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Abstract

An optimization study is presented with aim to minimize the sound power radiated by a

simply supported, baffled beam with constrained layer damping (CLD) treatment. The gov-

erning equation of motion for the calculation of time-harmonic response of a partially CLD

covered beam is derived first on the basis of energy approach. Assumed-modes method is used

to solve the equation with obtained frequency response functions at different beam locations,

which are further used for the calculation of its radiated sound power into half free-space by

using Rayleigh�s integral. The optimization problem is then formulated to minimize the sound

power radiated by the beam over a frequency range of interest covering multiple resonant

modes. A genetic algorithm-based penalty function method is employed to search for the

optimum of location/length of the CLD patch and the shear modulus of viscoelastic layer.

Optimal results show that for a simply supported beam with a transverse force applied at its

central location, it is not necessary to fully cover the structure using CLD patch in order to

achieve the largest reduction in the sound power radiated by the beam over a frequency range.

With inclusion of the amount of damping material to be minimized, the optimal CLD cov-

erage length is only one-fourth of the base beam�s. Moreover, the optima of three design

variables, the CLD coverage length, location on the beam and the shear modulus of visco-

elastic layer, are highly relevant to each other.
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1. Introduction

Constrained layer damping (CLD) treatment has been regarded as an effective

way to suppress vibrations of and sound radiation from vibrating structures. Since

the late 1950s, there have been a number of publications with reported formulations

and techniques for vibration damping calculations of various structures with CLD
treatment. A detailed description of these formulations can be found in the two

books on vibration damping by Nashif et al. [1] and Sun and Lu [2]. Most of early

works in the field dealt mainly with full CLD coverage. Among these formulations,

one widely used is that developed by DiTaranto [3] and Mead and Markus [4], i.e., a

sixth-order equation of motion about the transverse displacement of the damped

structure. The theoretical model is basically the extension of Kerwin�s analysis of

sandwich beams with simply supported ends [5] to beams with general boundary

conditions. The problem of computing damped natural frequencies and loss factors
is explicitly solved for both beams and plates when different boundary conditions are

assumed [6]. On the basis of design consideration of CLD treatments for complex

structures, the finite element procedure has also been adopted [7].

Owing to the real constraints of cost and weight in most real-life situations, the

partial CLD treatment where only a portion of the base structure is covered with

CLD is obviously more practical. Nokes and Nelson [8] were among the earliest

investigators to provide the solution to the problem of a partially covered sandwich

beam. And a more thorough analytical study was carried out by Lall et al. who
solved, by using Rayleigh–Ritz approach, the eigenvalue problem for a beam [9] and

for a plate [10] with a single damping patch. Recently, Kung and Singh [11] pre-

sented a refined method for analyzing the modal damping of beams with multiple

constrained-layer viscoelastic patches.

With aim to improve the damping performance, a number of efforts have been

exerted to optimally design CLD treatments of vibrating structures as well. Lifshitz

and Leibowitz [12] have determined the optimal CLD for sandwich beams with

viscoelastic core with layer thickness as design variables. Baz and Ro [13] used
univariate search method (USM) to optimize the passive damping of a active con-

strained layer damping treatment by selecting the optimal thickness and shear

modulus of the viscoelastic layer. Lall et al. [14] carried out the optimum design

studies for a sandwich plate with CLD. Their objective functions were the modal loss

factor and displacement response, with design variables as the layer material den-

sities, thicknesses and temperature. In another optimization study carried out by Lall

et al. [14] for the partially covered plate, the objective function was to maximize the

system loss factor of a specific natural mode, with design parameters as dimensions
of the patch, and the thicknesses of constraining layer and viscoelastic layer. The

patch coverage area and the added mass were both restricted. Chen and Huang [15]

presented a study on optimal placement of CLD treatment for vibration suppression

of plates. Their objective functions include structural damping ratios, resonant fre-

quencies� shift and CLD thickness. It is found that the best damping performance

occurs as the CL thickness is twice that of the VEM thickness. Marcelin et al. [16,17]

used genetic algorithm (GA) and beam finite elements to maximize the modal
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damping loss factor for partially covered beam. The design variables were the di-

mensions and location of all the viscoelastic layers of multiple CLD patches. Results

of these optimization studies showed that using the CLD patches with optimum

parameters leads to significant saving in the CLD material used. Furthermore, it is

possible to obtain higher values of modal damping factor for a partially covered

beam compared to that obtained for a fully covered one.
The vibration damping of a CLD-treated beam is undoubtedly determined by a

large number of parameters including material properties and thicknesses of both the

constraining layer and viscoelastic layer. For a partially CLD covered beam, its

vibration damping further depends on the patch location and coverage area. From

above discussions, one may see that current optimum design studies selected part

CLD parameters as the design variables to be optimized. Also, the objective function

for the optimization study was chosen as to maximum the system loss factor of vi-

bration modes or to minimize the vibration response at a specific resonant mode.
Therefore, as pointed out by Nakra in his summary of studies on using viscoelastic

damping for structural vibration control [18], it would be meaningful to carry out

optimization studies of the dynamic response covering a large frequency range over a

number of modes. Recently, Zheng et al. [19] performed such an optimization study

as to minimize the vibrational energy (VE) of the vibrating beams over a broad

frequency range covering multiple resonant modes. Also, in their study, three major

parameters of the CLD patch involved in a partially covered beam were identified.

