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Abstract

An axially compressed beam resting on a non-linear foundation undergoes a loss of stability (buckling) via a supercritical
pitchfork bifurcation. In the post-buckled regime, it has been shown that under certain circumstances the system may
experience a secondary bifurcation. This second bifurcation destablizes the primary buckling mode and the system “jumps”
to a higher mode; for this reason, this phenomenon is often referred to as mode jumping. This work investigates two new
aspects related to the problem of mode jumping. First, a three mode analysis is conducted. This analysis shows the usual
primary and secondary buckling events. But it also shows stable solutions involving the third mode. However, for the cases
studied here, there is no natural loading path that leads to this solution branch, i.e. only a contrived loading history would
result in this solution. Second, the e<ect of an initial geometric imperfection is considered. This breaks the symmetry of the
system and signi=cantly complicates the bifurcation diagram.
? 2004 Published by Elsevier Ltd.
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1. Introduction

Directly following a buckling event, structures
with a hardening non-linearity experience a dramatic
rise in sti<ness with increased axial load. Oftentimes,
this increased sti<ness far surpasses the pre-buckled
sti<ness, rendering the system even more stable than
before. However, under very special circumstances,
this post-buckled sti<ness can again plummet with in-
creased axial load and a secondary bifurcation occurs.
First identi=ed by Stein [1], this phenomenon causes
the primary buckling mode to lose stability and the
system “jumps” to a higher mode. Hence, this event
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is often referred to as secondary buckling or mode
jumping.
To clarify what happens, consider the axially com-

pressed beam resting on a non-linear elastic founda-
tion, shown in Fig. 1a. The lateral displacement of the
beam is traditionally comprised of its =rst two modes:
w(x) = Q1 sin(�x=L) + Q2 sin(2�x=L). Fig. 1b shows
a schematic of the modal response as the axial load
is gradually increased. Solid (dashed) lines are stable
(unstable) equilibrium branches. At P1

cr, the system
buckles into the =rst mode. As the load is increased
through P2

cr, nothing unusual happens; the system re-
mains buckled in the =rst mode and there is no contri-
bution from the second mode. As the system is loaded
to Pmjcr , the =rst mode equilibrium solution loses sta-
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Fig. 1. (a) A schematic of the model system, (b) a schematic of
typical mode jumping behavior.

bility and Q1 drops to zero. Simultaneously, Q2 jumps
to a =nite value. Beyond Pmjcr the response depends on
the speci=cs of the system under consideration. These
di<erent response scenarios are outlined by Supple [2].
Regarding this equilibrium diagram, two points should
be made. First, in order to promote mode jumping
early in the post-buckling regime, the buckling loads
of the interacting modes are forced close together;
this may be accomplished by a judicious choice in
the beam length (or any other appropriate parameter).
Second, on increasing the control parameter, mode
jumping will only occur from a lower mode to a higher
mode. So, for the case that P2

cr ¡P1
cr (a long beam)

the system will not mode jump from the second mode
to the =rst. Of course, for the scenario presented in
the schematic, reverse mode jumping may also occur;
the system may jump down (from the second mode to
the =rst) as the control parameter is decreased.
Because of its detrimental inKuence in the

post-buckled regime, mode jumping has received a
good deal of attention since this phenomenon was
=rst demonstrated in plate buckling [1]. As previously
mentioned, Supple [2] described the di<erent equilib-
rium branches that can emerge after mode jumping.
This work was extended to look at evolving buckling
patterns [3–5]. Others have examined the inKuence of

various boundary conditions [6–8], lateral loads [9],
and biaxially loading [10] on this phenomenon. More
recently, Arnold tongues have been used to predict
secondary buckling and to develop safety envelopes,
within which secondary buckling cannot occur [8,11].
In the present paper, a third mode is incorporated

