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a b s t r a c t

Asymptotically negative association is a special dependence structure. By relating such

dependence condition to residual Ces�aro alpha-integrability and to strongly residual

Ces �aro alpha-integrability, some Lp-convergence and complete convergence results of

the maximum of the partial sum are derived, respectively. In addition, some of these

conclusions are based on a new Rosenthal type inequality concerning asymptotically

negatively associated random variables, which is of independent interest.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The classical notion of uniform integrability of a sequence fXn;nZ1g of integrable random variables is defined through
the condition lima-1supnZ1EjXnjIðjXnj4aÞ ¼ 0. Landers and Rogge (1987) proved that the uniform integrability condition
is sufficient in order that a sequence of pairwise independent random variables verifies the weak law of large numbers
(WLLN). Chandra (1989) weakened the assumption of uniform integrability to Ces�aro uniform integrability (CUI) and
obtained L1-convergence for pairwise independent random variables.

Chandra and Goswami (1992) improved the above-mentioned result of Landers and Rogge (1987). They showed that for
a sequence of pairwise independent random variables, CUI is sufficient for the WLLN to hold and strong Ces �aro uniform
integrability (SCUI) is sufficient for the strong law of large numbers (SLLN) to hold. Landers and Rogge (1997) obtained a
slight improvement over the results of Chandra (1989) and Chandra and Goswami (1992) for the case of non-negative
random variables. They showed that, in this case, the condition of pairwise independence can be replaced by the weaker
assumption of pairwise non-positive correlation.
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Chandra and Goswami (2003) introduced a new set of conditions called Ces�aro alpha-integrability (CI(a)) and strong
Ces�aro alpha-integrability (SCI(a)) for a sequence of random variables, which are strictly weaker than CUI and SCUI,
respectively. They showed that, for ao1/2, CI(a) is sufficient for the WLLN to hold and SCI(a) is sufficient for the SLLN to
hold for a sequence of pairwise independent random variables, which are improvements over the results of Landers and
Rogge (1997) and the earlier results.

Chandra and Goswami (2006) relaxed the condition of CI(a) to residual Ces�aro alpha-integrability (RCI(a), see Definition
2.1 below), the condition of SCI(a) to strong residual Ces�aro alpha- integrability (SRCI(a), see Definition 2.2 below), and
significantly improved the results of Chandra and Goswami (2003).

Recently, Yuan et al. (2009) obtained some improvements in the area of Lp-convergence and strong law of large
numbers, by relating martingale difference, pairwise negative quadrant dependence and Lp-mixingale difference to RCI(a)
and SRCI(a).

In this paper, we will derive some Lp-convergence and complete convergence results of the maximum of partial sum for
asymptotically negatively associated random variables when such random variables are subject to RCI(a) and SRCI(a),
respectively. These results have not been established previously in the literature.

In Section 2, we discuss two class of uniform integrability, i.e. RCI(a) and SRCI(a), and a special dependence, i.e.
asymptotically negative association. Simultaneously some lemmas are listed in this section which will be used in the
subsequent sections. By the way, Lemma 2.3 is of independent interest.

Some new Lp-convergence results for asymptotically negatively associated random variables are obtained under RCI(a)
assumption in Section 3.

Finally, in Section 4 we prove complete convergence for the above-mentioned dependence structure under SRCI(a)
assumption.

Throughout this paper, Sn denotes
Pn

i ¼ 1 Xi for a sequence fXn;nZ1g of random variables and J � Jp denotes the Lp-norm.
For p41, let q : ¼ p=ðp�1Þ be the dual number of p. Moreover, Xþ ¼maxð0;XÞ, X� ¼maxð0;�XÞ, 5 represents the
Vinogradov symbol O and Ið�Þ is the indicator function.

2. Preliminaries

First let us specify the two special kinds of uniform integrability we are dealing with in the subsequent sections,
which were introduced by Chandra and Goswami (2006).