These parameters are the CLD coverage length, the location of the patch on the
beam and the shear modulus of viscoelastic layer. However, as the sound radiation

of a structure depends highly on not only its vibration response magnitude but also

the radiation efficiencies at resonant frequencies, the minimization of the VE of a

beam does not warrant that a minimum sound power radiated from it could be

achieved. The evaluation of reduction in noise radiation from structures with opti-

mal damping treatment, to the authors� knowledge, has been few so far in open

literature. With consideration of this, the attempt of this paper is made to present a

multi-parameter optimization study aim to minimize the sound power radiated by a
simply supported, baffled beam with constrained layer damping (CLD) treatment.

The considered beam is excited by a time-harmonic transverse force at its center

location and above-mentioned three parameters are treated as the design variables of

the optimization problem. In particular, the total sound power at multiple resonant

modes in a frequency range of interest is chosen as the objective function.

The whole paper comprises three major parts. First, the governing equation of

motion for the calculation of time-harmonic response of a partially CLD covered

beam is derived first on the basis of energy approach. Assumed-modes method is
used to solve the equation with obtained frequency response functions at different

beam locations, which are further used for the calculation of its radiated sound

power into half free-space by using Rayleigh�s integral. Second, the optimization

problem is formulated to minimize the sound power radiated by the beam over a

frequency range of interest under given excitation condition. A genetic algorithm

(GA)-based penalty function method is employed to search for the optimum of

location/length of the CLD patch and the shear modulus of its viscoelastic layer.
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The optimization results with detailed discussions and conclusions are given in the

third part.
2. Sound power radiated by a baffled beam with single CLD patch

In order to formulate our optimization problem, a numerical procedure has to be

established first for calculation of the sound power radiated by a beam with partial

CLD coverage. Fig. 1 shows schematically such a CLD-treated beam structure. For

the sake of simplicity, single-patch treatment is considered here. The three layers, i.e.,

the base beam, constraining layer (CL) and viscoelastic layer (VL), are denoted

by the subscripts s, c and v, respectively. Both CL and VL have the same width, b, as
that of the base beam. The thicknesses of three layers are, respectively, denoted by hs
for the base beam, hc for the CL, and hv for the VL of the CLD patch. The coor-
dinates of the patch�s ends, x1 and x2, determine its length lðl ¼ x1 � x2Þ and location

x0ðx0 ¼ ðx1 þ x2Þ=2Þ. The Young�s moduli of the materials for base beam and CL are

represented by Es and Ec, respectively.

Those assumptions common to most studies on CLD treatment for structural

vibration suppression are adopted here. They are [1–4]:

(1) Shear strains in the base beam and CL, and also the rotary inertia of all layers

are negligible;.

(2) The VL only carries transverse shear but no normal stresses. A linear, frequency-
dependent, complex shear modulus, GvðxÞ� ¼ GvðxÞ½1þ jgvðxÞ�, where gvðxÞ,
the loss factor, is used for the description of the viscoelastic property of the layer.

(3) All displacements are small compared to the structural dimensions; thus, linear

theories of elasticity and viscoelasticity are used.

(4) No slipping occurs at the interfaces of the layers.

(5) The plane transverse to the middle plane remains plane when bending.

(6) The three layers undergo the same transverse deflection.
Fig. 1. A simply supported beam with a CLD patch.



Fig. 2. The deformation pattern of the layers in the model of beam with CLD treatment.
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The deformation pattern of the structure is illustrated in Fig. 2. Applying the

procedure of energy-based approach [15], kinetic energy, strain energy of the vi-
brating beam with CLD patch, and work done by the external concentrated force to

the beam are formulated. The in-plane inertia is included in the kinetic energy of the

system but rotary inertia neglected. Using the relation implied by assumption (4) that

requires the continuity of displacement at the interface between the layers, the kinetic

energy of beam system becomes
T ¼ 1
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where qs, qv and qc are, respectively, the material density of the base beam, VL and

CL for the CLD patch, while As, Av and Ac are their section areas; uc, uv and us are,
respectively, the mid-plane displacements of the CL, VL and the base beam along the
x-axis; and x is the axial distance relative to one end of the beam.

