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A note on idempotence-preserving maps
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Let M,(F) be the space of all n x n matrices over a field F of characteristic not 2, and let
P,(F) be the subset of M,(F) consisting of all nxn idempotent matrices. We denote
by ®,(F) the set of all maps from M,(F) to itself satisfying 4 — 1B € P,(F) implies
¢(A) — rp(B) € P,(F) for every A,Be M,(F) and 1 €F. In this note, we prove that
¢ € ®,(F) if and only if there exist § € {0,1} and an invertible matrix P € M,(F) such
that either ¢(4) = 8PAP~" for every A € M, (F), or ¢(4) =8PATP~" for every A € M,(F).
This improves the result of some related references.
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1. Introduction

Suppose C is the complex number field and F is an arbitrary field of characteristic not 2.
Let M, (F) be the space of all n x n matrices over F and P,(F) be the subset of M, (F)
consisting of all nxn idempotent matrices. The problem of characterizing linear
maps preserving idempotence belongs to a large group of the so called linear preserver
problems (see [3] and the references therein). The theory of linear preservers of
idempotence is well-developed [1]. Recently, the first results on more difficult non-linear
indempotence preserver problems have been obtained [2,4,5]. We denote by S®,(F) the
set of all maps from M,,(F) to itself satisfying A — AB € P,(F)<= ¢(A4) — Ap(B) € P, (F)
for every 4, B € M,(F) and A € F. A map ¢ is called a strong idempotence-preserving
map if ¢ € S®,(F). Semrl [4] showed that when n >3, ¢ € S®,(C) is bijective and
continuous if and only if either ¢ is of the form ¢(4) = PAP~! for every A € M,(C),
or ¢ is of the form ¢(4) = PATP~! for every A € M,(C), where P € M,(C) is invertible
and A7 denotes the transpose of A. Dolinar [2] improved the result of Semrl by relaxing
the bijectivity assumption to the surjectivity and also omitting the continuous
assumption and the restriction on n > 3. Further, Zhang [5] improved Dolinar’s
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result by omitting the surjectivity assumption and extended the field from complex
number field to any field of characteristic not 2.

There is a natural question when thinking of possible improvements of the above
mentioned characterization of maps on M,(F) preserving idempotence in both
directions. Can we obtain the similar conclusion under the weaker assumption of
idempotence-preserving in one direction only? That is, consider the set @,(F) of all
maps from M,(F) to itself satisfying

A — 1B e P,(F) = ¢(A) — rp(B) € P,(F) for every 4, B € M,(F) and A € F.

As we will see in the next sections we completely characterize the set ®,(F) in which
every map is called an idempotence-preserving map. Namely, we will prove the
following result.

THeoREM 1.1 Suppose F is any field of characteristic not 2 and ¢ € ®,(F). Then there
exist 8 € {0, 1} and an invertible matrix P € M,(F) such that either ¢(A) = SPAP~" for
every A € M,(F), or ¢(4) = 8PATP~" for every A € M,(F).

Based on Lemma 2.1, when n=1 the proof of Theorem 1.1 is very simple. Thus, we
can assume that n» > 2 in the rest of this article.

For any positive integer k < n, we denote ITi(F) = {X @ 0,_|X € My(F)}, where @
denotes the usual direct sum of matrices. Obviously, IT;(F) ={a® 0,_i|a € F} and
I1,(F) = M, (F). Notice that if ¢ € ®,(F), then both the map 4i—> P#p(A)P~" and the
map A—>¢(A)" are also in ®,(F). Therefore, based on the inductive idea on n,
the proof of Theorem 1.1 is equivalent to prove the following three propositions.
The first two propositions show that Theorem 1.1 is true for n =2, and the third
one shows that if Theorem 1.1 is true when n=s (s> 2), then it is also true
forn=s+1.

ProrosiTioN 1.2 Suppose ¢ € ©,(F). Then there exist § € {0, 1} and an invertible matrix
T\, € M(F) such that §(Z) = 8T\ ZT;" for every Z € T1;(F).

ProrosiTioN 1.3 Suppose 8 € {0,1} and ¢ € ©,(F) satisfying ¢(Z) = 8Z for every
Z € TI1\(F). Then there exists an invertible matrix T, € M,(F) such that either
d(Y) =38TLYT5! for every Y € TIh(F), or ¢(Y) = 8T> Y T5! for every Y € Ty (F).