into the structural model and mode jumping is reex-
amined. Speci=cally, the model consists of a linear
elastic beam resting on a cubic non-linear foundation:
Ff = k1(w0 + w) + k2(w0 + w)3. The model also
includes a small initial geometric imperfection (w0),
which breaks the symmetry of the system [2]. A three
mode Galerkin discretization is used to arrive at a set
of algebraic equilibrium equations, which are solved
numerically using root solving and a pseudo-arclength
method [12]. The results of the three mode system
show that, in the absence of an imperfection, the pri-
mary and secondary bifurcations occur very much as
they did when only two modes were retained. After
the secondary bifurcation, the new stable branch is
made up of only the second mode but the (now) un-
stable =rst mode branch couples with the third mode.
As the axial load is increased further the stable sec-
ond mode branch remains stable. However, another
stable branch appears. This consists of just the third
mode and is attainable only through an un-natural
loading history, i.e. the system has to be forced to
that solution. As a result, it is concluded that a two
mode analysis is satisfactory for predicting behavior
prior to mode jumping. But after the secondary bi-
furcation, alternate solution paths exist and should be
considered.

2. Model development and solution techniques

2.1. Equations of equilibrium

The model system is shown in Fig. 1a. It consists
of a linear elastic beam resting on a cubicly non-linear
foundation. It is also subject to an axial compressive
load P. To obtain the equilibrium equations the prin-
ciple of virtual work is used. To accomplish this, ex-
pressions for the bending energy and the external work
must be developed. The bending energy for a beam is

Ub =
EI
2

∫ L

0
w;xx2 dx; (1)
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where EI is the bending sti<ness of the beam, w is the
lateral deKection, and •; x ≡ d • =dx. Additional strain
energy is stored in the foundation. For a foundation
sti<ness of K = k1 + k2(w0 + w)2, the force in the
foundation is

F = [k1 + k2(w0 + w)2](w0 + w): (2)

And the potential energy stored by the foundation is

Uf =
∫ L

0

∫ w

0
F dw dx

=
∫ L

0

∫ w

0
[k1 + k2(w0 + w)2](w0 + w) dw dx:

(3)

Work is done by the axial load P. It is expressed as

W =
P
2

∫ L

0
(w;x + w0; x)2 dx: (4)

The Principle of Virtual Work asserts that �(Ub +
Uf − W ) = 0. Taking the necessary variations and
integrating by parts leads to the following equilibrium
equation:

EIw;xxxx + P(w;xx + w0; xx) + (k1 + 3k2w2
0)w

+3k2w0w2 + k2w3 + (k1w0 + k2w3
0) = 0: (5)

As shown in Fig. 1a, the boundaries are assumed to
be pinned such that the boundary conditions are

w(0) = 0; w;xx(0) = 0;

w(L) = 0; w;xx(L) = 0: (6)

It should be pointed out that if k1 = k2 = 0, Eq. (5)
reverts to the standard linear imperfect beam model.
Also, if the imperfection is eliminated (w0 = 0), the
non-linear equations studied in Ref. [7] are recovered.
Eq. (5) may be simpli=ed by introducing the follow-

ing non-dimensional quantities: �= x=L and W =w=L.
The result is

W;���� + �1W;�� + �2W + �3W 2

+�4W 3 + �5 = 0; (7)

where the coeOcients to this equation are

�1 =
PL2

EI
; �2(�) =

k1 + 3k2w2
0

EI
L4;

�3(�) =
3k2w0

EI
L5; �4 =

k2
EI

L6;

�5(�) =
(
k1w0 + k2w3

0

EI
+
PL2

EI
w0; ��

)
L3: (8)

Obviously, �2; �3 and �5 are functions of � because
the initial imperfection is a function of �:w0 =w0(�).

Eq. (7) is reduced to set of algebraic equations via
Galerkin’s method. A three term solution of the form

w = a1 sin(��) + a2 sin(2��) + a3 sin(3��) (9)

is assumed. This series is substituted into the equilib-
rium equation and Galerkin’s method is carried out.
This leaves three non-linear, algebraic equations in the
unknown modal amplitudes a1; a2, and a3; these are
presented in the appendix. The numerical techniques
used to solve these equations are outlined in the next
section.

