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Let MnðFÞ be the space of all n� n matrices over a field F of characteristic not 2, and let
PnðFÞ be the subset of MnðFÞ consisting of all n� n idempotent matrices. We denote
by �nðFÞ the set of all maps from MnðFÞ to itself satisfying A� �B 2 PnðFÞ implies
�ðAÞ � ��ðBÞ 2 PnðFÞ for every A,B 2MnðFÞ and � 2 F: In this note, we prove that
� 2 �nðFÞ if and only if there exist � 2 f0, 1g and an invertible matrix P 2MnðFÞ such
that either �ðAÞ ¼ �PAP�1 for every A 2MnðFÞ, or �ðAÞ ¼ �PATP�1 for every A 2MnðFÞ:
This improves the result of some related references.
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1. Introduction

Suppose C is the complex number field and F is an arbitrary field of characteristic not 2.
Let MnðFÞ be the space of all n� n matrices over F and PnðFÞ be the subset of MnðFÞ

consisting of all n� n idempotent matrices. The problem of characterizing linear
maps preserving idempotence belongs to a large group of the so called linear preserver
problems (see [3] and the references therein). The theory of linear preservers of
idempotence is well-developed [1]. Recently, the first results on more difficult non-linear
indempotence preserver problems have been obtained [2,4,5]. We denote by S�nðFÞ the
set of all maps from MnðFÞ to itself satisfying A� �B 2 PnðFÞ() �ðAÞ � ��ðBÞ 2 PnðFÞ

for every A,B 2MnðFÞ and � 2 F. A map � is called a strong idempotence-preserving
map if � 2 S�nðFÞ: S̆emrl [4] showed that when n � 3, � 2 S�nðCÞ is bijective and
continuous if and only if either � is of the form �ðAÞ ¼ PAP�1 for every A 2MnðCÞ,
or � is of the form �ðAÞ ¼ PATP�1 for every A 2MnðCÞ, where P 2MnðCÞ is invertible
and AT denotes the transpose of A. Dolinar [2] improved the result of S̆emrl by relaxing
the bijectivity assumption to the surjectivity and also omitting the continuous
assumption and the restriction on n � 3. Further, Zhang [5] improved Dolinar’s
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result by omitting the surjectivity assumption and extended the field from complex
number field to any field of characteristic not 2.

There is a natural question when thinking of possible improvements of the above
mentioned characterization of maps on MnðFÞ preserving idempotence in both
directions. Can we obtain the similar conclusion under the weaker assumption of
idempotence-preserving in one direction only? That is, consider the set �nðFÞ of all
maps from MnðFÞ to itself satisfying

A� �B 2 PnðFÞ ) �ðAÞ � ��ðBÞ 2 PnðFÞ for every A,B 2MnðFÞ and � 2 F:

As we will see in the next sections we completely characterize the set �nðFÞ in which
every map is called an idempotence-preserving map. Namely, we will prove the
following result.

THEOREM 1.1 Suppose F is any field of characteristic not 2 and � 2 �nðFÞ: Then there
exist � 2 f0, 1g and an invertible matrix P 2MnðFÞ such that either �ðAÞ ¼ �PAP�1 for
every A 2MnðFÞ, or �ðAÞ ¼ �PATP�1 for every A 2MnðFÞ:

Based on Lemma 2.1, when n¼ 1 the proof of Theorem 1.1 is very simple. Thus, we
can assume that n � 2 in the rest of this article.

For any positive integer k � n, we denote �kðFÞ ¼ X� 0n�kjX 2MkðFÞ
� �

, where �
denotes the usual direct sum of matrices: Obviously, �1ðFÞ ¼ a� 0n�1ja 2 Ff g and
�nðFÞ ¼MnðFÞ: Notice that if � 2 �nðFÞ, then both the map A7 �!P�ðAÞP�1 and the
map A7 �!�ðAÞT are also in �nðFÞ: Therefore, based on the inductive idea on n,
the proof of Theorem 1.1 is equivalent to prove the following three propositions.
The first two propositions show that Theorem 1.1 is true for n ¼ 2, and the third
one shows that if Theorem 1.1 is true when n¼ s (s � 2), then it is also true
for n ¼ sþ 1:

PROPOSITION 1.2 Suppose � 2 �nðFÞ: Then there exist � 2 f0, 1g and an invertible matrix
T1 2MnðFÞ such that �ðZÞ ¼ �T1ZT

�1
1 for every Z 2 �1ðFÞ:

PROPOSITION 1.3 Suppose � 2 f0, 1g and � 2 �nðFÞ satisfying �ðZÞ ¼ �Z for every
Z 2 �1ðFÞ: Then there exists an invertible matrix T2 2MnðFÞ such that either
�ðYÞ ¼ �T2YT