Definition 2.1. For a 2 ð0;1Þ, a sequence fXn;nZ1g of random variables is said to be residually Ces�aro alpha-integrable
(RCI(a), in short) if

sup
nZ1

1

n

Xn

i ¼ 1

EjXijo1 and lim
n-1

1

n

Xn

i ¼ 1

EðjXij�iaÞIðjXij4 iaÞ ¼ 0: ð1Þ

Clearly, fXng is RCI(a) for any a40 if fXn;nZ1g is identically distributed with EjX1jo1, and fjXnj
p;nZ1g is RCI(a) for any

a40 if fXn;nZ1g is stochastically dominated by a non-negative random variable X with EXpo1 for some pZ1.

Definition 2.2. For a 2 ð0;1Þ, a sequence fXn;nZ1g of random variables is said to be strongly residually Ces�aro alpha-
integrable (SRCI(a), in short) if

sup
nZ1

1

n

Xn

i ¼ 1

EjXijo1 and
X1
n ¼ 1

1

n
EðjXnj�naÞIðjXnj4naÞo1: ð2Þ

We point out that fjXnj
p;nZ1g is SRCI(a) for any a40, provided that fXn;nZ1g is stochastically dominated by a

non-negative random variable X with EXpþdo1 for some pZ1 and d40.
The condition of SRCI(a) is a ‘‘strong’’ version of the condition of RCI(a). Moreover, for any a40, RCI(a) is strictly weaker

than CI(a), thereby weaker than CUI, while SRCI(a) is strictly weaker than SCI(a), thereby much weaker than SCUI.
Next, we turn our attention to dependence structures for random variables. For our purpose, we have to mention a

special kind of dependence, namely, negative association.
A finite family of random variables fXi;1r irng is said to be negatively associated (NA, in short) if for every pair of

disjoint subsets A and B of f1;2; . . . ;ng,

Covðf ðXi; i 2 AÞ; gðXj; j 2 BÞÞr0

whenever f, g 2 C and the covariance exists. Here and in the sequel, C is a class of functions which are coordinatewise
nondecreasing. An infinite family is NA if every finite subfamily is NA.

The notion of NA was first introduced by Block et al. (1982). Joag-Dev and Proschan (1983) showed that many well
known multivariate distributions possess the NA property. The NA property has aroused wide interest because of
numerous applications in reliability theory, percolation theory and multivariate statistical analysis. In the past decades, a
lot of effort was dedicated to proving the limit theorems of NA random variables. We refer to Newman (1984) for the
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central limit theorem, Su et al. (1997) for the moment inequality and functional central limit theorem, Cai and Wu (2007)
for the law of the iterated logarithm, among others.

A new kind of dependence structures called asymptotically negative association was proposed by Zhang (2000a, 2000b),
which is a useful weakening of the definition of NA.

Definition 2.3. A sequence fXn;nZ1g of random variables is called asymptotically negatively associated (ANA, in short) if

r�ðrÞ : ¼ supfr�ðS; TÞ : S; T � N; distðS; TÞZrg-0 as r-1;

where

r�ðS; TÞ : ¼ 03
Covff ðXi : i 2 SÞ; gðXj : j 2 TÞg

ðVar f ðXi : i 2 SÞÞ1=2
ðVar gðXj : j 2 TÞÞ1=2

: f ; g 2 C
( )

:

It is obvious that an ANA sequence of random variables is NA if and only if r�ð1Þ ¼ 0. Compared to NA, ANA defines a
strictly larger class of random variables (for detail examples, see Zhang (2000a). Consequently, the study of the limit
theorems for ANA sequences is of much interest. Some excellent results are available, for example, Zhang (2000b) derived
the central limit theorem, Wang and Lu (2006) obtained some inequalities of maximum of partial sums and weak
convergence, and Wang and Zhang (2007) established the law of the iterated logarithm.