2.2. Numerical solutions techniques

The objective here is to obtain solutions to the dis-
cretized equilibrium equations as a function of the ap-
plied axial load. For an example, see the schematic
result in Fig. 1b. For the majority of the simulations
carried out in this work, the three non-linear equilib-
rium equations are solved numerically using a multidi-
mensional Newton–Raphson routine. This technique
is generally reliable but does encounter diOculties if
the solution branch doubles back on itself, i.e. if the
solution branch has a point of vertical tangency. In this
case, the Newton–Raphson technique will jump o< to
a remote solution, rather than continuing on the present
branch. To circumvent this problem, the tangent was
constantly monitored. If the slope of the tangent ex-
ceeded a preset value, Newton–Raphson was aban-
doned and a pseudo-arclength (path-grabbing) method
took over. This technique is outlined below but the in-
terested reader is encouraged to read the more detailed
description provided in Ref. [12].
The three equilibrium equations consist of three un-

known modal amplitudes a={a1; a2; a3} and one con-
trol parameter P that is being varied. In the Newton
–Raphson approach, P is gradually incremented; for
each new P, a new solution vector a is found. The
pseudo-arclength method still uses an incremental ap-
proach to solving the problem. But the problem is re-
stated, such that the load P assumed to be an unknown.
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Hence, the solution vector will consist of four quanti-
ties a′ ={P; a1; a2; a3} and, hence, another equation is
required. This fourth equation is generated by requir-
ing that the (j + 1)th solution vector in the iterative
scheme is not “too far” from the previous two solu-
tions (the jth and (j − 1)th). This can be expressed
mathematically using quantities that resemble an L2

norm:

3∑
i=1

(a j+1
i − a ji) (a

j
i − a j−1

i ) + (Pj+1 − Pj)(Pj − Pj−1)

=
3∑
i=1

(a ji − a j−1
i )2 + (Pj − Pj−1)2: (10)

By requiring sequential solutions to be close by in
the 4-D vector space, this technique assures that the
solution does not jump o< to a remote solution.

2.3. Stability of equilibria

The local stability of an equilibrium solution (found
using the techniques discussed in Section 2.2) may be
ascertained in a number of ways. One common ap-
proach is to examine the curvature (i.e., the second
derivatives) of the potential function [13]. Alternately,
the stability may be studied by applying a small per-
turbation and observing the free response. The latter
approach is taken here and necessitates adding an in-
ertia term to Eq. (7). Speci=cally, the inertia term is
W;��, where � is a non-dimensional time and the mass
has been absorbed into the non-dimensionalization. A
perturbed solution of the form

W =Weq + Ŵ (11)

is substituted into the governing dynamic equation
(Eq. (7) +W;��), where Ŵ is a small oscillation super-
imposed on the equilibrium solution Weq. Nonlinear
terms in Ŵ are discarded and, given the equilibrium
equation (Eq. (7)), the result is

Ŵ ;�� + Ŵ ;���� + �1Ŵ ;�� + �2Ŵ

+2�3WeqŴ + 3�4W 2
eqŴ = 0: (12)

This equation is discretized using the expansion in Eq.
(9) and Galerkin’s method. Assuming a solution of
the form â = Âe�t , leads to an eigenvalue problem.

These eigenvalues indicate the asymptotic stability of
the particular equilibrium solution, aeq.