With assumption (1), the strain energy of the base beam is given by
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where Is is the area moment of inertia about the mid-plane of base beam,

Is ¼ bh3s=12.
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Similarly, the strain energy of the CL is derived as
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Since the VL is assumed to carry transverse shear only (assumption (2)), its strain

energy is given by
Vv ¼
1
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where d ¼ ð1=2Þðhc þ hsÞ þ hv is the distance between the mid-plane of the base beam

and that of the constraining layer and G�
v denotes the complex shear modulus of the

viscoelastic material.

Further assuming an external transverse load of f ðx; tÞ applied to the beam, the

work done by it can be expressed as
P ¼
Z L

0

f x; tð Þw x; tð Þdx: ð5Þ
Further following the procedure of assumed-modes expansion, the displacements

of the beam and the CL are approximated as:
wðx; tÞ ¼
XnW
i¼1

WiðxÞgiðtÞ ¼ gTW ¼ W Tg; ð6Þ

usðx; tÞ ¼
XnUs
i¼1

UsiðxÞniðtÞ ¼ nTUs ¼ UT
s n; ð7Þ

ucðx; tÞ ¼
XnUc
i¼1

UciðxÞfiðtÞ ¼ fTUc ¼ UT
c f; ð8Þ
where W and Us are the transverse and longitudinal shape functions of the base

beam, respectively, while Uc is the longitudinal shape function of the CL for the CLD

patch, each term of these shape functions satisfies the essential boundary conditions
of the beam and CL, respectively; g, n and f are the generalized displacement vectors.

nW , nUs
and nUc

denote the number of the modes to be considered for appropriate

numerical accuracy.

With the above energy expressions and the assumed shape functions of the base

beam for the transverse and longitudinal displacements and of the CL for longitu-

dinal displacements, Lagrange�s equation is applied to derive the system equations of

motion in terms of generalized displacements as
M½ �f€qðtÞg þ K½ � q tð Þf g ¼ P tð Þf g; ð9Þ

where ½M � and ½K� are the generalized mass and stiffness matrices of the whole sys-

tem, of which ½K� is a complex matrix owing to the viscoelastic nature of the VL; fPg
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is the vector of generalized force and fqðtÞg is the column vector containing gðtÞ, nðtÞ
and fðtÞ.

The system�s structural response is solved by restricting the analysis to steady-

state harmonic excitation. Introducing the time dependence, ejxt, in Eq. (9),
fqðtÞg ¼ f~qgejxt; fP ðtÞg ¼ f~Pgejxt;
the differential equation reduces to a linear system and can be expressed as
½ � x2M þ K�f~qg ¼ f~Pg; ð10Þ
where f~qg and f~Pg represent the complex amplitudes of the generalized displace-

ments and generalized force, respectively. This linear system is solved numerically for

f~qg at each frequency of interest.

The details of the matrices, ½M � and ½K� and the column vectors, f~qg and f~Pg, and
the expressions of elements of these sub-matrices and column vectors can be found in

[18].

In the above equations, we use the shape functions that are easily evaluated to

simplify the calculations, but are also similar to the exact mode shapes so that a large
number of terms in the expansion is not required.

The present study is restricted to partial CLD treatment. In this case, the metallic

sheet for the CL are free in the sense that it is attached only through the VL. So its

response is expanded in the mode functions of a free-free beam with ith longitudinal

mode shape given by
Uc;i xð Þ ¼ cos ið½ � 1Þ px
l

i
ði ¼ 1; 2; . . . ; nUc

Þ: ð11Þ
In the case of simply supported beam, the mode shape function for expansion of

its longitudinal displacement of the base beam, Us, is given by Eq. (11), where l is

replaced by L, the length of the beam and the transverse mode shape is given by
WiðxÞ ¼ sin
ipx
L

� �
ði ¼ 1; 2; . . . ; nW Þ: ð12Þ
Using these mode shape functions, all elements of the mass and stiffness matrices can

be obtained through performing integration. Further substituting them into Eq. (10)

and solving it, the generalized displacement vector, f~qg ¼ ½f~ggT; f~ngT; f~fgT�T and the

transverse displacement at beam location x;wðxxÞ, can be obtained at any excitation
frequency x.

It is common to characterize the frequency-dependency of both shear modulus

and damping loss factor of the viscoelastic materials by using temperature-frequency

nomogram [1] or at a constant temperature, by a mathematical function as
G�
v xð Þ ¼ Gv xð Þ 1½ þ jgv xð Þ�; ð13Þ
where GvðxÞ ¼ G0gðxÞ is the storage shear modulus and gvðxÞ ¼ g0hðxÞ is the
damping loss factor; gðxÞ and hðxÞ are two real-valued functions of the circular

frequency, x. The tests on simple beam structure normally provide the data for

arriving at these frequency-dependent relations.
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The obtained response of the beam by solving the matrix equation (10) is now
used for the calculation of sound radiation. Consider the rectangular coordinate