Prorosition 1.4 Suppose2 <s<n—1, § €{0,1} and ¢ € ®,(F) satisfying $(Z) = 8Z
for every Z € TI|(F). Then there exists an invertible matrix Ty € M,(F) satisfying
d(Y) =6Ty4 YTS_j1 for every Y € T (F).

It should be mentioned here that in this note, our main outline is very similar to [5].
But since we work in a condition which is weaker than [5], we must overcome more
difficulties. Moreover, the technique used here allows us to remove the injectivity
assumption which obtained by a strong idempotence-preserving. Clearly, a result of
(not strong) linear idempotence-preserving is a natural corollary of our theorem.

We end this section by denoting a notation. Denote by E;; the n x n matrix which has
1 in the (i, /) entry and is 0 elsewhere. For any positive integer k < n, let F¥ be the set of
all & x 1 matrices over F. We denote by I, and 0, the k x k identity matrix and zero
matrix, respectively. We also write them as 7 and 0, respectively, when the dimensions
of these matrices are clear.
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2. Preliminary results

This section provides some preliminary results which will be used to prove Propositions
1.2-1.4 stated in section 1. The following Lemma 2.1 provided by Dolinar is still
available for our assumption.

Lemma 2.1 [2] If ¢ € @,(F), then

(1) ¢(Pu(F)) S Py(F);

(ii) ¢ is homogeneous, i.e., p(LA) = Ap(A) for every A € M, (F) and » € F.
LemMma 2.2 Suppose §€{0,1} and ¢ € ©,(F). Suppose X,Y,Z e MyF) and
W=1I & —I,_, such that

(a) X+ Y e Py(F);

(b) X+ Y+ W e Py(F);

(C) ¢(Y@ 0]’[75‘) =02 Onfs;

(d) (p((ls - Y) S2] Onfs) = 5(15 - Z) @ 0y—s;

(6) ¢((Y+ W) 2] 0,775) = S(Z + W) @0, .

If we denote

where A € M,(F), then we have

—A
¢(X® Onﬁs‘) = (SI: W i| @ 0,—s. (])

I_,—D
Proof 1t follows from («) that X 0,_,+ Y& 0,_; € P,(F). Hence,
XD 0,—5) + (Y D 0,—) € Py(F). (2)

By (a) we see that —-X+({;—Y)=L—(X+Y)ePy(F), and hence
—X®0,_s+U;—Y)DO0,_s € Py(F). Thus, we obtain by (ii) of Lemma 2.1 that

Case 1 When § = 0. Due to (¢) and (d), one has (Y ® 0,_) = ¢((Iy — Y) B 0,_5) = 0.
This, together with (2) and (3), implies that @¢X &0, € P,(F) and
—p(X P 0,_,) € P,(F). Hence, p(X & 0,_5) = 0.

Case 2 When §=1. It holds that Y DO, ) =Zd0,_, and
(L — Y)®0,—5) = (Iy — Z2) ® 0 due to (©) and (d) Let

U X2
¢(X@ On—s) = |: :|

X3 X4
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where U € M(F). Then (2) and (3) tell us that

|:U+Z X2

X3 X4

] c P.(F) @)

and

|:IS O] B |:U+Z x21| € P,(F).

0 0 X3 X4

By a direct computation, one can obtain that x, = 0, x3 = 0 and x4 = 0. Furthermore,

suppose that
U— o u
=l g

where a € M,(F). It follows by (e) and (b) that
H(Y+WM0,_)=Z+W)»0,_y and XD O0,_+ Y+ W)®O0,_, € P,(F). Hence
AX D 0y—5) + (Y + W) B 0,—5) = (X ® 0,—) + (Z + W) & 0,5 € Py(F). We deduce

|:a+A u—i—B] [It 0

v+ g+pl Lo —lyt]EPS(F)' ©)

Note that (4) implies

a+A u+B

U+Z=
[J+C B+ D

} € Py(F).