�1
2 for every Y 2 �2ðFÞ, or �ðYÞ ¼ �T2Y

TT�12 for every Y 2 �2ðFÞ:

PROPOSITION 1.4 Suppose 2 � s � n� 1, � 2 f0, 1g and � 2 �nðFÞ satisfying �ðZÞ ¼ �Z
for every Z 2 �sðFÞ: Then there exists an invertible matrix Tsþ1 2MnðFÞ satisfying
�ðYÞ ¼ �Tsþ1YT

�1
sþ1 for every Y 2 �sþ1ðFÞ:

It should be mentioned here that in this note, our main outline is very similar to [5].
But since we work in a condition which is weaker than [5], we must overcome more
difficulties. Moreover, the technique used here allows us to remove the injectivity
assumption which obtained by a strong idempotence-preserving. Clearly, a result of
(not strong) linear idempotence-preserving is a natural corollary of our theorem.

We end this section by denoting a notation. Denote by Eij the n� n matrix which has
1 in the i, jð Þ entry and is 0 elsewhere. For any positive integer k � n, let Fk be the set of
all k� 1 matrices over F: We denote by Ik and 0k the k� k identity matrix and zero
matrix, respectively. We also write them as I and 0, respectively, when the dimensions
of these matrices are clear.
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2. Preliminary results

This section provides some preliminary results which will be used to prove Propositions
1.2–1.4 stated in section 1. The following Lemma 2.1 provided by Dolinar is still
available for our assumption.

LEMMA 2.1 [2] If � 2 �nðFÞ, then
ðiÞ �ðPnðFÞÞ � PnðFÞ;
ðiiÞ � is homogeneous, i.e., �ð�AÞ ¼ ��ðAÞ for every A 2MnðFÞ and � 2 F:

LEMMA 2.2 Suppose � 2 f0, 1g and � 2 �nðFÞ: Suppose X,Y,Z 2MsðFÞ and
W ¼ It ��Is�t such that
ðaÞ Xþ Y 2 PsðFÞ;
ðbÞ Xþ YþW 2 PsðFÞ;
ðcÞ � Y� 0n�sð Þ ¼ �Z� 0n�s;
ðdÞ � ðIs � YÞ � 0n�sð Þ ¼ �ðIs � ZÞ � 0n�s;
ðeÞ � ðYþWÞ � 0n�sð Þ ¼ �ðZþWÞ � 0n�s:
If we denote

Z ¼
A B
C D

� �

where A 2MtðFÞ, then we have

� X� 0n�sð Þ ¼ �
�A u

vt Is�t �D

� �
� 0n�s: ð1Þ

Proof It follows from ðaÞ that X� 0n�s þ Y� 0n�s 2 PnðFÞ: Hence,

�ðX� 0n�sÞ þ �ðY� 0n�sÞ 2 PnðFÞ: ð2Þ

By ðaÞ we see that �Xþ ðIs � YÞ ¼ Is � ðXþ YÞ 2 PsðFÞ, and hence
�X� 0n�s þ ðIs � YÞ � 0n�s 2 PnðFÞ: Thus, we obtain by (ii) of Lemma 2.1 that

��ðX� 0n�sÞ þ �ððIs � YÞ � 0n�sÞ 2 PnðFÞ: ð3Þ

Case 1 When � ¼ 0: Due to ðcÞ and ðdÞ, one has � Y� 0n�sð Þ ¼ � ðIs � YÞ � 0n�sð Þ ¼ 0:
This, together with (2) and (3), implies that �ðX� 0n�sÞ 2 PnðFÞ and
��ðX� 0n�sÞ 2 PnðFÞ: Hence, �ðX� 0n�sÞ ¼ 0:

Case 2 When � ¼ 1: It holds that � Y� 0n�sð Þ ¼ Z� 0n�s and
� ðIs � YÞ � 0n�sð Þ ¼ ðIs � ZÞ � 0n�s due to ðcÞ and ðdÞ: Let

� X� 0n�sð Þ ¼
U x2

x3 x4

� �
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where U 2MsðFÞ: Then (2) and (3) tell us that

Uþ Z x2

x3 x4

� �
2 PnðFÞ ð4Þ

and

Is 0

0 0

� �
�

Uþ Z x2

x3 x4

� �
2 PnðFÞ:

By a direct computation, one can obtain that x2 ¼ 0, x3 ¼ 0 and x4 ¼ 0: Furthermore,
suppose that

U ¼
� u

vT �

� �

where � 2MtðFÞ: It follows by ðeÞ and ðbÞ that
� ðYþWÞ � 0n�sð Þ ¼ ðZþWÞ � 0n�s and X� 0n�s þ ðYþWÞ � 0n�s 2 PnðFÞ: Hence
�ðX� 0n�sÞ þ � ðYþWÞ � 0n�sð Þ ¼ �ðX� 0n�sÞ þ ðZþWÞ � 0n�s 2 PnðFÞ: We deduce