From the definition of an ANA sequence, we have

Lemma 2.1. Nondecreasing or nonincreasing functions defined on disjoint subsets of an ANA sequence fXn;nZ1g with mixing

coefficients r�ðsÞ is also ANA with mixing coefficients not greater than r�ðsÞ.

Wang and Lu (2006) proved the following Rosenthal type inequality.

Lemma 2.2. For a integer NZ1, real numbers pZ2 and 0rroð1=ð6pÞÞp=2, if fXi; iZ1g is a sequence of random variables with

r�ðNÞrr, with EXi ¼ 0 and EjXij
po1 for every iZ1, then for all nZ1, there is a positive constant D¼Dðp;N; rÞ such that

E max
1r irn

�����
Xi

j ¼ 1

Xj

�����
p

rD
Xn

i ¼ 1

EjXij
pþ

Xn

i ¼ 1

EX2
i

 !p=2
0
@

1
A:

However, the Rosenthal type inequality is not available as yet, for ANA random variables, when 1opo2. Inspired by the
proof of Theorem 2.1 of Yuan and An (2009), we fill here this void, which is of independent interest and is also the main
tool for studying the limit results in the subsequent sections.

Lemma 2.3. Let fXn;nZ1g be an ANA sequence of zero mean random variables with mixing coefficients r�ðsÞ, then for all

nZNZ1 and 1opo2,

E max
1r irn

jSij
p

� �
rNp�1 23�pp

Xn

i ¼ 1

EjXij
pþ2ð6pÞpðr�ðNÞÞ2ðp�1Þ

Xn

i ¼ 1

ðEjXij
pÞ

1=p

 !p" #
: ð3Þ

Proof. Without loss of generality, we can assume that EjXij
po1 for each iZ1, for otherwise the right-hand side of (3) is

infinity and there is nothing to prove.

First, we assume that N¼ 1. Set

Ui ¼maxðXi;XiþXiþ1; . . . ;Xiþ � � � þXnÞ;1r irn:

Clearly, Ui ¼maxðXi;XiþUiþ1Þ. We obtain for 1r irn�1

EjUij
prEðjXij

pIðUiþ1r0ÞÞþEðjXiþUiþ1j
pIðUiþ140ÞÞr22�pEjXij

pþEjUiþ1j
pþpEðXijUiþ1j

p�1IðUiþ140ÞÞ:

In the second inequality, we have used an elementary inequality

jxþyjpr22�p
jxjpþjyjpþpxjyjp�1sgn y

for 1opo2. It is easy to show that gðXiþ1; . . . ;XnÞ : ¼ jUiþ1j
p�1IðUiþ140Þ 2 C. Thus, by Lemma 3.1 of Zhang (2000a),

we have for 1r irn�1

JUiJ
p
pr22�pJXiJ

p
pþJUiþ1J

p
pþ6pðr�ð1ÞÞ2=qJXiJpJUiþ1J

p=q
p :

Let

xp
i ¼

22�pJXiJ
p
pþx

p
iþ1þ6pðr�ð1ÞÞ2=qJXiJpx

p=q
iþ1; 1r irn�1;

22�pJXnJ
p
p; i¼ n:

8<
:
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It is easy to show that JUiJprxi, and that fxig is nonincreasing, hence

xp
i r22�pJXiJ

p
pþx

p
iþ1þ6pðr�ð1ÞÞ2=qJXiJpx

p=q
1 ; 1r irn�1;

xp
n ¼ 22�pJXnJ

p
p:

8<
:

Substituting sequentially, we conclude that

xp
1r22�p

Xn

i ¼ 1

JXiJ
p
pþ6pðr�ð1ÞÞ2=qxp=q

1

Xn�1

i ¼ 1

JXiJpr22�p
Xn

i ¼ 1

JXiJ
p
pþq�1xp

1þp�1 6pðr�ð1ÞÞ2=q
Xn�1

i ¼ 1

JXiJp

 !p

: ð4Þ

Here, in the last inequality of (4), we have used an elementary inequality aabbraaþbb for non-negative numbers a, b, a, b
with aþb¼ 1.