3. Results

3.1. The symmetric case

To consider initial buckling, the initial imperfection
is removed (w0 = 0) and the linearized version of Eq.
(7) is used. From a stability analysis of this equation,
the buckling load for each mode is given by

pm =
�2EI
L2

(
m2 +

k1L4

m2�4EI

)
; (13)

where m is the mode number. To demonstrate the gen-
eral behavior of the system, the following parameters
are used: EI=k1 =k2 =1. Under these circumstances,
Fig. 2 shows the critical load is as a function of the
beam length. For the speci=c case of L=4:3, the beam
initially buckles in its =rst mode at a load of P=2:42,
as indicated by the circle; but it is close to the transi-
tion length of L=4:45, which strongly promotes early
mode jumping [2].
Before continuing, it should be noted that the struc-

tural response actually lives in a four dimensional
space, made up of the control parameter and the three
modal amplitudes (P; a1; a2; a3). Obviously, we can-
not present the response in the complete space (though
a two mode analysis can be, see Ref. [14]). Instead,
all of the amplitudes are superimposed on one com-
mon y-axis; however, it is useful to keep in mind that
the expansion functions (mode shapes) are orthogonal
and, hence, their amplitudes exist on mutually orthog-
onal axes.
Focusing on the mildly post-buckled regime,

Fig. 3 shows the modal equilibria (3a) and the sta-
bility eigenvalues (3b) as a function of the axial
compressive load, P. At low loads, the beam remains
Kat until it reaches point A; in the modal state space,
this corresponds to (P; a1; a2; a3) = (2:42; 0; 0; 0). At
a slightly larger load, the system has buckled into its
=rst mode and the solution vector is (P; a1; 0; 0). This
form of the solution vector continues with increasing
P until point B. Here, this solution path loses stability
and the system experiences standard mode jumping;
the new stable solution has the form (P; 0; a2; 0). If
the load is reduced, the system demonstrates hystere-
sis and the reverse jump occurs at a lower compres-
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Fig. 2. Initial buckling loads for the system as determined by Eq. (13).

Fig. 3. (a) Equilibrium solutions for the symmetric, low-load case, (b) the associated stability eigenvalues for increasing load only.

sive load, i.e. at point C the stable solution switches
from (2:637; 0; 0:071; 0) to (2:637; 0:0948; 0; 0). If P
is reduced further, the unstable second mode solution
will =nally reach (2:60; 0; a2 → 0; 0), which is the
buckling point for the second mode. The stability of
these solutions is con=rmed by Fig. 3b. However, for

the sake of clarity, only the stable solutions for the
increasing load case have been shown in 3b. As the
load is increased from zero, the eigenvalues transition
smoothly up to initial buckling, where the =rst mode
eigenvalue reaches zero. At this buckling point, the
eigenvalue loci cusps as the eigenvalues are then cal-
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Fig. 4. Comparison of numerical results with Supple’s (analytical) two mode results for the natural loading path.

culated about the newly stabilized, non-zero solution.
As the load is increased still further, the system mode
jumps. At this point, the second mode eigenvalue
reaches zero and both eigenvalues discontinuously
snap back to a stable (negative) value. It should also
be noted that the numerical results compare well to
Supple’s analytical solutions in this low load regime
for both increasing and decreasing load, as is shown
in Fig. 4.
The aforementioned results capture the initial

post-buckling behavior of the system and are con-
sistent with those described previously by Everall
and Hunt [7]. But now, let’s focus on increasing the
load beyond the initially post-buckled range. If the
stable solution path is followed unperturbed (i.e.,
along (P; 0; a2; 0)), nothing surprising happens. The
second mode solution continues to grow, while a1
and a3 remain zero. However, if the unstable branch
is followed (conceptually that is, not physically) a
very di<erent scenario ensues, see Fig. 5. After the
mode jumping instability is encountered, the mode
one (only) solution becomes unstable. The new un-
stable solution is a coupled solution of the form:
(P; a1; 0; a3). This behavior is shown in Fig. 5a (with

