K., S. Maeda, and T. Imamura. 2004. Coordinate regulation of cell
261		growth and differentiation by TGF-beta superfamily and Kunx proteins. Oncogene
262	22	25:4252-7.
263	23.	Navarro, F., and N. K. Landau. 2004. Recent insights into HIV-1 VII. Curr Opin
264	24	Immunol 16:4//-82.
265	24.	Niewiadomska, A. M., and X. F. Yu. 2009. Host restriction of HIV-1 by APOBEC3
266		and viral evasion through Vif. Curr Top Microbiol Immunol 339 :1-25.
267	25.	Rhoades, K. L., C. J. Hetherington, J. D. Rowley, S. W. Hiebert, G. Nucifora, D.
268		G. Tenen, and D. E. Zhang. 1996. Synergistic up-regulation of the myeloid-specific
269		promoter for the macrophage colony-stimulating factor receptor by AML1 and the
270		t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci U S A
271		93: 11895-900.
272	26.	Rogozin, I. B., M. K. Basu, I. K. Jordan, Y. I. Pavlov, and E. V. Koonin. 2005.
273		APOBEC4, a new member of the AID/APOBEC family of polynucleotide
274		(deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 4:1281-5.
275	27.	Rose, K. M., M. Marin, S. L. Kozak, and D. Kabat. 2004. Transcriptional
276		regulation of APOBEC3G, a cytidine deaminase that hypermutates human
277		immunodeficiency virus. J Biol Chem 279:41744-9.
278	28.	Rose, K. M., M. Marin, S. L. Kozak, and D. Kabat. 2004. The viral infectivity
279		factor (Vif) of HIV-1 unveiled. Trends Mol Med 10:291-7.
280	29.	Sheehy, A. M., N. C. Gaddis, J. D. Choi, and M. H. Malim. 2002. Isolation of a
281		human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein.
282		Nature 418: 646-50.
283	30.	Sheehy, A. M., N. C. Gaddis, and M. H. Malim. 2003. The antiretroviral enzyme
284		APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med
285		9: 1404-7.
286	31.	Speck, N. A. 2001. Core binding factor and its role in normal hematopoietic
287		development. Curr Opin Hematol 8:192-6.
288	32.	Stopak, K., C. de Noronha, W. Yonemoto, and W. C. Greene. 2003. HIV-1 Vif
289		blocks the antiviral activity of APOBEC3G by impairing both its translation and
290		intracellular stability. Mol Cell 12:591-601.
291	33.	Tahirov, T. H., T. Inoue-Bungo, H. Morii, A. Fujikawa, M. Sasaki, K. Kimura,
292		M. Shiina, K. Sato, T. Kumasaka, M. Yamamoto, S. Ishii, and K. Ogata. 2001.
		-

JVI Accepts published online ahead of print

293		Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its		
294	24	allosteric control by CBFbeta. Cell 104 :755-67.		
295	immunity. Science 307 :1061-5.			
297	35.	Wang, O., T. Stacy, J. D. Miller, A. F. Lewis, T. L. Gu, X. Huang, J. H.		
298		Bushweller, J. C. Bories, F. W. Alt, G. Ryan, P. P. Liu, A. Wynshaw-Boris, M.		
299		Binder, M. Marin-Padilla, A. H. Sharpe, and N. A. Speck. 1996. The CBFbeta		
300		subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87:697-708.		
301	36.	Yu, X., Y. Yu, B. Liu, K. Luo, W. Kong, P. Mao, and X. F. Yu. 2003. Induction of		
302		APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex.		
303		Science 302 :1056-60.		
304	37.	Yu, Y., Z. Xiao, E. S. Ehrlich, X. Yu, and X. F. Yu. 2004. Selective assembly of		
305		HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel		
306	20	SUCS box and upstream cysteines. Genes Dev 18:2867-72.		
307	38.	Zhang, W., J. Du, S. L. Evans, Y. Yu, and X. F. Yu. 2012. 1-cell differentiation		
200		12 12 12 12 12 13 14 14 15 15 16 17 17 11 11 11 11 11 11		
309	30	701.570-7. 7bou X S I Evans X Han V Liu and X E Vu 2012 Characterization of the		
310	39.	interaction of full-length HIV-1 Vif protein with its key regulator CBEbeta and CRI 5		
312		E3 ubiquitin ligase components PLoS One 7:e33495		
313		Es usiquiun nguse components. i Eos one riess ise.		
314				
315	Figur	re legends		
216				
316				
317	Figur	e 1. CBF β N-terminal residues1-126 are sufficient to support Vif in inducing A3G		
318	degradation. A. Cartoon of CBF ^β C-terminal truncation. B. Effect of C-terminal CBF ^β			
319	deletions on Vif-mediated A3G degradation. A3G-HA, HXB2-Vif, and CBF β variants were			
320	co-transfected into CBFB-knockdown-HEK293T cells and Western blotting was carried out			
321	to detect A3G, Vif, and CBF β expression. Results are representative of three independent			
222	avaniments C.D. Co. ID to detect interactions between UIV Vifered the CDEP			
322	exper	iments. C,D. Co-IP to detect interactions between HIV-VII and the CBFp variants in the		
323	absence of A3G. Results are representative of three independent experiments.			
324				
ac =				
325				
224				
320				