Now we are in a good position to complete the proof of (3). From (4), we have

xp
1r22�pp

Xn

i ¼ 1

JXiJ
p
pþ 6pðr�ð1ÞÞ2=q

Xn�1

i ¼ 1

JXiJp

 !p

:

Recall that JU1Jprx1, and therefore we have

Ej max
1r irn

Sij
pr22�pp

Xn

i ¼ 1

JXiJ
p
pþð6pÞpðr�ð1ÞÞ2ðp�1Þ

Xn�1

i ¼ 1

JXiJp

 !p

: ð5Þ

By Lemma 2.1, f�Xn;nZ1g is also an ANA sequence of zero mean random variables with the same mixing coefficients

r�ðsÞ. In the same way, we have also

Ej max
1r irn

ð�SiÞj
pr22�pp

Xn

i ¼ 1

JXiJ
p
pþð6pÞpðr�ð1ÞÞ2ðp�1Þ

Xn�1

i ¼ 1

JXiJp

 !p

: ð6Þ

Clearly,

max
1r irn

jSij
pr j max

1r irn
Sij

pþj max
1r irn

ð�SiÞj
p;

from which, together with (5) and (6), (3) follows immediately for the case N=1.

Let NZ2 be the integer mentioned in Lemma 2.3 such that Nrn. We consider now N sequences random variables

fYij; iZ0g1r jrN, defined by Yij ¼ XiNþ j.

Notice that for each 1r jrN, the first interlaced mixing coefficient r�Y ð1Þ for the sequence fYij; iZ0g is smaller than

r�ðNÞ.
It is easy to see that

max
1rmrn

jSmj
prNp�1

XN

j ¼ 1

max
1rkr ½n=N�

�����
Xk

i ¼ 0

XiNþ j

�����
p

:

By (1), which has been proved for this case,

E max
1rmrn

jSmj
prNp�1

XN

j ¼ 1

E max
1rkr ½n=N�

�����
Xk

i ¼ 0

XiNþ j

�����
p

rNp�1
XN

j ¼ 1

23�pp
X½n=N�

i ¼ 0

jXiNþ jj
pþ2ð6pÞpðr�ðNÞÞ2ðp�1Þ

Xn=N½ �

i ¼ 0

EjXiNþ jj
p

� �1=p

0
@

1
A

p2
4

3
5

rNp�1 23�pp
Xn

i ¼ 1

jXij
pþ2ð6pÞpðr�ðNÞÞ2ðp�1Þ

Xn

i ¼ 1

ðEjXij
pÞ

1=p

 !p" #

as desired. The proof is complete. &

Lemma 2.3 ought to be compared with the following result, which is due to Zhang (2000a), Lemma 3.3.

Lemma 2.4. Let fXi; iZ1g be a sequence of zero mean random variables with mixing coefficients r�ðsÞ, then for any 1opo2,
there is a positive constant D¼Dðp;r�ð�ÞÞ such that

E

�����
Xn

i ¼ 1

Xi

�����
p

rD
Xn

i ¼ 1

EjXij
p

for all nZ1.

Finally, we give a lemma which supplies us with the analytical part in the proofs of theorems in the subsequent sections.
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Lemma 2.5. For sequences fan;nZ1g and fbn;nZ1g of non-negative real numbers, if

sup
nZ1

n�1
Xn

i ¼ 1

aio1 and
X1
n ¼ 1

bno1;

then

Xn

i ¼ 1

aibir sup
mZ1

m�1
Xm

i ¼ 1

ai

 !Xn

i ¼ 1

bi

for every nZ1.