system ðx; y; zÞ shown in Fig. 3, where the structure�s plane is defined by specifying a

single coordinate, z ¼ 0, and the sound wave equation is separable along x, y and z
directions. Using the simplified Kirchhoff–Helmholtz integral, the pressure radiated

by a planar radiator mounted in an infinite baffle becomes [20]:
p rð Þ ¼ q0

2p

Z Z
S0

€wðr0Þ
e�jkj~r�~r0j

j~r �~r0j
dS r0ð Þ; ð14Þ
where q0 is the density of surrounding medium, S0 the area of structural surface,~r0
the point on structural surface, ~r the field point and k the sound wave number,

k ¼ x=c0, with c0 the sound speed in the medium. The above expression constitutes

the basic relation between structural response (out-of-plane acceleration) to radiated

sound pressure. Note that this simplified Kirchhoff–Helmholtz integral formulation
introduces no restriction on the location of the field point,~r, or the frequency, x.

A simplified expression is obtained in the far field where the distance between the

field point ~r and the center of the radiator is large compared to the characteristic

dimension of the radiator. Taking the origin of the coordinate system near the center

of the radiator, the distance j~r �~r0j in the denominator of the Green�s function can

be approximated by R ¼ j~rj: The resulting equation is referred to as the Rayleigh�s
integral. For a beam radiator, the Rayleigh�s integral is expressed by
p rð Þ ¼ q0

2pR

Z L

0

b€w x0ð Þe�jk~r�~r0j j dx0: ð15Þ
Expressing~r in spherical coordinates ðR; h;/Þ, where

x ¼ R sin h cos/;

y ¼ R sin h sin/;

z ¼ R cos h;

ð16Þ
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the distance j~r �~r0j can be approximated by
j~r �~r0j � R� x0 sin h cos/� y0 sin h sin/: ð17Þ

Substituting Eq. (17) in Eq. (15) yields a simplified expression for the Rayleigh�s
integral for a baffled beam,
p R; h;/ð Þ ¼ q0 e
�jkRb

2pR
J0

bk
2

sin h cos/

� �Z L

0

€w x0ð Þejkx0 sin h cos/ dx0; ð18Þ
where J0 represents the Bessel function of the zeroth order.
The sound power radiated from a source is defined as the integral, over a surface

of the vibrating beam, of the component of the time-averaged intensity vector

normal to the surface. For harmonic excitations, the time-averaged intensity at field

point~r is defined as
IðrÞ ¼ 1
2
Refpð~rÞv�ð~rÞg; ð19Þ
where pð~rÞ is the sound pressure complex amplitude and v�ð~rÞ is the conjugation of

the vector of fluid particle velocity components, vð~rÞ.
In the far-field, the particle velocity tends to become normal to the hemisphere

centered on the source and its amplitude is approximated by pð~rÞ=q0c0 as in the case of

plane waves. Therefore, the time-averaged acoustic intensity in the far-field becomes
I R; h;/ð Þ � 1

2q0c0
jp R; h;/ð Þj2; kR � 1: ð20Þ
The integral of the average acoustic intensity over the hemisphere in the far field

yields the total acoustic power radiated by the beam,
P xð Þ ¼
Z 2p

0

Z p=2

0

I R; h;/ð ÞR2 sin hdhd/

¼
Z 2p

0

Z p=2

0

p R; h;/ð Þj j2

2qc
R2 sin hdhd/

¼ R2

2q0c

Z 2p

0

Z p=2

0

p R; h;/ð Þj j2 sin hdhd/: ð21Þ
3. Formulation of optimization problem

3.1. Objective function

In any case at the beginning of the formulation of an optimization problem,

objective function, a quantity to be minimized or maximized needs to be assigned to
the problem. Also, design variables to be optimized and constraints representing the

physical restrictions have to be chosen appropriately.

For the purpose of minimizing the sound radiation from the beam, a meaningful

quantity is obviously its radiated sound power, which represents its sound radiation
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capability and is also independent upon the observing location in the sound field. As

the sound power depends upon the frequency, an integral criterion over an appro-

priate frequency range is required for the case of the excitation force in a broad

frequency range. A solution that meets technical interest is therefore
P xminð � xmaxÞ ¼
1

xmax � xmin

Z xmax

xmin

P xð Þdx: ð22Þ
Here, xmin and xmax are, respectively, the minimum and maximum excitation fre-

quencies in radiation per second. Since the sound radiation at resonant frequencies

of the CLD treated beam constitutes the dominant contributor to its sound power,

only the sound power at these frequencies are considered. A summation of the sound

power at these resonant frequencies is, therefore, performed replacing the integration
over the frequency range of interest. As such, expression (22) is written as
P xminð � xminÞ ¼
PN

i¼1 P xið ÞDx
xmax � xmin

; ð23Þ
where N is the number of resonant modes in the frequency range of interest, xi the

ith resonant frequency and Dx is a constant frequency bandwidth. Here, Dx is set

equal to 2 Hz.

