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By using of the invariant theory, we study a two energy-level Bose—Einstein condensate interacting with a time-

dependent laser field, the dynamical and geometric phases are given respectively. The Aharonov—Anandan phase

is also obtained under the cyclical evolution.
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Recently, much attention has been paid to in-
vestigation of Bose-Einstein condensation (BEC) in
dilute and ultracold gases of neutral alkali-metal
atoms using a combination of laser and evaporative
cooling!? 3! due to the optical properties,!*°! statisti-
cal properties,®7] phase properties,[® and tunnelling
effect.[10-18]

It is known that the concept of geometric phase
was first introduced by Pancharatnam(!?! in studying
the interference of classical light in distinct states of
polarization. Berry[?Y! found the quantal counterpart
of Pancharatnam’s phase in the case of cyclic adiabatic
evolution. The extension to non-adiabatic cyclic evo-
lution was developed by Aharonov and Anandan.[?!]
Samuel and Bhandaril??! generalized the pure state
geometric phase further by extending it to non-cyclic
evolution and sequential projection measurements.
The geometric phase is a consequence of quantum
kinematics and is thus independent of the detailed
nature of the dynamical origin of the path in state
space. This led Mukunda and Simon?®! to put for-
ward a kinematic approach by taking the path tra-
versed in state space as the primary concept for the
geometric phase. Further generalizations and refine-
ments, by relaxing the conditions of adiabaticity, uni-
tarity, and cyclicity of the evolution, have since been
carried out.?4 Recently, the geometric phase of the
mixed states has also been studied.[??!

As we known that the quantum invariant theory
proposed by Lewis and Riesenfeld?®! is a powerful tool
for treating systems with time-dependent Hamiltoni-
ans. It was generalized in Ref. [27] by introducing the
concept of basic invariants and used to study the geo-
metric phases in connection with the exact solutions of
the corresponding time-dependent Schrodinger equa-
tions. The discovery of Berry’s phase is not only
a breakthrough in the old theory of quantum adia-
batic approximations, but also provides us with new

insights into many physical phenomena. The con-
cept of Berry’s phase has developed in some different
directions.[28=36] In this Letter, by using of the invari-
ant theory, we study a two energy-level Bose—Einstein
condensate interacting with a time-dependent laser
field.

We consider a two energy-level Bose-Einstein con-
densate interacting with a time-dependent laser field.
The Hamiltonian of the system reads

H=Hs+Hp+Hps+ Haa, (1)

where ﬂA, I:IF, I:IFA and I:IAA denote the atom, the
free field, the field-atom, and the atom-atom inter-
action Hamiltonian, respectively. We can obtain the
second-quantization form in the particle-number rep-
resentation (in units of i = 1)37]

= [ @rit )2+ vl = S Bl
4 / [2m } ; 2)
Hp = % / &r(B* + E*) = w(t)d'a, (3)
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where Ey and Fq in FIA denote the atomic ground
state energy and the excited state energy, respectively,
bl and b; (i = 0,1) are the creation and annihilation
operators of the atomic ground and excited states. For
a two energy-level atom, we can select Ey = 0 and let
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E; = wy. a'(a) in Hr is the creation (annihilation)
operator of the laser field, and w(t) is the frequency
of laser field. Considering the Rotating-wave approx-
imation, one has

)(@abiby + ablby), (6)

27r
drud(r)(—ie - V)ui(r),
e | 7 g

where u;(r) is the eigenfunction of atomic energy, €(t)
denotes the interaction intensity between the atom
and laser field. If let U, = Q (2 has nothing to
perform with the order of 4, j, k,), one has

1
ﬁAA =0 Z i);ri);i)kgllsi-i-j,k—&-l
4,5,k,l=0
Qb obo + bbby + blBEbuo + bl hun).
(8)
Then the Hamiltonian of the system can be rewritten
by
H =wob™b + w(t)ata + e(t)(atblb + abeb!)
+ Q(bY bl boby + bibIboby + bibib1by + bIbIb1by ).
(9)
In this study, we consider the case that the laser field
is weaker, and adopt the Bogoliubov approximation.
Suppose that the atomic number of the Bose—Einstein
condensate initially being larger, the slowly change of
the atomic number in the ground state can be omitted
in the process of the atom-field interaction, then oper-
ators by and B;r] in Eq. (9) can be replaced by v/Noe
and v/ Nge™™, omitting the term I;J{IA)J{IA)llA)l, and letting
l;l =b, 5,{ :BT one has

w(0)i'a

H = (wo + 2No)bTh +
the® 4 able~

+ €(t)VNo(a ) 4+ N2Q.