327	Figure 2. CBFβ1-130, but not 1-126 or 1-120, can interact with RUNX1c and regulate gene
328	transcription mediated by RUNX1c. A. Luciferase assays confirmed that $CBF\beta$ 1-130 is
329	functional in terms of RUNX1c regulation of the MCSFR promoter. It has been reported that
330	endogenous RUNX1 expression is very low in HEK293 cells. For the MCSFR promoter
331	assay, exogenous RUNX1 is introduced into HEK293 cells as previously described (15). For
332	all luciferase tests, the ratio of the luciferase count of the MCSFR promoter-Luc plus Runx1
333	and a control vector was used as the reference and was set to 1. Results are representative of
334	four independent experiments. Each bar is the average of three replicates from the same
335	experiment (error bars indicate mean \pm SD). B. CBF β 1-130 can still interact with RUNX1c,
336	while CBF β 1-126 and 1-120 lost such capability. Results are representative of three
337	independent experiments.
338	
339	Figure 3. CBF β acts through different domains to assist Vif and RUNX1. A. Cartoon of
340	CBF β domain truncations. B. Functional comparison of wild type and mutant CBF β , N-
341	terminal CBF β truncation d2-14 could support Vif function in degrading A3G, while d69-90
342	was defective for Vif-induced A3G degradation. Results are representative of five
343	independent experiments. C. Co-IP showed that CBF β d2-14 could bind Vif, but d69-90 could
344	not. Results are representative of three independent experiments. D. CBF β d69-90 could bind
345	RUNX1c, but d2-14 could not. Results are representative of three independent experiments.
346	E. Luciferase assays confirmed that CBF β d69-90 was fully functional in terms of RUNX1c
347	regulation of the MCSFR promoter, but d2-14 was not. Results are representative of three
348	independent experiments. Each bar is the average of three replicates from the same
349	experiment (error bars indicate mean±SD).
350	

351	Figure 4. Mutations occurring on Loop3 of CBF β have no impact on RUNX1-mediated
352	transcription, while the first six residues of Loop3 are important for Vif-induced degradation
353	of A3G. A. Mutations designed for Loop3 of CBFβ. In general, Ala scanning mutagenesis
354	was performed. However, to achieve the maximum effect, small amino acids such as Gly and
355	Ala were changed to charged amino acids. Hydrophobic amino acids with aromatic long side
356	chain such as Phe and Try were changed to hydrophilic Ser residues. A similar strategy was
357	also applied to the other loop mutations. B. The first 6 aa in Loop3 are important for Vif-
358	induced A3G degradation. Results are representative of four independent experiments. C.
359	Functional comparison of wild type CBF β and mutant CBF β (Loop3.1 and F68D). Both
360	mutant CBF β Loop3.1 and F68D lost the capability of assisting Vif to degrade A3G when
361	compared to wild type CBF β . Results are representative of three independent experiments. D.
362	Co-IP indicated that Loop3.1 malfunctioned because of compromised interaction with Vif.
363	Results are representative of three independent experiments. E. Co-IP confirmed that the
364	mutations on Loop3 did not affect the CBF β -RUNX1c interaction. Results are representative
365	of three independent experiments. F. Luciferase assays confirmed that all Loop3 mutants
366	were fully functional with regard to Runx1c-mediated regulation of the MCSFR promoter.
367	Results are representative of three independent experiments. Each bar is the average of three
368	replicates from the same experiment (error bars indicate mean±SD).
369	
370	Figure 5. Mutations occurring in other loops of CBF β have no impact on either RUNX1-
371	mediated transcription or Vif-induced A3G degradation. A. Mutations designed for Loops1, 2,
372	and 4. B. No crucial residue was detected in these loops in terms of Vif-induced A3G
373	degradation. Results are representative of four independent experiments. C. Co-IP confirmed
374	that mutations in Loops1, 2, or 4 do not affect the CBFβ-Vif interaction. Results are
375	representative of three independent experiments. D. Co-IP confirmed that mutations in

- 376 Loops1, 2, or 4 do not affect the CBFβ-RUNX1c interaction. Results are representative of
- 377 three independent experiments. E. Luciferase assays confirmed that all these mutants were
- 378 fully functional in terms of RUNX1c-mediated regulation of the MCSFR promoter. Results
- are representative of three independent experiments. Each bar is the average of three
- 380 replicates from the same experiment (error bars indicate mean±SD).

381

Fig.1

Fig. 2

IP: anti-HA

1×

Fig. 3

Tubulin

IP: anti-HA

200P3.1

· 20003.2

100P3.3

10000 ···

PCOMA

408D

, Y

IP: HA

100p3.1 Loop3.2

10003.2

0003.1

42. LOOP3.2

100p3.3

PCONA

RUNX1c regulate MCSFR promoter

BUBLENDORS

RUNATOWN

RUBLARDORD

RUNDLehoop23

'N

10003.3

Α

Loop1:	TGFRDRP \rightarrow	ARSAAAA	30-36
Loop2:	VATGT \longrightarrow	DDARA	58-62
Loop4:	LEREAGK \longrightarrow	AAAADRA	88-94

D

Ε

Fig. 5