�þ A uþ B

vT þ C �þD

� �
þ

It 0

0 �Is�t

� �
2 PsðFÞ: ð5Þ

Note that (4) implies

Uþ Z ¼
�þ A uþ B

vT þ C �þD

� �
2 PsðFÞ:

This, together with (5), gives that �þ A ¼ 0 and �þD ¼ Is�t: The above proof means
that

� X� 0n�sð Þ ¼
�A u

vT Is�t �D

� �
� 0n�s,

proving the conclusion. g

LEMMA 2.3 Suppose � 2 �nðFÞ. Then there exist � 2 f0, 1g and an invertible matrix
T1 2MnðFÞ such that

T1�ðEiiÞT
�1
1 ¼ �Eii for all i 2 1, . . . , nf g: ð6Þ

Proof For any distinct 1 � i, j � n, because of Eii, Ejj, Eii þ Ejj 2 PnðFÞ, it follows
from � 2 �nðFÞ and (i) of Lemma 2.1 that �ðEiiÞ, �ðEjjÞ, �ðEiiÞ þ � Ejj

� �
2 PnðFÞ:
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Hence �ðEiiÞ� Ejj

� �
¼ �ðEjjÞ� Eiið Þ ¼ 0, see [1]. So by [1] we see that there exists an

invertible matrix T0 2MnðFÞ such that

T0�ðEkkÞT
�1
0 ¼ 0r1�����0rk�1� Irk�0rkþ1�����0rn�0n�s for all k2 1, . . . ,nf g, ð7Þ

where r1 þ � � � þ rn ¼ s and we assume that I0 ¼ 0. Next we want to prove that
r1 ¼ r2 ¼ � � � ¼ rn ¼ 0 or 1 and by (7) proving the conclusion.

For any distinct 1 � i, j � n, we see by (7) that there is an invertible matrix
Q ¼ Qði, jÞ 2MnðFÞ such that

Q�1�ðEiiÞQ ¼ Iri � 0rj � 0 ð8Þ

and

Q�1�ðEjjÞQ ¼ 0ri � Irj � 0: ð9Þ

By 1
2 ðEii þ EijÞ þ

1
2Eii 2 PnðFÞ, we have 1

2�ðEii þ EijÞ þ
1
2�ðEiiÞ 2 PnðFÞ: This, together

with �ðEii þ EijÞ 2 PnðFÞ and �ðEiiÞ 2 PnðFÞ, gives that

�ðEii þ EijÞ ¼ ��ðEiiÞ þ �ðEiiÞ�ðEii þ EijÞ þ �ðEii þ EijÞ�ðEiiÞ: ð10Þ

Let X ¼ Q�1�ðEjj � EiiÞQ: By ðEjj � EiiÞ þ Eii 2 PnðFÞ, ðEjj � EiiÞ þ 2Eii 2 PnðFÞ and (8),
we deduce Xþ ðIri � 0Þ 2 PnðFÞ and Xþ 2ðIri � 0Þ 2 PnðFÞ: So X ¼ �Ir1 � X2 and
X2 2 Pn�r1ðFÞ: Also, it follows by (9) and

�ðEjj � EiiÞ þ Ejj 2 PnðFÞ, � ðEjj � EiiÞ þ 2Ejj 2 PnðFÞ

that �Xþ ð0ri � Irj � 0Þ 2 PnðFÞ and �Xþ ð0ri � 2Irj � 0Þ 2 PnðFÞ: So X2 ¼ Irj � X3 and
�X3 2 Pn�r1�r2 ðFÞ: Note that X2 ¼ Irj � X3 2 Pn�r1 ðFÞ, so we see that X3 ¼ 0. We have
shown that X ¼ �Iri � Irj � 0, which implies �ðEjj � EiiÞ ¼ �ðEjjÞ � �ðEiiÞ: This,
together with ðEii þ EijÞ þ ðEjj � EiiÞ 2 PnðFÞ, gives

�ðEii þ EijÞ þ �ðEjjÞ � �ðEiiÞ 2 PnðFÞ: ð11Þ

Thanks to �ðEiiÞ� Ejj

� �
¼ �ðEjjÞ� Eiið Þ ¼ 0, we have by (10) and (11) that

�ðEii þ EijÞ ¼ �ðEiiÞ þ �ðEjjÞ�ðEii þ EijÞ þ �ðEii þ EijÞ�ðEjjÞ: ð12Þ

By a direct computation using (10) and (12), we have

Q�1�ðEii þ EijÞQ ¼
Iri U1

V1 0rj

� �
� 0n�ri�rj :
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In a similar way, we obtain

Q�1�ðEji þ EjjÞQ ¼
0ri U2

V2 Irj

� �
� 0n�ri�rj :