(10)

For self-consistency, we first illustrate the Lewis—

Riesenfeld (L-R) invariant theory.®®]. For a one-

dimensional system whose Hamiltonian H (t) is time-

dependent, then there exists an operator I (t) called
invariant if it satisfies the equation

i@ +[I(t),H(t)] = 0. (11)

The eigenvalue equation of the time-dependent invari-
ant |A,,t) is given

LB, 1)

= 0. The time-dependent Schrédinger

= An[An, 1), (12)

0
where ——

equation for this system is

QO _
o = HOWWO).. (13)

According to the L-R invariant theory, the par-
ticular solution |A,,t)s of Eq.(13) is different from

the eigenfunction |\, t) of f(t) only by a phase factor
exp[idy, (t)] for the non-degenerate state, i.e.

[An,t)s = explid, (£)]| An, ), (14)

which shows that |\,,t)s (n =1,2,...) forms a com-
plete set of the solutions to Eq. (13). Then the general
solution of the Schrodinger equation (13) can be writ-

ten as
Zc expl[idy, (£)]| An, 1), (15)

where
t 9 .
an(t):/ dt'(An, iy — H{t)An, t'),  (16)
0

and C,, = (A, 0]¥(0))s.
In order to obtain the exact solutions to Eq. (13),
we can define operators K, K and K as follows:

K, =a'b, K =bta, Ky,=ata—-b'b, (17)
which hold the commutation relations
[Ko, K] = £2K4, [K4,K_| = K. (18)

It is easy to prove that operators K}, K_ and K,
together with the Hamiltonian H construct a quasi-
algebra.
Then we can obtain the L-R invariant as follows:
I(t) = cos 0Ky — e sin K, — ¥ sinfK_, (19)

where 6 and ¢ are determined by Eq. (11), and they

satisfy the relations
0 = 2¢(t)V/Nosin(yp + ), (20)
0 cos 0 sin o — 2¢(t)V' N cos 6 cos y
+ [wo + 2No2 + ¢ — w(t)]sinf cos p = 0,
(21)
6 cos 0 cos ¢ — 2¢(t)V N cos Osiny
— [wo + 2NoQ2 + ¢ — w(t)]sinb cosp = 0,

(22)
where the overdot denotes the time derivative.
We can construct the unitary transformation
V(t) = exploKky — 0" K_], (23)

6 _. 0 . .
where 0 = —e™*? and o* = 56“’0. The invariant I(t)

can be transformed into a new time-independent op-
erator Iy:

Iy = Vi) IV (t) = Ko. (24)

Correspondingly, we can obtain the eigenvalue equa-
tion of operator I(t)

Iy|m)aln); = (m = n)|m)aln);, (25)

In terms of the unitary transformation V(t) and

the Baker—Campbell-Hausdoff formulal®®]
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(26)
where V(t) = exp[L(t)]. One has
ay() =V (AW TE) - iV ()
. o0 5 0
= {(wo + 2NoQ) sin 2 + w(t) cos 3
— e.(t)\/ﬁo sin @ cos(p + )
+ %(1 — cos 0)} afa
+ {(wo + 2NoR) cos? g + w(t) sin® g
+ e(t)\/ﬁo sin 6 cos(¢ + )
— %(1 — cos 0)} bth. (27)

It is easy to find that H(t) differs from Iy only
by a time-dependent c-number factor. Thus we can
obtain the general solution of the time-dependent
Schrodinger equation (13),

[U())s = DY Coim exp[iGrm (D]V (1) m)a

n)ps

(28)
with the coefficients C,,,,, =< n, m,t = 0|¥(0)),. The
phase d,,,,, (t) = 62, (t) + 69, (t) includes the dynami-
cal phase

¢ 0 0
5Zm(t) = — m/ |:((4.)0 + 2NoQ2) sin? 3 + w(t) cos? 3
to
t
_ e(t)\/ﬁo sin 0 cos(p + 'y)} dt' — / NEQdt!
to

¢ 0

- n/ [(wo + 2NoQ) cos? —

to 2
0

+ w(t) sin? 3 + €(t)V N sin 6 cos(p + 7)] dt’,

(29)

and the geometric phase

69 () = / (n— m)%(l — cos6)dt'. (30)

to
Particularly, under the cyclical evolution the geomet-
ric phase becomes

6d () = % 7{(71 —m)(1 — cosf)dyp,

which is the
Anandan phase.

It is pointed out that the dynamics and Berry
phases of two-species Bose—Einstein condensations
have been studied recently by using the SU(2) coher-
ent state.**) The model used in Ref.[39] is similar to
that in this study, the result of geometric phase is the
same, ie. 62, (t) ~ §(1 — cosB)de.

We thank the anonymous referees for useful sug-
gestions.
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