This, together with (5), gives that « + 4 = 0 and 8+ D = I,_;. The above proof means
that

—A
¢(X@ OI’I—S) = [ VT @ Ol’l—Sa

u
I, —D

proving the conclusion. |

Lemma 2.3 Suppose ¢ € ®,(F). Then there exist § € {0,1} and an invertible matrix
T, € M, (F) such that

Ty¢(E))Ty' =8E; foralliel{l,... n). (6)

Proof For any distinct 1 <i,j <n, because of Ej, Ej;, E;+ Ej; € P,(F), it follows
from ¢ € ,(F) and (i) of Lemma 2.1 that ¢(E;), @(Ej), ¢(Eii)+¢(Ez'i) € P,(F).
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Hence ¢(Ei)¢(Ej) = ¢(Epd(Ei) =0, see [1]. So by [1] we see that there exists an
invertible matrix 7y € M,(F) such that

Top(E) Ty =0, & ®0,_, &1, &0, &0, &0, , forallke(l,....,n}, (7)

where ry 4+ ---+r, =5 and we assume that [, = 0. Next we want to prove that
rp=r,=--+-=r,=0or 1 and by (7) proving the conclusion.

For any distinct 1 <i,j <n, we see by (7) that there is an invertible matrix
0 = 0Q(i,j) € M,(F) such that

O '§(En)Q = L, ®0,00 (8)
and
0 '¢(ENQ =0, @1, 0. ©)

By 1(Ei + Ej) + 1 E; € P,(F), we have 1¢(E; + Ej) +1¢(E;) € P,(F). This, together
with ¢(Ej; + Ejj) € P,(F) and ¢(Ej;) € Pu(F), gives that

d(Eii + Ej) = —P(Ey) + Q(En)P(Eii + Ej) + (Eii + Ej)P(Ei). (10)
Let X = Q7 '¢(E; — Eq)Q. By (Ej; — Ey) + Ei € Py(F), (Ej — Ey) + 2E; € P,(F) and (8),

we deduce X+ ([, ®0)e P,(F) and X+ 2(, ®0) € P,(F). So X=—1I,, ® X, and
X, € P,_,(F). Also, it follows by (9) and

—(Ej — Ey) + Ej € Py(F), —(E; — Ey)+ 2E; € Py(F)
that =X + (0, ® I,, ® 0) € P,(F) and —X+ (0,, ® 21, ® 0) € P,(F). So X> = I,, ® X3 and
—X; € Py, —,(F). Note that X5 = I, & X3 € P, (F), so we see that X3 = 0. We have

shown that X' =—1I, &1, ®0, which implies ¢(E; — Ej;) = ¢(Ej) — ¢(Ey;). This,
together with (Ej; + Ej) + (Ej — E;;) € Py(F), gives

H(Eii + Ej) + ¢(Ej) — ¢(Ei) € Pu(F). (11)
Thanks to ¢(E;)p(E;) = ¢(E;)(E;) = 0, we have by (10) and (11) that
D(E; + Ey) = ¢(Ey) + p(Epd(Ei + Ey) + p(E; + Ey)d(Ey). (12)

By a direct computation using (10) and (12), we have

— Ir; Ul
O~ ' p(Es + E)Q = [Vl 0.

Tj

:| 2] On,,~i,,~/..
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In a similar way, we obtain

_ 0, U
O '¢(E;i + EjQ = [ VoI, } @0y,

Furthermore, by 1(E; + Ejj) +1(Eji + Ej) € P,(F), one has

1[ L, U+U

= e P, ., (F).
Vi Vs I i| i+, (F)

2

This tells us that 1, = (U + U)(V1+V2) and I, = (Vi + V2)(Uy + Us). For
(U1 + Us), we see that its row rank is r; and its column rank is ;. Thus, r; = r;. By

the arbitrariness of i,J], we have rN=r=---=r,=34. But
since @(Ey)¢p(Ej) = ¢(Ej)(E;) =0, it is clear that §=0 or 1. This completes
the proof. |

Lemma 2.4 Suppose § € {0,1} and ¢ € ©,(F). For 1 < s < n, we denote by V(F) the set
M(F) or Dy(F) = {diag(dl, ondy)dieFi=1,... ,s}. If ¢ satisfies (a) ¢(E;;) = SE;
forallie{l,...,n} and (b) p(4 @ 0,_5) =384 B 0, for all A € V(F), then

PADNDO0,_ 1) =8(ADuDO0,_5_1) forall A€ Vy(F)and n €F.