Furthermore, by 1
2 ðEii þ EijÞ þ

1
2 ðEji þ EjjÞ 2 PnðFÞ, one has

1

2

Iri U1 þU2

V1 þ V2 Irj

" #
2 Priþrj ðFÞ:

This tells us that Iri ¼ ðU1 þU2ÞðV1 þ V2Þ and Irj ¼ ðV1 þ V2ÞðU1 þU2Þ: For
ðU1 þU2Þ, we see that its row rank is ri and its column rank is rj: Thus, ri ¼ rj: By
the arbitrariness of i, j, we have r1 ¼ r2 ¼ � � � ¼ rn ¼ �: But
since �ðEiiÞ� Ejj

� �
¼ �ðEjjÞ� Eiið Þ ¼ 0, it is clear that �¼ 0 or 1: This completes

the proof. g

LEMMA 2.4 Suppose � 2 f0, 1g and � 2 �nðFÞ: For 1 � s � n, we denote by VsðFÞ the set
MsðFÞ or DsðFÞ ¼ diagðd1, . . . , dsÞ : di 2 F, i ¼ 1, . . . , s

� �
: If � satisfies ðaÞ � Eiið Þ ¼ �Eii

for all i 2 1, . . . , nf g and ðbÞ � A� 0n�sð Þ ¼ �A� 0n�s for all A 2 VsðFÞ, then

� A� �� 0n�s�1ð Þ ¼ �ðA� �� 0n�s�1Þ for all A 2 VsðFÞ and � 2 F:

Proof Take �sðFÞ as a maximal linear independent set of VsðFÞ \ PsðFÞ: It is clear to
see that Spanð�sðFÞÞ ¼ VsðFÞ and Card�sðFÞ � s2: By the hypothesis ðbÞ, we can assume
that � 6¼ 0:

Case 1 When � ¼ 0: We first give the following claim.

Claim 1 Suppose that �ðB� �� 0n�s�1Þ ¼ 0 for some B 2 VsðFÞ, then we have
�ððBþ �PÞ � �� 0n�s�1Þ ¼ 0 for any � 2 F and P 2 �sðFÞ:

Proof of Claim 1 We can assume without loss of generality that � 6¼ 0: By (b) and

��1 ðBþ �PÞ � �� 0n�s�1ð Þ � ��1 ðBþ �PÞ � 0n�sð Þ ¼ Esþ1, sþ1 2 PnðFÞ,

one has

��1� ðBþ �PÞ � �� 0n�s�1ð Þ 2 PnðFÞ: ð13Þ

Also, by ��1 ðBþ �PÞ � �� 0n�s�1ð Þ � ��1 B� �� 0n�s�1ð Þ ¼ P� 0n�s 2 PnðFÞ,
we have

��1� ðBþ �PÞ � �� 0n�s�1ð Þ 2 PnðFÞ: ð14Þ

If � 6¼ �, then (13) and (14) yield that � ðBþ �PÞ � �� 0n�s�1ð Þ ¼ 0, proving Claim
1 for � 6¼ �. So, by � 6¼ ��, we see that � ðB� �PÞ � �� 0n�s�1ð Þ ¼ 0: Note that
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1

2
��1 ðBþ �PÞ � �� 0n�s�1ð Þ �

1

2
��1 ðB� �PÞ � �� 0n�s�1ð Þ 2 PnðFÞ: ð15Þ

One has

1

2
��1� ðBþ �PÞ � �� 0n�s�1ð Þ 2 PnðFÞ:

This, together with (13) for � ¼ �, yields that � ðBþ �PÞ � �� 0n�s�1ð Þ ¼ 0:
This means that the claim holds for � ¼ �. The proof of Claim 1 is completed.

The condition ðaÞ implies that

0 ¼ � �Esþ1, sþ1

� �
¼ � 0s � �� 0n�s�1ð Þ: ð16Þ

Note that every A 2 VsðFÞ can be written as A ¼
Pt

i¼1 �iPi where �i 2 F and
Pi 2 �sðFÞ, i ¼ 1, . . . , t and t � s2: This, together with (16) and Claim 1, gives that
� A� �� 0n�s�1ð Þ ¼ 0:

Case 2 When � ¼ 1: By ðbÞ we have � A� 0n�sð Þ ¼ A� 0n�s for all
A 2 VsðFÞ: Since ��1 A� �� 0n�s�1ð Þ � ��1A� 0n�s 2 PnðFÞ and
��1 A� �� 0n�s�1ð Þ þ ðIs � �

�1AÞ � 0n�s
� �

2 PnðFÞ, we obtain

��1� A� �� 0n�s�1ð Þ � ��1A� 0n�s 2 PnðFÞ ð17Þ

and

��1� A� �� 0n�s�1ð Þ þ ðIs � �
�1AÞ � 0n�s

� �
2 PnðFÞ: ð18Þ

Thanks to (17) and (18), one can assume that ��1� A� ��ð

0n�s�1Þ � �
�1A� 0n�s ¼ 0s �UðA,�Þ, where UðA,�Þ 2 Pn�sðFÞ: So we have

� A� �� 0n�s�1ð Þ ¼ A� �UðA,�Þ: ð19Þ

We state another claim as follows.