Proof. Let fai
0 ;1r irng and fbi

0 ;1r irng respectively be the rearrangements of fai;1r irng and fbi;1r irng satisfying
a1
0
Za2

0
Z � � �Zan

0 and b1
0
Zb2

0
Z � � �Zbn

0 . Then
Pn

i ¼ 1 aibir
Pn

i ¼ 1 ai
0 bi
0 . So without loss of generality, one can assume

that fai;1r irng and fbi;1r irng are nonincreasing. By applying Remark 3(i) in Landers and Rogge (1997), the rest of the
proof can completed if we note the monotonicity of {an} and {bn}. &

3. Residual Ces �aro alpha-integrability and Lp-convergence of the maximum of the partial sum

Let p41 and let h(x) be a strictly positive function defined on ð1; þ1Þ. In this section, we discuss Lp-convergence of the
form of n�hðpÞmax1r irnjSi�ESij for an ANA sequence fXn;nZ1g of random variables, provided that fjXnj

p;nZ1g is RCI(a) for
appropriate.

It ought to be mentioned that there are many papers dealing with the partial sum, but not the maximum of the partial
sum. Therefore, to the best of our knowledge, our results presented in this section and next section have not been
established previously in the literature.

Our first result is dealing with the case 1opo2.

Theorem 3.1. Let 1opo2 and let integer NZ1. Suppose that fXn;nZ1g is an ANA sequence of random variables with mixing

coefficients r�ðsÞ such that r�ðNÞoð1=ð6pÞÞp=2. If fjXnj
p;nZ1g is RCI(a) for some a 2 ð0;1=ð2�pÞÞ, then

n�1 max
1r irn

jSi�ESij-0 in Lp:

Proof. Let

Yn ¼�naIðXnonaÞþXnIðjXnjrnaÞþnaIðXn4naÞ; nZ1

and define, for each nZ1,

Zn ¼ Xn�Yn; S
ð1Þ
n ¼

Xn

i ¼ 1

Yi; and Sð2Þn ¼
Xn

i ¼ 1

Zi:

It is easy to see that jYnj ¼minfjXnj;nag, jZnj ¼ ðjXnj�naÞIðjXnj4naÞ and

jZnj
prðjXnj

p�naÞIðjXnj
p4naÞ ð7Þ

for all p41. Note that, for each nZ1, Yn and Zn are monotone transformations of the initial variable Xn. This implies that an
ANA assumption is preserved by this construction in view of Lemma 2.1. Precisely, fYn�EYn;nZ1g and fZn�EZn;nZ1g are
also ANA sequences of zero mean random variables with mixing coefficients not greater than r�ðsÞ.

For our purpose, it suffices to prove

n�1 max
1r irn

jSð1Þi �ESð1Þi j-0 in L2 ð8Þ

and

n�1 max
1r irn

jSð2Þi �ESð2Þi j-0 in Lp: ð9Þ

Using relation (3) of Lemma 2.3, the Hölder inequality, relation (7) and the second condition of the RCI(a) property (1) of

the sequence fjXnj
p;nZ1g, we obtain

n�pE max
1r irn

jSð2Þi �ESð2Þi j
pÞ5n�p

Xn

i ¼ 1

EjZi�EZij
pþn�p

Xn

i ¼ 1

ðEjZi�EZij
pÞ

1=p

 !p

5n�p
Xn

i ¼ 1

EjZi�EZij
pþn�1

Xn

i ¼ 1

EjZi�EZij
p

 

5n�1
Xn

i ¼ 1

EjZij
prn�1

Xn

i ¼ 1

E½ðjXij
p�iaÞIðjXij

p4 iaÞ�-0:

This proves (9). To verify (8), using Lemma 2.2, we have

n�2E max
1r irn

jSð1Þi �ESð1Þi j
2Þ5n�2

Xn

i ¼ 1

EðYi�EYiÞ
2rn�2

Xn

i ¼ 1

EY2
i rn�2þð2�pÞa

Xn

i ¼ 1

EjXij
prn�1þð2�pÞa � sup

nZ1
n�1

Xn

i ¼ 1

EjXij
p

 !
:
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Using the first condition of the RCI(a) property (1) of the sequence fjXnj
p;nZ1g, the last expression above clearly goes to 0

as n-1, because 1opo2 and ao1=ð2�pÞ, thus completing the proof. &

Remark. Let 1opo2 and let integer NZ1. Suppose that fXn;nZ1g is an ANA sequence of random variables with mixing
coefficients r�ðsÞ. If fjXnj

p;nZ1g is RCI(a) for some a 2 ð0;1=pÞ, then n�1=pðSn�ESnÞ-0 in Lp.