Proof Take A4(F) as a maximal linear independent set of V(F) N Py(F). It is clear to
see that Span(A,(F)) = V,(F) and CardA(F) < s*. By the hypothesis (5), we can assume
that u # 0.

Case 1 When § = 0. We first give the following claim.

Claim 1 Suppose that §(B® u®0,_,_1) =0 for some B e V{(F), then we have
P(B+AP)Dud0,_51)=0 for any » € F and P € Ay(F).

Proof of Claim 1 We can assume without loss of generality that A £ 0. By (b) and
W H(B+IP)® @ O0yst) = 7 (B+AP) ® 04y) = Eyi1501 € Pu(F),
one has
WH(B+AP)® 1@ 0yy1) € Py(F). (13)

Also, by A NB+AP)O U0, 1) =2 (BOU®0, 1) =P &0, € Py(F),
we have

A O(B+AP)® @ 0,5_1) € Py(F). (14)

If A # p, then (13) and (14) yield that ¢((B+ AP)® u ®0,_5_1) = 0, proving Claim
1 for A # w. So, by u # —u, we see that ¢((B— uP)® u @ 0,_,_1) = 0. Note that
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1 1
Elu'il((B‘I' :u'P) @ w @ On—s—l) - 5“71((3 - ,LLP) 2] w @ On—s—l) € Pn(F)‘ (15)

One has

1
E/f‘ab((B +uP)® @0, , 1) € Py(F).

This, together with (13) for A =, yields that ¢((B+ uP)® u® 0, 1) =0.
This means that the claim holds for A = . The proof of Claim 1 is completed.
The condition (a) implies that

0= ¢(/’LES+1,X+1) = ¢(OV D ud0,-5-1). (16)
Note that every 4 € V,(F) can be written as 4 =Y, AP, where A; € F and

Pie A(F), i=1,...,t and ¢ < s*>. This, together with (16) and Claim 1, gives that
HADpD0,5-1)=0.

Case 2 When 68=1. By () we have ¢pA4d0,,)=A4®0,, for all
A € V(F). Since WA n®0,_1)—pn 400, € P,(F) and
w M A®p®0——1) + (Uy — 1" 4) ® 0,—,) € P,(F), we obtain

P HAD D0, 1)~ AD0,_s € Py(F) (17)
and

M_l¢(A Ound On—s—l) + (([s - :u_lA) @ On—s) € Pn(F)' (18)

Thanks to (17) and (18), one can assume that pu'¢(4@ ud
0p—s—1) — ' A@®0,_y =0,® U(A, ), where U(A4, n) € P,_(F). So we have

¢(A$M®On—v—l) =A®MU(A»M) (19)

We state another claim as follows.

Claim 2 We can assume without loss of generality that u # 0. Suppose that there
is Be Vy(F) such that UB,u)=1®»0,_s_1 for all nonzero u € F, then we have
UB+MP, ) =1®0,_5 1 forany A\, u € F,u #0 and P € A4(F).

Proof of Claim 2 We can assume without loss of generality that A £ 0. Because of
WHB+IP)BU®0yy1) — 1 (BOUB0,y1) € Pu(F),
one has

A WUB + AP, ) — 27 wU(B, 1) € Py_y(F). (20)
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Also, by A" (B+AP) @ u @0,y 1) — A" (BS (u—2) &0,51) € Py(F), we have
A UB + AP, ) — 2w — M U(B, ;. — 1) € Py_y(F). (21)

By the hypothesis, we know that U(B,u) = UB,u — L) =1&0,_,_,. This, together
with (20) and (21), yields that

UB+ 1P, pn)=1& W(B+ AP, ),

where W(B+ AP, 1) € P,—s_1(F). On the other hand, it follows from (20) that
A 'uW(B+ AP, ) € P,_s_(F). Hence, if A # pu then we have W(B+AP,u)=0
and so that UB+AP,u)=160,,,. Since u#—u, one obtain that
W(B — uP,u)=0,_,. We want to prove that U(B+ uP, ) = 1 ®0,_,_; and proving
the claim. Due to (15), we obtain

1 1 1
5 W(B+ upP, ) — 5 W(B— uP,p) = 3 W(B + uP, ) € Py 1(F).