Claim 2 We can assume without loss of generality that � 6¼ 0. Suppose that there
is B 2 VsðFÞ such that UðB,�Þ ¼ 1� 0n�s�1 for all nonzero � 2 F, then we have
UðBþ �P,�Þ ¼ 1� 0n�s�1 for any �,� 2 F,� 6¼ 0 and P 2 �sðFÞ:

Proof of Claim 2 We can assume without loss of generality that � 6¼ 0: Because of

��1 ðBþ �PÞ � �� 0n�s�1ð Þ � ��1 B� �� 0n�s�1ð Þ 2 PnðFÞ,

one has

��1�U Bþ �P,�ð Þ � ��1�U B,�ð Þ 2 Pn�sðFÞ: ð20Þ
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Also, by ��1 ðBþ �PÞ � �� 0n�s�1ð Þ � ��1 B� ð�� �Þ � 0n�s�1ð Þ 2 PnðFÞ, we have

��1�U Bþ �P,�ð Þ � ��1ð�� �ÞU B,�� �ð Þ 2 Pn�sðFÞ: ð21Þ

By the hypothesis, we know that UðB,�Þ ¼ UðB,�� �Þ ¼ 1� 0n�s�1: This, together
with (20) and (21), yields that

U Bþ �P,�ð Þ ¼ 1�WðBþ �P,�Þ,

where WðBþ �P,�Þ 2 Pn�s�1ðFÞ: On the other hand, it follows from (20) that
��1�W Bþ �P,�ð Þ 2 Pn�s�1ðFÞ: Hence, if � 6¼ � then we have WðBþ �P,�Þ ¼ 0
and so that UðBþ �P,�Þ ¼ 1� 0n�s�1: Since � 6¼ ��, one obtain that
WðB� �P,�Þ ¼ 0n�s�1:We want to prove that UðBþ �P,�Þ ¼ 1� 0n�s�1 and proving
the claim. Due to (15), we obtain

1

2
W Bþ �P,�ð Þ �

1

2
W B� �P,�ð Þ ¼

1

2
W Bþ �P,�ð Þ 2 Pn�s�1ðFÞ:

This, together with W Bþ �P,�ð Þ 2 Pn�s�1ðFÞ, gives that W Bþ �P,�ð Þ ¼ 0: The proof
of Claim 2 is completed.

The condition ðaÞ implies that �Esþ1, sþ1 ¼ � �Esþ1, sþ1

� �
¼ � 0s � �� 0n�s�1ð Þ, so we

have by (19) that

U 0s,�ð Þ ¼ 1� 0n�s�1: ð22Þ

Note that every A 2 VsðFÞ can be written as A ¼
Pt

i¼1 �iPi where �i 2 F and
Pi 2 �sðFÞ, i ¼ 1, . . . , t and t � s2: This, together with (22), Claim 2 and (19), gives
� A� �� 0n�s�1ð Þ ¼ A� �� 0n�s�1: g

LEMMA 2.5 Let s be a positive integer � n� 1 and � 2 �nðFÞ: Suppose that there exists
a nonzero scalar w 2 F satisfying

�
A x

0 z

� �
� 0

� �
¼

A wx

0 z

� �
� 0

�
A 0

xT z

� �
� 0

� �
¼

A 0

w�1xT z

� �
� 0

8>>><
>>>:

for all A 2MsðFÞ, x 2 Fs, z 2 F: ð23Þ

Then there exists an invertible matrix Tsþ1 2MnðFÞ satisfying �ðVÞ ¼ Tsþ1VT
�1
sþ1 for

every V 2 �sþ1ðFÞ:

Proof The conclusion is proved in [5] by using the fact that � is an injection:
Here we have to renewedly prove it, since in our case the map � is not injective.

For any V 2 �sþ1ðFÞ, let

V ¼
B �

�T �

� �
� 0n�s�1
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where B 2MsðFÞ , �,� 2 Fs and � 2 F: We will prove that

�ðVÞ ¼
B w�

w�1�T �

� �
� 0n�s�1,

and so �ðVÞ ¼ Tsþ1VT
�1
sþ1 where Tsþ1 ¼ Is � w�1 � In�s�1:

Without loss of generality, we can assume that �,� 2 Fs n 0f g: It is easy to check that
matrices