Compared with Theorem 3.1, this result, whose proof can be completed by using Lemma 2.4, drops the maximum of the
partial sum at the price of enlarging 1/n into 1/n1/p.

Next we consider the case pZ2.

Theorem 3.2. Let pZ2 and let integer NZ1. Suppose that fXn;nZ1g is an ANA sequence of random variables with mixing

coefficients r�ðsÞ such that r�ðNÞo ð1=ð6pÞÞp=2. If fXn;nZ1g satisfies

sup
nZ1

1

n

Xn

i ¼ 1

EjXij
po1;

then for any d41=2

n�d max
1r irn

jSi�ESij-0 in Lp:

Proof. By Lemma 2.2 and the Hölder inequality,

E n�d max
1r irn

jSi�ESij

� �p

5n�pd
Xn

i ¼ 1

EjXij
pþn�pd

Xn

i ¼ 1

EX2
i

 !p=2

rn�pd
Xn

i ¼ 1

EjXij
pþn�pdþðp=2Þ�1

Xn

i ¼ 1

ðEX2
i Þ

p=2
5n�pdþðp=2Þ�1

Xn

i ¼ 1

EjXij
p

rn�pðd�1=2Þ � sup
nZ1

1

n

Xn

i ¼ 1

ðEX2
i Þ

p=2-0

as desired. &

4. Strongly residual Ces �aro alpha-integrability and complete convergence of the maximum of the partial sum

A sequence of random variables fXn;nZ1g is said to converge completely to a constant a if for any e40,

X1
n ¼ 1

PðjXn�aj4eÞo1:

In this case we write Xn-a completely. This notion was given by Hsu and Robbins (1947). Note that the complete
convergence implies the almost sure convergence in view of the Borel–Cantelli Lemma.

The condition of SRCI(a) is a ‘‘strong’’ version of the condition of RCI(a). In this section, we will show that each of the
theorems in the previous section has a corresponding ‘‘strong’’ analogue in the sense of complete convergence.

Theorem 4.1. Let 1opo2 and let integer NZ1. Suppose that fXn;nZ1g is an ANA sequence of random variables with mixing

coefficients r�ðsÞ such that r�ðNÞo ð1=ð6pÞÞp=2. If fjXnj
p;nZ1g is SRCI(a) for some a 2 ð0;1=ð2�pÞÞ, then

n�1 max
1r irn

jSi�ESij-0 completely:

Proof. For each nZ1, let m¼mn be the integer such that 2m�1onr2m. Observe that

n�1 max
1r irn

jSi�ESijrn�1 max
1r ir2m

jSi�ESijr ð2
m�1
Þ
�1 max

1r ir2m
jSi�ESij ¼ 2 � 2�m max

1r ir2m
jSi�ESij: ð10Þ

Hence it suffices to prove

2�m max
1r ir2m

jSi�ESij-0 completely:

Let Yn, Zn, Sð1Þn and Sð2Þn be defined as in the proof of Theorem 3.1. We first prove that 2�mmax1r ir2m jSð2Þi �ESð2Þi j-0

completely, namely

2�m max
1r ir2m

j
Xi

k ¼ 1

ðZk�EZkÞj-0 completely: ð11Þ

Using Lemma 2.3, the Hölder inequality, relation (7) and the second condition of the SRCI(a) property (2) of the sequence