In the optimization that follows, the sound power of the CLD-treated beam

defined by expression (23) is chosen as the objective function to be minimized for

the case of broad frequency excitation, while expression (21) is as for the case of

excitation at single resonant frequency. In the formulated optimization problem, it is
Minimize f1 ¼
P xið Þ for excitation at ith resonant frequency;
P xmin � xminð Þ for broad frequency excitation:

�
ð24Þ
3.2. Constraints

In real-life vibration and noise control design, the added weight to the base beam

owing to CLD treatment is always restricted to a certain amount of percentage of the
base beam. Two cases of CLD coverage are, therefore, considered for optimization

study here. The first case is where the CLD coverage length is allowed varying from

zero to full coverage. In this case, the problem is constrained to ensure physical

feasibility in which the patches are bounded within the area of the beam surface, i.e.,
x2 � x1 ¼ l; LP x2 P l; L� lP x1 P 0: ð25Þ

For the second case, the CLD coverage length, l, is fixed at a certain percentage of

the length of the base beam, L, so that the optimization problem with three design

variables reduces to that of two variables. They are the starting position of the patch,

x1, and the shear modulus amplitude of the VL, Gv, i.e., x ¼ ½x1;Gv�T.
With the constraints defined by (25), one optimization is performed to look for

maximum reduction in the sound power radiated by the beam through partial CLD

treatment. In the other optimization performed, the objective function is to minimize
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beam�s sound power meantime to minimize the amount of damping material used for

the treatment. In this situation, the previous single criteria optimization problem

becomes a bicriteria one. Therefore, a transformation is needed to convert the

problem into a scalar optimization problem. Using weighting objectives method [22],

the objective function becomes
Minimize f ¼ w1f1 þ w2f2 ¼ w1Pþ w2

x2 � x1ð Þ
L

; ð26Þ
where wi P 0 ði ¼ 1; 2Þ are the weighting coefficients representing the relative im-

portance of the criteria. Note that the second term representing the additive weight

of the CLD patch has been normalized about that of full CLD coverage. When

ðw1;w2Þ is set equal to ð1; 0Þ, the above objective function becomes that expressed by

(24).

Furthermore, the optimal solutions of the viscoelastic shear modulus must be in
parameter ranges of viscoelastic materials which are available in commercial market,

i.e.,
Gmax PGv PGmin: ð27Þ

In the optimization study presented as follows, Gmin and Gmax are set equal to 0.1 and

10.0 MPa, respectively.

3.3. Design variables

In view of the large number of parameters involved in a beam with partial CLD

treatment, a complete optimization study should take all parameters of the CLD

patch as the design variables. However, those variables that do not significantly

affect the amplitude of vibration response of the base structure as others should be

taken away from the design variable list in the optimization. In this way the

mathematical model is easier to solve compared to where all parameters are treated
design variables.

Number of studies have shown that stiffer constraining layer warrants larger shear

strain in VL which dissipates more vibrational energy of the vibrating beam [1]. So

the elastic modulus of the CL will be fixed in the course of optimization study.

Furthermore, parametric studies have been carried out [19] to examine the influence

of varying the location and length of the CLD patch, thicknesses of both VL and

CL, as well as the shear modulus of the VL, on the displacement response of the base

beam. It is shown that when the elastic Young�s modulus of the CL is fixed, the
patch�s location and length, and the shear modulus of the VL are more crucial than

the thicknesses of both CL and VL in determining the structural damping loss factor.

Therefore, there are three design variables for the optimization problem here, they

are namely, the coordinates of two ends of the CLD patch, x1 and x2, and G�
v, the

shear modulus of VL. Therefore, the vector of design variables is defined for the

problem as x ¼ ½x1; x2;G�
v�
T
.

For the viscoelastic layer, the frequency-dependent shear modulus is adopted

from the paper of Douglas and Yang [21]:
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G�
vðf Þ ¼ Gvf 0:494ð1þ 1:46jÞ; ð28Þ
where f is the frequency, f ¼ x=2p.
In the course of optimization, this frequency–dependency relationship is kept

invariant but the real-valued amplitude, Gv, is taken as one of design variables to-

gether with other two parameters to be optimized. The vector of design variables

simply becomes x ¼ ½x1; x2;Gv�T.

3.4. Optimization method

A number of optimization algorithms/methods are available to solve the problem

defined as above. Among these algorithms, however, most are designed so far to find

a local optimum. The real situation is that the optimization problem here probably

have several local optima. So it is of interest to find the best optimum in the whole

feasible design domain, i.e., the global optimum. The genetic algorithm, or shortly

GA, is such a method that the approximation of global optimum is searched for. The
GA has been used previously by a lot of researchers to solve various nonlinear

optimization problems [23] and is selected here for solving the problem.