This, together with W(B + uP, i) € P,—s_1(F), gives that W(B + P, ) = 0. The proof
of Claim 2 is completed.

The condition (a) implies that pEg 1 41 = ¢(1Esr1 541) = 05 D p B 0,5_1), S0 we
have by (19) that

U(OX7 /’L) =1 > Onf‘\'fl- (22)
Note that every A € V(F) can be written as A=Y AP, where A;€F and

Pie A(F), i=1,...,t and ¢t < 5. This, together with (22), Claim 2 and (19), gives
HADPnD0y s 1) =AD D05 . u

Lemma 2.5 Let s be a positive integer < n — 1 and ¢ € ®,(F). Suppose that there exists
a nonzero scalar w € F satisfying

Ao 2Je0)-[3 e
o[ oo)=[, 1 tao

Then there exists an invertible matrix Ty € M, (F) satisfying ¢(V) = Ty VT;:] for
every V € Tz (F).

forall A€ M(F), xeF’, zeF. (23)

Proof The conclusion is proved in [5] by using the fact that ¢ is an injection.
Here we have to renewedly prove it, since in our case the map ¢ is not injective.
For any V e I (F), let

v [B “}@o
— n—s—1
BT u



A note on idempotence-preserving maps 407

where B € My(F), o, B € F¥ and n € F. We will prove that

B B wa 0
¢(V) - |:W_l,3T " i| ©® n—s—1s

and so (V) = Ty VT;Lll where Top1=1;® wl D L—5—1.

Without loss of generality, we can assume that o, 8 € F° \ {0}. It is easy to check that
matrices

X—[B ai| Y—|:_B —ot]Z_[—B —wotj|W_1ED 1
- ﬁT ,U,’ - 0 ]—/j/’ - 0 l—lL’ - 45

satisfy the conditions (a) — (¢) of Lemma 2.2. It follows from Lemma 2.2 that

B
(V)= (X B 0,—5—1) = |: r ui| @ 0,_,_1 for some u,v € F°. (24)
v

u— wo

Note that V4 Y& 0,_,_; € P,(F), so we have by (24) that |:8% 1 ] € Py (F).
Thus,

(u — wap! = 0. (25)
As B#0, we can find y € F*\ {0} such that 87y = 1. Furthermore, one can see that
I B « I1[yp"—B y—«a
= 0p—s—1+= 0,_5-1 € P,(F).
2|:'3T M]@ sl+2|: 0 I_M@1sle n()
By a simple computation, we obtain

1[w3T u+w(y - a)

5| 1 } € Py(F),

and so that ;yB" + { (u+ w(y — a))v" =1yp’. Indeed, we see that

(u+wly —a)' =yp.

This, together with (25), yields wyv? = yBT. Note that 87y = 1, one has v/ = w!'g7.
Similarly, we have u = wa. The proof is completed. |
For every nonzero elements y € F’, we denote S, = {P € P,(F): Py # y}.

LemmA 2.6 [5] Let G € M, (F), and B € F" be nonzero. Then there exist nonzero scalars
ay,...,a; € ¥Fand Gy,...,G, € Sg such that G=Y""_, a,G,.
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3. The proof of Proposition 1.4

Depending on the value of 8, the proof of Proposition 1.4 is divided into the following
two cases.

Case 1 When §=0. For any AeF\{0},4e M(F),xeF and =zeF,
by Lemma 2.4 and

TIRIEY o740 0 Pu(F
([0 Zj|@ n—s—l>+ <|: 0 )\_I—Z]@ 11—s—1> € n( )

we get

A x
/\q)([ 0 } ® 0,”1> € P,(F) for all » € F.

z

It follows by the arbitrariness of A that
A x
¢(|: 0 ] &) 0,,51) =0 for all 4 € My(F),x € F* and z € F. (26)
z
Since for any A € F\ {0} one has

A x —A X
([ Joren o[ 7 Jooen)eram

hence by (26) we get

A
W([ T x} ® On_H) € P,(F) for all A € F.
ytoz

Note that A is arbitrary, so we have that

A x A x
¢(|:yr Zi| 690,151) =0 for all |:yT Z] € M (F).