X ¼
B �

�T �

� �
,Y ¼

�B ��

0 1� �

� �
,Z ¼

�B �w�

0 1� �

� �
,W ¼ Is ��1

satisfy the conditions ðaÞ � ðeÞ of Lemma 2.2. It follows from Lemma 2.2 that

�ðVÞ ¼ �ðX� 0n�s�1Þ ¼
B u

vT �

� �
� 0n�s�1 for some u, v 2 Fs: ð24Þ

Note that Vþ Y� 0n�s�1 2 PnðFÞ, so we have by (24) that
0s u� w�
vT 1

� �
2 Psþ1ðFÞ:

Thus,

ðu� w�ÞvT ¼ 0s: ð25Þ

As � 6¼ 0, we can find � 2 Fs n 0f g such that �T� ¼ 1: Furthermore, one can see that

1

2

B �

�T �

� �
� 0n�s�1 þ

1

2

��T � B � � �

0 1� �

� �
� 0n�s�1 2 PnðFÞ:

By a simple computation, we obtain

1

2

��T uþ wð� � �Þ

vT 1

� �
2 Psþ1ðFÞ,

and so that 1
4 ��

T þ 1
4 ðuþ wð� � �ÞÞvT ¼ 1

2 ��
T: Indeed, we see that

ðuþ wð� � �ÞÞvT ¼ ��T:

This, together with (25), yields w�vT ¼ ��T: Note that �T� ¼ 1, one has vT ¼ w�1�T:
Similarly, we have u ¼ w�: The proof is completed. g

For every nonzero elements y 2 Fn, we denote Sy ¼ P 2 PnðFÞ : Py 6¼ y
� �

:

LEMMA 2.6 [5] Let G 2MnðFÞ, and � 2 Fn be nonzero: Then there exist nonzero scalars
a1, . . . , aq 2 F and G1, . . . ,Gq 2 S� such that G ¼

Pq
u¼1 auGu:
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3. The proof of Proposition 1.4

Depending on the value of �, the proof of Proposition 1.4 is divided into the following
two cases.

Case 1 When � ¼ 0: For any � 2 F n 0f g,A 2MsðFÞ, x 2 Fs and z 2 F,
by Lemma 2.4 and

�
A x

0 z

� �
� 0n�s�1

� �
þ �

�A 0

0 ��1 � z

� �
� 0n�s�1

� �
2 PnðFÞ

we get

��
A x

0 z

� �
� 0n�s�1

� �
2 PnðFÞ for all � 2 F:

It follows by the arbitrariness of � that

�
A x

0 z

� �
� 0n�s�1

� �
¼ 0 for all A 2MsðFÞ,x 2 Fs and z 2 F: ð26Þ

Since for any � 2 F n 0f g one has

�
A x

yT z

� �
� 0n�s�1

� �
þ �

�A �x

0 ��1 � z

� �
� 0n�s�1

� �
2 PnðFÞ,

hence by (26) we get

��
A x

yT z

� �
� 0n�s�1

� �
2 PnðFÞ for all � 2 F:

Note that � is arbitrary, so we have that

�
A x
yT z

� �
� 0n�s�1

� �
¼ 0 for all

A x
yT z

� �
2Msþ1ðFÞ:

Case 2 When � ¼ 1: We divide the proof into the following two steps.
Step 1

�
A x

0 z

� �
� 0n�s�1

� �
¼

A fðxÞx

0 z

� �
� 0n�s�1 for all A 2MsðFÞ, x 2 Fs n 0f g, z 2 F,

where f is a map from Fs n 0f g to F satisfying f ðcxÞ ¼ f ðxÞ for all
x 2 Fs n 0f g, c 2 F n 0f g:
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In fact, using Lemmas 2.4 and 2.2 for X1 ¼ ½
A x
0 1
�,Y1 ¼ Z1 ¼ ½

�A 0
0 0

� and
W1 ¼ Is ��1, we have

�
A x

0 1

� �
� 0n�s�1

� �
¼

A uðA,xÞ

vðA, xÞT 1

� �
� 0n�s�1, ð27Þ

where uðA, xÞ, vðA, xÞ 2 Fs: As x 2 Fsn 0f g, there exists an invertible matrix P 2MsðFÞ

such that x ¼ P 1 01�ðs�1Þ
	 
T

: Let

H1 ¼ Pð1� 0s�1ÞP
�1, H2 ¼ P

1 1
0 0

� �
� 0s�2

� �
P�1:

Then

A x

0 1

� �
� 0n�s�1

� �
�

A�Hi 0

0 1

� �
� 0n�s�1

� �
2 PnðFÞ, i ¼ 1, 2:

Using � 2 �nðFÞ, (27) and Lemma 2.4, one can obtain that

Hi uðA, xÞ
vðA, xÞT 0

� �
2 Psþ1ðFÞ, i ¼ 1, 2,

and hence vðA, xÞ ¼ 0 and uðA, xÞ ¼ �1ðA, xÞx for some �1ðA, xÞ 2 F: This, together with
Lemma 2.6 and in the same discuss of [5], implies that