In order to apply the GA on our constrained optimization problem, the concept

of penalty function has to be introduced to convert the problem from a constrained

optimization to an unconstrained problem which the GA is able to solve. The basic

idea of this so-called ‘‘GA-based penalty function method’’ is adding a penalty

factor, R, that accounts for violation of both equality and inequality constraints,

gi ði ¼ 1; 2; . . . ;mÞ, which leads an equivalent unconstrained optimization problem
formulated as
Minimize f þ R
Xm
i¼1

Ui gið Þ ð29Þ
subject to constraints of feasible domain for each design variable�s value. Here, Ui is

the Heaviside operator such that Ui ¼ �1 for giðxÞ < 0 and Ui ¼ 0 for giðxÞP 0. The

GA, in contrast to conventional initial conditions-prone optimization methods, is

forced to search from a population of points in order to search a set of feasible
solutions. The solution solved by GA-based penalty function method is, therefore,

guaranteed to be optimal or near optimal globally.
4. Optimization results and discussion

The beam used for the optimization study has simply supported boundary con-

dition at its two ends. Its geometric parameters are the length of 0.4 m, width of 0.03
m and thickness of 0.004 m. The geometric and material properties of the base beam

and CL for implementing the CLD treatment are shown in Table 1 with inclusion of

the density parameter and thickness of the VL, of which the shear modulus is one of

design variables to be optimized. According to Chen and Huang [15], the VL�s
thickness is fixed as the half of the CL�s for better damping performance of the



Table 2

Beam modal frequencies below 1 kHz

Mode n Natural frequency (Hz)

1 57.6

2 230.5

3 518.5

4 921.8

Table 1

Properties of materials of base beam and CLD

Properties Base beam (aluminum) Constraining material Viscoelastic material

Elastic modulus, E (GPa) 70ð1þ j0:0001Þ 49ð1þ j0:0001Þ –

Density, q (kg/m3) 2.71� 103 7.50� 103 1.00� 103

Thickness, h (m) 0.004 0.002 0.001
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damped beam. A small structural damping is introduced in the form of a complex

elastic modulus for the base beam and the CL: Ei ¼ ~Eið1þ jgiÞ ði ¼ s; cÞ, where gi is
the structural loss factor.

A unit harmonic transverse force is applied at the center of beam, i.e, x�f ¼ 0:5L,
and the excitation frequency is from f ¼ 0 Hz to f ¼ 1:0 kHz. Before performing the

optimization, the analytical model and associated solution procedure are validated

by comparing the natural frequencies of bare beam with the theoretical predictions.

For the beam with CLD treatment, the analytical solution of frequency response at
the force location is compared to results obtained by a multi-physics finite element

code. Good agreements between the values are observed for both cases [19].

Modal frequencies of the first four modes of the considered beam within the

excitation frequency range are listed in Table 2. Among them, only two odd modes

would be excited if the CLD patch covers the beam symmetrically.

4.1. Minimization of sound power over a frequency range

The first optimization run is executed to minimize the sound power of the vi-

brating beam over a frequency range from 0 Hz to 1 kHz under constraints defined

by (25). The additive weight of the CLD patch for damping treatment is not of

concern here. A set of GA solution obtained after running 100 generations with max

population size equal 900 and maximum number of chromosomes (binary bits) per

individual equal 1000 is given in Table 3. It can be seen that the optimal length of this

patch is 74.2% of the beam length, and the beam is covered by CLD patch from

x�1 ¼ 0:258L to x�2 ¼ 1:0L. In this optimal CLD length and location, the optimal shear
modulus amplitude of the VL is Gv ¼ 0:445 MPa. With this optimal CLD ar-

rangement, the sound power is reduced from 9:263� 10�2 W for the bare beam to

0:877� 10�5 W, which means that a 40.2 dB reduction in sound power level is

achieved. An interested result in Table 3 is the second subset solution, i.e., although

the beam is treated by a longer CLD patch, therefore, a larger amount of damping

material is used, the achieved sound power reduction is about 40.1 dB, even slightly



Table 3

GA solutions of optimal CLD patch with exclusion of minimum added weight

x1=L x2=L Coverage

(%)

Gv

(MPa)

Sound power

(W)

SP at 1st resonant

frequency

SP at 3rd resonant

frequency

0.140 0.876 73.6 0.346 1.192� 10�5 0.739� 10�5 0.357� 10�5

0.017 0.858 84.1 0.371 0.904� 10�5 0.614� 10�5 0.195� 10�5

0.258 1.000 74.2 0.445 0.877� 10�5 0.475� 10�5 0.294� 10�5
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smaller than that for 74.2% coverage (40.2 dB). This indicates that a longer CLD

coverage does not always ensure larger reduction of sound radiation from the vi-

brating beam. By optimum choice of the patch location, the sound power reduction

achieved by a shorter patch may be larger than by a longer one. A comparison of the

sound power spectra of the beam with the above optimal three CLD coverage are

depicted in Fig. 4 together with comparison to that of the bare beam.