5b showing the stability). With increased load, these
coupled amplitudes grow until point E, which corre-
sponds to (5:579; 0:344; 0; 0:184). At E, these unstable
branches encounter a saddle node bifurcation and the
system jumps to a stable equilibrium consisting of
only the third mode: (P; 0; 0; a3). Because this tertiary
state is the result of an instability from an unstable
branch and has nothing to do with the previously ex-
isting stable solution, (p; 0; a2; 0), this solution branch
is not naturally accessible. In other words, for this
particular beam (L= 4:3), there is no natural loading
history that can lead to this solution branch. Instead,
an appropriate perturbation would have to be applied
from the stable a2 solution (for P¿PE) to arrive at
the stable a3 solution.
A more complete, albeit cluttered, equilibrium

diagram for the symmetric system is shown in
Fig. 6. This diagram more clearly demonstrates the
coexisting stable solutions at higher compressive
loads. It also shows more details about the saddle
node bifurcation that occurs at point E, which causes
the system to jump to the tertiary state. Using the
continuation method, the unstable (P; a1; 0; a3) solu-
tion is followed through the saddle node bifurcation
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Fig. 5. (a) Equilibrium solutions for higher loads, showing tertiary states, (b) the associated stability eigenvalues.

Fig. 6. The complete equilibrium diagram for the symmetric case.

at E and it is clear that at the vertical tangency there
is no exchange of stability; it remains unstable. This
coupled solution loops back on itself and continues
until it experiences a pitchfork bifurcation at point F .
It is potentially instructive to see how these bifurca-

tion amplitudes change under the inKuence of a con-
trol parameter, such as the beam length. This behavior

is shown in Fig. 7. The lower two curves show the
amplitudes at which the mode jumping occurs. The
upper two curves show the amplitudes of the second
and third mode at the appearance of the tertiary state
(labeled point H and I in the Fig. 6). For a beam
length of L= 4:3, which corresponds to the results of
Figs. 3–6, the amplitudes are marked with circles. As
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Fig. 7. A parameter study showing the inKuence of the beam length on the amplitudes corresponding to mode jumping (B and C) and the
appearance of the tertiary state (H and I).

the beam length grows, the system approaches a dou-
ble eigenvalue (see Fig. 2). In the process, the mode
jump occurs at smaller and smaller amplitudes. Ulti-
mately, as the length reaches L = 4:45, the eigenval-
ues coincide. Here the mode jumping amplitudes have
shrunk to zero and the system begins to buckle in the
second mode rather than the =rst; this precludes the
possibility of mode jumping between the =rst and sec-
ond mode. Furthermore, since the next double eigen-
value is far away, mode jumping is not likely to occur
between the second and third mode. Likewise, the ter-
tiary state has disappeared. Note that Fig. 7 contains
roughly the same information that is available from an
Arnold tongue plot [7]. However, that approach im-
plicitly varies a parameter (the beam length) and does
not provide information about jumps to tertiary states.

3.2. The asymmetric case

The asymmetric case corresponds to a non-zero
value for w0. Throughout this study, the im-
perfection is assumed to be in the =rst mode:
w0(�) = 0:01 sin(��). The equilibrium diagram cor-

responding to the natural loading path is shown in
Fig. 8. In the low load regime, there is no buck-
ling event. Instead, the =rst mode deKection grows
steadily from the imperfection shape and is always
coupled to the third mode, though the third mode
contribution is extremely small. This behavior per-
sists until this branch loses stability at point A,
(3:46; 0:251; 0; 0:008), and the system mode jumps.
Unlike the symmetric case, where the stable solution
after the mode jump was purely in the second mode,
this new solution is a coupled mode one and mode two
solution: (P; a1; a2; 0). As the load is increased, the
=rst mode contribution diminishes and the solution
is dominated by the second mode. When unloaded,
this solution branch again shows hysteresis. But the
hysteresis involves both the =rst and second mode.
At high compressive loads, the system becomes

somewhat more complex than its symmetric counter-
part. As mentioned before, at A, the coupled mode
one-mode three solution loses stability. This unstable
behavior persists until point C (5:459; 0:396; 0; 0:12),
at which time the solution is brieKy re-stabilized.
As P is increased further, a saddle node bifurca-
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Fig. 8. Equilibrium solutions for the asymmetric, low-load case.