Case 2 When § = 1. We divide the proof into the following two steps.
Step 1

A x A flx)x
¢<[ 0 z} ® Onxl) = |:O . } ®0,_s_1 forall 4 e My(F),x e F*\ {0}, z €F,

where f is a map from F'\{0} to F satisfying f(cx)=/f(x) for all
x e FP\ {0}, ce F\ {0}
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In fact, using Lemmas 2.4 and 2.2 for X, :[61 LYi=2 :[_OA 00] and
W, =1, ®—1, we have

A x 0 B A u(A, x) 0 7
¢<|: 0 1:| S n—s—l) - |:V(A,X)T 1 :| @ 0y—s—1, ( )

where u(A4, x), (4, x) € F*. As x € F*\{0}, there exists an invertible matrix P € M(F)
such that x = P[ 1 le(s,l)]T. Let

Hi =P(1®0, )P, Hy= P(|:(1) (l)i| 6903_2>P1.
Then

A X0 A=Hi 07 Py(F), i=1,2
0 1 ® n—s—1 | — 0 1 ® n—s—l)e n( )vl_ 5 &

Using ¢ € ©,(F), (27) and Lemma 2.4, one can obtain that

H; u(A, x) .
[V(A,X)T 0 i| EPS-F](F)’Z_laZa

and hence v(4, x) = 0 and u(A4, x) = (A4, x)x for some §;(A4, x) € F. This, together with
Lemma 2.6 and in the same discuss of [5], implies that

4 x A fix)x |
¢<[0 1}690““):[0 I ]@O'H—" for all x € F'\{0}, 4 € My(F), (28)

where fis a map from F*\{0} to F.
Next, using Lemma 2 for X =[§ 1. Ya=2Zy=[7," ‘land Wr=1& -1, we

have
0 0 n—s—1 | = VT 0 n—s—1s

where u, v € F*. Noting

@0757 @0773'7 € P,(F 5
0 1 " ! 0 0 ! ! "
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by (28) and (29), one has

I —
[ T f(X))lc ui| € Py (F).

-V

So we have u = f(x)x and v/ = 0. Thus (29) become the following

A x 4 fox
¢<|: 0 0:| @D 01151) - |:0 0 i| @0,1,3,1. (30)

For any nonzero scalar ¢ € F, using ¢ € ®¢,(F) and

fitelext oo YL P,(F) for all ¢ € F
0 | n—s—1 ¢ 0 0 h—s—1 | € LI'n orall cek,

we have

bt el S EY) P,(F
¢<|: 0 1 ]@ nSl) _C¢<|:O O:| (&) nSl) [= n( )

This, together with (28) and (30), gives f{cx) = f(x). Since ¢ is homogeneous, we can
complete the proof of Step 1.

Step 2 Using Lemma 2.5 we show in the same way as in [5] that there exists
an invertible matrix Ty, € M,(F) satisfying ¢(V) = Ty VTS‘J1 for every V e sy (F).

4. The proofs of Propositions 1.2 and 1.3

Proof of Proposition 1.2 By Lemmas 2.1 and 2.3, the conclusion can be easily
obtained. |

Proof of Proposition 1.3 The proof for § =0 is similar to the proof of Proposition 1.4.
So we assume that § = 1. By Lemma 2.3 , we can assume that

QE;)=E; i=1,...,n (31)
This, together with Lemma 2.4, one has
¢lan En + ankx») = anEn + ankx. (32)
Because of Ey| £+ E» € P,(F) and E», + Ey, € P,(F), we have

d(En) £ ¢(E12) € Py(F), ¢(Exn)+ ¢(E12) € Pu(F).
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This, together with (31), gives that
¢(E\») = u1 E\p + v Ey; for some uy, vy € F with u;v; = 0. (33)
Similarly, we have
¢(Er1) = unE\p + vaEy; for some up, v € F with upvy = 0. (34)