4.2. Minimization of sound power over a frequency range considering minimization of

damping material used

With inclusion the amount of CLD material used to be minimized in the objective

function defined by (27), the optimum of three CLD parameters are searched for

again by using GA program. Since the thicknesses and mass densities of both con-
Fig. 4. Comparison of sound power levels of beam with optimized CLD treatments to that of bare beam.



Table 4

Optimal solutions of CLD treatment with inclusion of minimum coverage length

x1=L x2=L (w1, w2Þ Coverage (%) Gv (MPa) Sound power (W)

0.425 0.909 (0.5, 0.5) 48.4 1.510 1.202� 10�5

0.161 0.393 (0.25, 0.75) 23.2 1.703 3.001� 10�5
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straining and core layers fixed, the minimization of CLD material amount is

equivalent to minimizing CLD coverage length, l, for a single patch treatment. In

this case, the previous single criteria optimization problem becomes bi-criteria one.
A Pareto optimal solution should be obtained. Two solution sets for minimization of

the sound power over the frequency range and damping material used are obtained

as given in Table 4. First, the weighting coefficients for objective functions of both

radiated sound power and the amount of the damping material used are chosen

equal to each other, i.e., ðw1;w2Þ ¼ ð0:50:5Þ, the optimal solutions indicate that

coverage length is 48:4%L and the reduction of sound power level is 39.0 dB, which is

comparable to that of the beam with 84:1%L coverage, although the used amount of

damping material for the former treatment is less than 60%L of that for the case of
84:1%L coverage. x�1 ¼ 0:425L and x�2 ¼ 0:909L represent the optimal location of the

CLD patch for 48:4%L coverage length. Note that optimal shear modulus here is

Gv ¼ 1:510 MPa which is much larger than that for 84:1%L coverage.
Fig. 5. Comparison of sound power levels of the beam with optimized CLD treatments when CLD weight

is considered in objective function.
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Changing the weighting coefficients to (0.25, 0.75) which means that the additive

damping weight is more of concern than the previous optimization run, the obtained

optimal length is 23:2%L of the beam length. The patch�s optimal location is from

x�1 ¼ 0:161L to x�2 ¼ 0:393L. With this optimal CLD arrangement, the sound power

level reduction is 35.1 dB, i.e., 3.9 dB less than the sound power reduction by 48:4%L
coverage. However, damping material used for 23:2%L coverage is only less than half
of that for 48:2%L coverage.

Fig. 5 shows the sound power spectra of the damped beam with, respectively,

48:4%L and 23:2%L coverage length and comparison with that of the bare beam.

With 48:4%L coverage length, the sound power of the beam over the frequency range

from 0 Hz to 1 kHz is reduced from 9:263� 10�2 W for the bare beam to

1:202� 10�5 W (39.0 dB reduction). On the other hand, with 23:2%L CLD coverage,

the sound power of the beam is reduced to 3:001� 10�5 W (35.1 dB reduction). This

sound power level reduction is quite close to the case where the beam is covered by
84:1%L beam length, although in the former CLD arrangement the used damping

material amount is only about one-fourth for the latter arrangement.

For maximum damping in the damped structure, the CLD patch should be lo-

cated in the areas where shear strain energy is maximum. In spite of slight difference

between the optimal coverage lengths for above two problems, the optima of the

CLD location obtained are always that it starts from a location close to one beam�s
end and ends at a location nearby the beam�s center (Fig. 6).
Fig. 6. Comparison of sound power levels of beam with different CLD coverage lengths.
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Furthermore, it can be observed that the optimal shear modulus of the visco-

elastic layer is highly relevant to the optimal length for minimizing beam�s broad-

band sound radiation. A generic trend is that the shorter the coverage length of the

CLD patch, the larger the shear modulus of the VL. This means that a stiffer vis-

coelastic material is needed for shorter CLD coverage to ensure system�s energy-

dissipating capability.

4.3. Minimization of sound power over a frequency range under restriction of additive

weight of CLD patch

In real situation of noise control design, the added weight allowed for damping

treatment is always restricted. Under constraint of the CLD coverage length set

equal to a certain percentage of the beam length, the previous optimization problem

with three design variables, i.e., the patch coverage length and location and the
amplitude of VL�s shear modulus, is reduced to a problem with two variables. They

are namely, the VL�s shear modulus and the location of one patch end on the beam,

since this end location of the patch plus the pre-determined length decide the loca-

tion of the other patch end. GA solutions are given in Table 5. With the CLD

coverage length set equal to 25%L of beam length first and objective function to

minimization of the beam�s sound power over frequency from 0 Hz to 1 kHz. The

obtained solutions are: x1 ¼ 0:165L and Gv ¼ 1:575 MPa. The sound power of

the beam over the frequency range of interest is reduced from 9:263� 10�2 W for the
bare beam to 0:210� 10�4 W, a 36.6 dB reduction in sound power level is achieved.