fjXnj
pg, we have

X1
m ¼ 0

E 2�m max
1r ir2m

j
Xi

k ¼ 1

ðZk�EZkÞj

 !p

5

X1
m ¼ 0

2�mp
X2m

i ¼ 1

EjZij
pþ

X1
m ¼ 0

2�mp
X2m

i ¼ 1

ðEjZij
pÞ

1=p

 !p

5

X1
m ¼ 0

2�mp
X2m

i ¼ 1

ðEjZij
pÞ

1=p

 !p
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r
X1

m ¼ 0

2�m
X2m

i ¼ 1

EjZij
p ¼

X1
i ¼ 1

EjZij
p
X

fm:2m
Z ig

2�mr
X1
i ¼ 1

i�1EjZij
pr

X1
i ¼ 1

i�1E½ðjXij
p�iaÞIðjXij

p4 iaÞ�o1;

which yields (11).

Next we show that 2�mmax1r ir2m jSð1Þi �ESð1Þi j-0 completely, namely

2�m max
1r ir2m

�����
Xi

k ¼ 1

ðYk�EYkÞ

�����-0 completely: ð12Þ

By Lemma 2.2 and the Hölder inequality,

X1
m ¼ 0

E 2�m max
1r ir2m

Xi

k ¼ 1

ðYk�EYkÞ

 !2

5

X1
m ¼ 0

2�2m
X2m

i ¼ 1

EY2
i r

X1
m ¼ 0

2�2m
X2m

i ¼ 1

ið2�pÞaEjXij
p:

In view of the first condition of the SRCI(a) property (2) of the sequence fjXnj
pg and Lemma 2.5, we conclude that

X1
m ¼ 0

E 2�m max
1r ir2m

Xi

k ¼ 1

ðYk�EYkÞ

 !2

5

X1
m ¼ 0

2�2m
X2m

i ¼ 1

ið2�pÞar
X1
i ¼ 1

ið2�pÞa
X

fm:2m
Z ig

2�2mr
X1
i ¼ 1

i�2þð2�pÞa:

The last series above converges since a 2 ð0;1=ð2�pÞÞ implies �2þð2�pÞao�1 and therefore (12) holds. This completes

the proof. &

For the case pZ2, we have

Theorem 4.2. Let pZ2 and let integer NZ1. Suppose that fXn;nZ1g is an ANA sequence of random variables with mixing

coefficients r�ðsÞ such that r�ðNÞoð1=ð6pÞÞp=2. If fXn;nZ1g satisfies

sup
nZ1

1

n

Xn

i ¼ 1

EjXij
po1;

then for any d41=2

n�d max
1r irn

jSi�ESij-0 completely:

Proof. Let mn, nZ1 be defined as in the proof of Theorem 4.1. Proceeding as in the proof of (10), we see that it suffices to
show that

2�md max
1r ir2m

jSi�ESij-0 completely: ð13Þ

Indeed, by Lemma 2.2 and the Hölder inequality,

X1
m ¼ 0

E 2�md max
1r ir2m

jSi�ESij

� �p

5

X1
m ¼ 0

2�mpd
X2m

i ¼ 1

EjXij
pþ

X1
m ¼ 0

2�mpd
X2m

i ¼ 1

EX2
i

 !p=2

5

X1
m ¼ 0

2�mpd
X2m

i ¼ 1

EX2
i

 !p=2

5

X1
m ¼ 0

2�mpd�mþmp=2
X2m

i ¼ 1

EjXij
p
5

X1
i ¼ 1

EjXij
p
X

fm:2m
Z ig

2�mpd�mþmp=2r
X1
i ¼ 1

i�pd�1þp=2EjXij
p:

In view of Lemma 2.5,

X1
i ¼ 1

i�pd�1þp=2EjXij
prsup

nZ

1

n

Xn

i ¼ 1

EjXij
p �
X1
n ¼ 1

n�ðpdþ1�ðp=2ÞÞ
5

X1
n ¼ 1

n�ðpdþ1�ðp=2ÞÞ:

The last series converges because pdþ1�p=241. Therefore (13) holds. &
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