Using Lemma 2.2 for X; =/

o Myi=z =0 Mand Wy =[; °1 wehave

1 b 1 us
¢ ®0,, )= ® 0,_» for some uz, vz € F. (35)
0 1 V3 1

Since

1 b
[0 1] @ 0,2 — DE» € Py(F),

we have by (33) and (35) that

|: 1 uz — bu1 i| P (F)
€ .
V3 — bv1 1 2
Hence, uz = bu; and v3 = bvy. Indeed, we have
o1 2o bbb g0, forallbeF (36)
w2 | = .—» forallbeF.
0 1 ? by 1 :
Note that
lE 171 1 0 P(F
5 21+§ 0 1 ® 0,2 € Py(F),

so we have by ¢ € ©,(F) and (34), (36) that

1[ 1 u + up

€ Py(F).
2 V1+V2 1 ] 2()

Thus, (u; + u2)(vi +v2) = 1. This tells us that either u; #0, vy =u;,up =v; =0
or v #0, w=v'uy=v=0. That is, there is weF\{0} such that
P(E12) = WE12, ¢(Ea1) = w Exy or ¢(Ern) = wEa, $(Ezi) = w ' Es.

Case 1 Suppose ¢(Ejp) =wE;, and ¢(Ey) =w 'Ey hold. By (36) and the
homogeneous property of ¢, we have

P(aEy + bE\y + aE») = aEy| + bwE\; + aEx for all a,b € F. (37
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Similarly, one can see that

$(aEy| + bEy + aEy) = aEy + bw'Ey + aEy, for all a,b € F. (38)

Suppose
0 1 . U X2
o[ oJoom) =[]
where U € M,(F). It follows by (E|; + E>) + (%En +%E22 — %Elz) € P,(F) that

U+ X2

S N =

€ Py(F). 39)

N — N W

=
w

X4

Again, by —(Eix+ Ex)+ (En + Ex — G Ei 4+ 3 E»n —3E)) € Py(F) and (37), we
deduce

: -(3)
— p— —_— /V
2 4
beo,,—| YT I Y2 | e py(F), (40)
0 _
2
X3 X4

This, together with (39), gives that x, =0,x3 =0 and x4 =0. Let U = [‘J"/ f] where
a, B,v,t € F. Then by (40), one can obtain that

Y (),
o 3 B 1 w
0
Y T 7
Similarly, we have by (38) and (Ei2 + E») + G Eiy + 1 Ex — G)Ex) € Py(F) that
(!
o 3 B
— E 1y_1 T + 1
V= \g)" 2

e P (F). 40

€ P»(F). 42)
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It follows from %(Elz + Ey) + %(En + E») € P,(F) and (37) that

l[a—i-l B

o1 V. 1] e P(F). (43)

2
Combining (41) with (42) and (43), one can conclude that
$(E1z + Ex) = wEiy + w™ ' Eyy. (44)

Using Lemma 2.2 for X, = [(1) g], Yo=2,= [_0] 10] and W, = [0] f)l], we have

1 b 1 Uy
o} ®0,- )= ® 0,_» for some uy,v4 € F. (45)
0 0 ve 0

Note that Ey\ 4+ bE\; — cEp € Py(F) for every ceF and that
(E1 + bE2) — b(E1» + E») € Py(F). We see by (44) and (45) that uy = bw and v4 = 0.
Furthermore, by (45) and the homogeneous property of ¢, one has

of[¢ Peos)=[? " Noo s foranaser (46)
0 0 =2 | = 0 0 n—2 1OT all a,b € k.

Using Lemma 2.2 for X3 =[¢ "L Y3;=2Z;=[ Jland Ws=[] °] we can

assume that

a b a  us
¢ @0, = ® 0,_» for some us,vs € F. 47)
0 1 Vs 1

Note that

“ 0 0t [T T w0, e PR
n— h—2 € Iy .
0 1 : 0 0 :

This, together with (46) and (47), implies that us = bw and vs = 0. Furthermore,
by (47) and the homogeneous property of ¢, one has

O n s Uy . 48

Similarly, we have

a 0 a 0
qﬁ([ i| @ Onz) = |: B i| ®0,, forall a,c,deF. (49)
c d ew b d
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In view with (48), (49) and Lemma 2.5, there exists an invertible matrix 75 € M, (F)
such that ¢(4) = TLAT;" for every 4 € I,(F).

Case 2 Suppose ¢(E1») = wE>; and ¢(E>;) = w™'E}» hold. By a similar argument to
Case 1, there exists an invertible matrix T, € M,(F) such that ¢(4) = TobATT5" for
every A € I,(F).

The proof is completed. u
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