The broadband sound power level reductions for fixed 20%L coverage and 10%L
coverage are, respectively, 36.0 and 33.9 dB. Although the used CLD material

amount is doubled from 10%L coverage to 20%L coverage, the achieved sound

power reduction using the optimized damping arrangement is 2.1 dB more. More-

over, the results illustrate again that the optimal location of CLD patch for beam

vibration control is still in-between one end of the beam and its center. As for the

VL�s shear modulus, the trend of optimum, except for 20%L coverage, is very close to
those solutions obtained in previous optimizations, i.e., an optimal combination of

the CLD patch�s parameters is that a shorter coverage requires a stiffer VL.

4.4. Minimization of sound power at a specific resonant frequency

All the above optimizations are performed to minimize the sound power of the

damped beam over a frequency range covering several resonant modes. Some results
Table 5

Optimal location of CLD patch and shear modulus of the VL with different coverage length

Coverage length (%) x1=L Gv (MPa) Sound power (W)

25 0.165 1.575 1.19� 10�5

20 0.604 1.183 3.33� 10�5

10 0.236 1.583 4.04� 10�5



Table 6

GA solutions for minimizing sound power at the first resonant frequency

x1=L x2=L Coverage (%) Gv (MPa) SP at 1st resonant frequency

Case 1 0.010 0.643 63.3 0.757 0.406� 10�5

Case 2 0.105 0.629 52.4 0.672 0.581� 10�5

518 H. Zheng, C. Cai / Applied Acoustics 65 (2004) 501–520
of sound powers at the first and third resonant frequencies (both are odd modes) for

three different partial CLD treatments have been given in Table 3. From the table,

one can see that the sound power reduction at a single resonant frequency does not

always follow the trend of sound power reduction in a broad frequency range when
the optimized CLD arrangement is adopted. This is easily to be understood: as the

shear strain induced in the viscoelastic layer is mode-shape dependent, at a specific

resonant frequency, the optimum of CLD patch parameters for minimization of the

beam�s sound power are certainly dependent upon its resonant mode shape. With

defined objective function to minimize the sound power at the first resonant fre-

quency, two more GA runs are executed to search for optimum of CLD patch lo-

cation and the core shear modulus and the solutions are given in Table 6. The first

run is to search for the optimal CLD patch to minimize the sound power from the
damped beam without concern about damping material used. The GA solutions are:

x1 ¼ 0:010L, 0:643L; Gv ¼ 0:757 MPa. With this optimal CLD arrangement indi-

cated in the table, the sound power of the beam at the first resonant frequency could

be reduced from 0:221� 10�1 W for bear beam to 0:406� 10�5 W (37.4 dB reduction

in sound power level). Including the minimization of the amount of CLD material

used, the second run is executed by defined weighting coefficients for objective

function, (w1;w2Þ ¼ ð0:5; 0:5Þ. The GA solutions are, for minimization of beam�s
sound power at the first resonant frequency, x1 ¼ 0:105L, 0:629L; Gv ¼ 0:672 MPa.
With this optimal CLD arrangement, the sound power at the first resonant frequency

is reduced to 0:581� 10�5 W (35.8 dB reduction in sound power level). Both solu-

tions show that the optimum of CLD patch location and the VL�s shear modulus for

minimizing the sound power at the first resonant frequency are similar to that for the

minimization of the sound power over a frequency range covering the first several

resonant modes. However, some differences are observed in optimum of the CLD

patch length.
5. Conclusions

Major concluding remarks can be made as follows:

1. In order to achieve the biggest reduction in the sound power radiated by a simply

supported beam with a transverse force applied at its central location, it is not

necessary to fully cover the beam with CLD patch. An optimal coverage of the

CLD treatment is 74.2% of the beam length from one beam�s end for optimally
suppressing the sound radiation over the frequency range covering the first four

resonant modes.
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2. The optimal shear modulus of the viscoelastic layer is highly relevant to the CLD

coverage length and location on the beam. A general trend is that the shorter

CLD patch needs a stiffer viscoelastic material for an optimal damping treatment.

3. The optimal location of the CLD patch to reduce the sound radiation from the

beam is always that the coordinate of one end of the patch is close to one end

of the beam while the other patch�s end is nearby the beam�s center.
4. The combination of optimal CLD patch location and the VL�s shear modulus for

minimizing the sound power at the first resonant frequency is quite similar to that

for the minimization of the sound power over a frequency range covering the first

several resonant modes. Some differences can be observed in optimum of the CLD

patch length for the two cases.
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