Fig. 9. Equilibrium solutions for the asymmetric case at higher loads, showing tertiary states.
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tion is encountered at D (5:74; 0:384; 0; 0:197) and
the system jumps to the new (tertiary) solution
(5:74; 0:002; 0; 0:522). When unloaded, the solution
is hysteretic and the stable tertiary solution loses
stability at a saddle node bifurcation at E. As be-
fore, neither of these coupled mode 1–mode 3 so-
lutions are realizable from the natural loading path
(Fig. 9).

4. Conclusions

In this work, the secondary bifurcations and ter-
tiary states of a beam resting on a non-linear elastic
foundation have been investigated using a three mode
approach. In addition, both the symmetric and asym-
metric (geometrically imperfect) cases have been con-
sidered. For the symmetric case at low compressive
loads, the system demonstrates the typical mode jump-
ing from the =rst mode to the second mode, as well as
hysteresis. At higher compressive loads another stable
solution exists, which consists of the third mode only.
However, for the beam under consideration (L= 4:3)
there is no jump from the stable second mode solution
to this stable third mode solution. A jump may oc-
cur (mathematically) from an unstable, coupled =rst
and third mode solution. But a more physically real-
izable path is through a contrived loading history, i.e.
pushing the system into this stable third mode solution
from the stable second mode branch. It is interesting
to note that a natural loading path may be created by
pinning the left end and enforcing a symmetric sec-
tion condition. This eliminates all unsymmetric be-
havior, thereby stabilizing the combined =rst and third
mode solution and permitting the jump to the stable
third mode (only) solution. Again, this is diOcult to
accomplish physically but is readily achieved mathe-
matically.
The asymmetric case also demonstrates mode jump-

ing at low compressive loads. However, at the higher
compressive loads, there are actually three stable solu-
tions. The =rst is the coupled mode 1–mode 2 solution,
but this is dominated by the second mode. This arises
from the natural loading path of the system. There are
also two coupled mode 1–mode 3 solutions. One of
these solutions (a1¿a3) is stable over a very small
load level, whereas the other (a3¿a1) is stable over
a much broader range of loads. As with the symmet-

ric case, only a contrived loading history will lead to
these solutions.
The upshot of this work is that at low loads, a sim-

ple two mode analysis will capture the essence of
the behavior. However, at higher compressive loads,
this system may demonstrate multiple stable equilib-
ria containing higher modes. But, for the cases con-
sidered, these higher modal equilibria occur through
non-natural loading paths.

Appendix.

The non-dimensional equilibrium equation, Eq. (7),
may be discretized using Eq. (9) and Galerkin’s
method. Three non-linear algebraic equations for the
three modal amplitudes result. These equations are:
The a1 equilibrium equation:
(
�2 − �2�1 + �4

2

)
a1 +

(
3�4
8

)
a31 +

(
3�4
4

)
a1a22

−
(
3�4
8

)
a21a

2
3 +

(
3�4
8

)
a22a3 +

(
3�4
4

)
a1a23

+
(
4�3
3�

)
a21 +

(
16�3
15�

)
a22 −

(
8�3
15�

)
a1a3

+
(
36�3
35�

)
a23 +

(
2�5
�

)
= 0:

The a2 equilibrium equation:
(
�2 − 4�2�1 + 16�4

2

)
a2 +

(
3�4
4

)
a21a2

+
(
3�4
8

)
a32 +

(
3�4
4

)
a1a2a3 +

(
3�4
4

)
a2a23

+
(
32�3
15�

)
a1a2 +

(
32�3
21�

)
a2a3 = 0:

The a3 equilibrium equation:
(
�2 − 9�2�2 + 81�4

2

)
a3 −

(
�4
8

)
a31 +

(
3�4
8

)
a1a22

+
(
3�4
4

)
a21a3 +

(
3�4
4

)
a22a3 +

(
3�4
8

)
a33
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−
(
4�3
15�

)
a21 +

(
16�3
21�

)
a22 +

(
72�3
35�

)
a1a3

+
(
4�3
9�

)
a23 +

(
2�5
3�

)
= 0:
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