�
A x

0 1

� �
� 0n�s�1

� �
¼

A fðxÞx

0 1

� �
� 0n�s�1, for all x 2 Fsn 0f g, A 2MsðFÞ, ð28Þ

where f is a map from Fsn 0f g to F.
Next, using Lemma 2 for X2 ¼ ½

A x
0 0
�,Y2 ¼ Z2 ¼ ½

�A 0
0 1

� and W2 ¼ Is ��1, we
have

�
A x

0 0

� �
� 0n�s�1

� �
¼

A u

vT 0

� �
� 0n�s�1, ð29Þ

where u, v 2 Fs: Noting

Is þ A x

0 1

� �
� 0n�s�1 �

A x

0 0

� �
� 0n�s�1 2 PnðFÞ,
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by (28) and (29), one has

Is fðxÞx� u

�vT 1

� �
2 Psþ1ðFÞ:

So we have u ¼ fðxÞx and vT ¼ 0: Thus (29) become the following

�
A x

0 0

� �
� 0n�s�1

� �
¼

A fðxÞx

0 0

� �
� 0n�s�1: ð30Þ

For any nonzero scalar c 2 F, using � 2 �nðFÞ and

Is þ cIs cx

0 1

� �
� 0n�s�1

� �
� c

Is x

0 0

� �
� 0n�s�1

� �
2 PnðFÞ for all c 2 F,

we have

�
Is þ cIs cx

0 1

� �
� 0n�s�1

� �
� c�

Is x

0 0

� �
� 0n�s�1

� �
2 PnðFÞ:

This, together with (28) and (30), gives fðcxÞ ¼ fðxÞ: Since � is homogeneous, we can
complete the proof of Step 1.

Step 2 Using Lemma 2.5 we show in the same way as in [5] that there exists
an invertible matrix Tsþ1 2MnðFÞ satisfying �ðVÞ ¼ Tsþ1VT

�1
sþ1 for every V 2 �sþ1ðFÞ:

4. The proofs of Propositions 1.2 and 1.3

Proof of Proposition 1.2 By Lemmas 2.1 and 2.3, the conclusion can be easily
obtained. g

Proof of Proposition 1.3 The proof for �¼ 0 is similar to the proof of Proposition 1.4.
So we assume that � ¼ 1: By Lemma 2.3 , we can assume that

�ðEiiÞ ¼ Eii, i ¼ 1, . . . , n: ð31Þ

This, together with Lemma 2.4, one has

�ða11E11 þ a22E22Þ ¼ a11E11 þ a22E22: ð32Þ

Because of E11 	 E12 2 PnðFÞ and E22 þ E12 2 PnðFÞ, we have

�ðE11Þ 	 � E12ð Þ 2 PnðFÞ, �ðE22Þ þ �ðE12Þ 2 PnðFÞ:
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This, together with (31), gives that

� E12ð Þ ¼ u1E12 þ v1E21 for some u1, v1 2 F with u1v1 ¼ 0: ð33Þ

Similarly, we have

� E21ð Þ ¼ u2E12 þ v2E21 for some u2, v2 2 F with u2v2 ¼ 0: ð34Þ

Using Lemma 2.2 for X1 ¼ ½
1 b
0 1
�,Y1 ¼ Z1 ¼ ½

�1 0
0 0
� and W1 ¼ ½

1 0
0 �1

�, we have

�
1 b

0 1

� �
� 0n�2

� �
¼

1 u3

v3 1

� �
� 0n�2 for some u3, v3 2 F: ð35Þ

Since

1 b

0 1

� �
� 0n�2 � bE12 2 PnðFÞ,

we have by (33) and (35) that

1 u3 � bu1

v3 � bv1 1

� �
2 P2ðFÞ:

Hence, u3 ¼ bu1 and v3 ¼ bv1: Indeed, we have

�
1 b

0 1

� �
� 0n�2

� �
¼

1 bu1

bv1 1

� �
� 0n�2 for all b 2 F: ð36Þ

Note that

1

2
E21 þ

1

2

1 1

0 1

� �
� 0n�2 2 PnðFÞ,

so we have by � 2 �nðFÞ and (34), (36) that

1

2

1 u1 þ u2

v1 þ v2 1

� �
2 P2ðFÞ:

Thus, ðu1 þ u2Þðv1 þ v2Þ ¼ 1: This tells us that either u1 6¼ 0, v2 ¼ u�11 , u2 ¼ v1 ¼ 0
or v1 6¼ 0, u2 ¼ v�11 , u1 ¼ v2 ¼ 0: That is, there is w 2 Fn 0f g such that
�ðE12Þ ¼ wE12,�ðE21Þ ¼ w�1E21 or �ðE12Þ ¼ wE21,�ðE21Þ ¼ w�1E12:

Case 1 Suppose �ðE12Þ ¼ wE12 and �ðE21Þ ¼ w�1E21 hold: By (36) and the
homogeneous property of �, we have

�ðaE11 þ bE12 þ aE22Þ ¼ aE11 þ bwE12 þ aE22 for all a, b 2 F: ð37Þ
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Similarly, one can see that

�ðaE11 þ bE21 þ aE22Þ ¼ aE11 þ bw�1E21 þ aE22 for all a, b 2 F: ð38Þ

Suppose

�
0 1
1 0

� �
� 0n�2

� �
¼

U x2
x3 x4

� �

where U 2M2ðFÞ: It follows by ðE12 þ E21Þ þ ð
1
2E11 þ

1
2E22 �

3
4E12Þ 2 PnðFÞ that

Uþ

1

2
�
3

4
w

0
1

2

2
64

3
75 x2

x3 x4

2
6664

3
7775 2 PnðFÞ: ð39Þ

Again, by �ðE12 þ E21Þ þ ðE11 þ E22 � ð
1
2E11 þ

1
2E22 �

3
4E12ÞÞ 2 PnðFÞ and (37), we

deduce

I2 � 0n�2 �
Uþ

1

2
�

3

4

� �
w

0
1

2

2
664

3
775 x2

x3 x4

2
66664

3
77775 2 PnðFÞ: ð40Þ

This, together with (39), gives that x2 ¼ 0, x3 ¼ 0 and x4 ¼ 0: Let U ¼ ½ � �
� � � where

�,�, �, � 2 F: Then by (40), one can obtain that

�þ
1

2

� �
��

3

4

� �
w

� � þ
1

2

� �
2
6664

3
7775 2 P2ðFÞ: ð41Þ

Similarly, we have by (38) and ðE12 þ E21Þ þ ð
1
2E11 þ

1
2E22 � ð

3
4ÞE21Þ 2 PnðFÞ that

�þ
1

2

� �
�

� �
3

4

� �
w�1 � þ

1

2

� �
2
6664

3
7775 2 P2ðFÞ: ð42Þ
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It follows from 1
2 ðE12 þ E21Þ þ

1
2 ðE11 þ E22Þ 2 PnðFÞ and (37) that

1

2

�þ 1 �

� � þ 1

� �
2 P2ðFÞ: ð43Þ

Combining (41) with (42) and (43), one can conclude that

� E12 þ E21ð Þ ¼ wE12 þ w�1E21: ð44Þ

Using Lemma 2.2 for X2 ¼ ½
1 b
0 0
�,Y2 ¼ Z2 ¼ ½

�1 0
0 1
� and W2 ¼ ½

1 0
0 �1

�, we have

�
1 b

0 0

� �
� 0n�2

� �
¼

1 u4

v4 0

� �
� 0n�2 for some u4, v4 2 F: ð45Þ

Note that E11 þ bE12 � cE12 2 PnðFÞ for every c 2 F and that
ðE11 þ bE12Þ � bðE12 þ E21Þ 2 PnðFÞ: We see by (44) and (45) that u4 ¼ bw and v4 ¼ 0:
Furthermore, by (45) and the homogeneous property of �, one has

�
a b

0 0

� �
� 0n�2

� �
¼

a bw

0 0

� �
� 0n�2 for all a, b 2 F: ð46Þ

Using Lemma 2.2 for X3 ¼ ½
a b
0 1
�,Y3 ¼ Z3 ¼ ½

�a 0
0 0
� and W3 ¼ ½

1 0
0 �1

�, we can
assume that

�
a b

0 1

� �
� 0n�2

� �
¼

a u5

v5 1

� �
� 0n�2 for some u5, v5 2 F: ð47Þ

Note that

a b

0 1

� �
� 0n�2 þ

1� a �b

0 0

� �
� 0n�2 2 PnðFÞ:

This, together with (46) and (47), implies that u5 ¼ bw and v5 ¼ 0: Furthermore,
by (47) and the homogeneous property of �, one has

�
a b

0 d

� �
� 0n�2

� �
¼

a bw

0 d

� �
� 0n�2 for all a, b, d 2 F: ð48Þ

Similarly, we have

�
a 0

c d

� �
� 0n�2

� �
¼

a 0

cw�1 d

� �
� 0n�2 for all a, c, d 2 F: ð49Þ
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In view with (48), (49) and Lemma 2.5, there exists an invertible matrix T2 2MnðFÞ

such that � Að Þ ¼ T2AT
�1
2 for every A 2 �2ðFÞ:

Case 2 Suppose �ðE12Þ ¼ wE21 and �ðE21Þ ¼ w�1E12 hold. By a similar argument to
Case 1, there exists an invertible matrix T2 2MnðFÞ such that � Að Þ ¼ T2A

TT�12 for
every A 2 �2ðFÞ:

The proof is completed. g
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