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Artificial neural networks (ANNs) with back-propagation algorithm were developed to predict the

percentage loss of ascorbic acid, total phenols, flavonoid, and antioxidant activity in different

segments of asparagus during water blanching at temperatures ranging from 65 to 95 �C as a

function of blanching time and temperature. In this study, the one-hidden-layer ANNs are used, and

the number of neurons in the hidden layer were chosen by trial and error. Optimized ANN models

were developed for predicting nutrient losses in bud, upper, middle, and butt segments of

asparagus. ANN models were then tested against an independent data set. Our results showed

that the predicted values of the correlation coefficients between experimental and ANNs ranged

from 0.8166 to 0.9868. Therefore, ANNs could be potential tools for the prediction of nutrient losses

in vegetables during thermal treatments.
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INTRODUCTION

Asparagus (Asparagus officinalis L.) is a green vegetable with
high antioxidant activity among the commonly consumed vege-
tables (1). The antioxidants in asparagus include ascorbic acid,
flavones, phenols, glutathione, etc. (2). Antioxidants can sca-
venge free radicals and protect the human body from oxidative
stress, which is the main cause of some cancers and heart
diseases (3). However, asparagus is an easily perishable vegetable
characterized by a limited postharvest life, mainly because of its
high respiratory activity, which continues after harvesting. There-
fore, it is preserved by canning, pickling, freezing, and drying.
Blanching, a thermal process preceding freezing or canning of
vegetables, is necessary to inactivate shelf-life-limiting enzymes
and to exhaust gas from the plant tissue (4). Hot water blanching
is by far the most popular and commercially adopted process as it
is the simplest and most economical technique. Blanching, how-
ever, has some adverse effects, such as pigment modifications,
tissue softening, and nutrient losses. Many researchers have
observed the dramatic blanching effect on the degradation of
vegetables nutrient content and antioxidant properties (5-8). As
far as we know, by taking into account these recent works,
information regarding the mathematical model to predict the
nutrient content and antioxidant properties of vegetables during
thermal treatments is still scarce.

The artificial neural network (ANN) is a set of mathematical
methods, often encompassed with artificial intelligence, which in

some way attempts to mimic the functioning of the human
brain (9). In the last two decades, ANN has revealed its huge
potential in many areas of science and engineering (10-13)
because of its exceptional function of self-organizing, self-study,
fault tolerance, and high robustness. Recently, interest in using
neural networks as a modeling tool in agriculture and food
technology is also increasing. It has been successfully used in
several food-processing technologies such as drying techno-
logies (14, 15), postharvest technology (16), food rheology (17),
microbial predictions (18 ), fermentation (19 ), and thermal
processing (20 , 21 ).

Therefore, the aim of this study was to evaluate the percentage
loss of ascorbic acid, total phenols, flavonoid, and antioxidant
activity of different segments of green asparagus during blanching
inwater throughmathematicalmodeling based on theANN.The
results will help to define optimal blanching conditions for
maximum quality retention, and the success of this research will
provide the food industries with modeling and simulation for
nutrient loss control in vegetables during thermal treatments.

MATERIALS AND METHODS

Sample Preparation and Blanching Process. Fresh asparagus
(Asparagus offcinalis L. var. Grande) was harvested from a local farm in
Jinhua (Zhejiang, P.R. China) and transported by refrigeration at 8 �C for
30 min to the laboratory. Spears of the same diameter (0.8-1.0 cm) at the
base and length (20 cm) were used in our experiment. The spears, after
being sorted for size and length, were washed with tap water and drained.
Sixty asparagus spears were placed in distilled water baths set at 60 �C,
65 �C, 70 �C, 75 �C, 80 �C, 85 �C, 90 �C, and 95 �C. Nine spears were
removed at the time intervals listed in Table 1 and immediately cooled in
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running water at 15 �C. After cooling, nine spears were randomly divided
into three groups (three spears per group). Prior to ascorbic acid, total
phenols, flavonoid, and scavenging capacity measurements, asparagus
spears at room temperature were cut into four segments (bud, upper,
middle, and butt segments) as shown in Figure 1. All experiments were
repeated three times (one time per group), and the results were reported as
average. In addition, the sampleswere kept at below 0 �Cuntil analysiswas
done to prevent nutrient losses.

Chemicals andReagent. 2,20-Diphenyl-1-picrylhydrazyl (DPPH) free
radical (purity g90%) and rutin (purity g95%) were of analytical grade
and purchased from Sigma-Aldrich (St.Louis, MO, USA). Gallic acid
(purity g98%), ascorbic acid (purity g99%), Folin-Ciocalteu reagent
(purity g99%), and 2,6-dichlorophenol indophenol (purity g99%) were
purchased from Shanghai Sangon Biological Engineering Technology &
Services Co., Ltd. (Shanghai, China).

Ascorbic Acid (AA) Determination. The AA content in different
segments of asparagus was determined upon the basis of quantitative
discoloration of the 2,6-dichlorophenol indophenol titrimetric method as
described in AOAC (22). Results of AA content were expressed as
milligram ascorbic acid per 100 mL juice. The AA content was measured
in triplicate.

Total Flavonoid (TF)Content Determination. The TF content was
evaluated by a colorimetric assay according to the method of Bonvehı́
et al. (23), withmodifications.Briefly, 0.5mL solution of eachplant extract

in methanol was separately mixed with 1.5 mL ofmethanol, 0.1 mL of 2%
aluminum chloride, 0.1 mL of 1 M potassium acetate, and 2.8 mL of
distilledwater, and left at room temperature for 30min.The absorbance of
the reaction mixture was measured at 415 nm using a spectrophotometer.
A standard curve (y=0.4564x;R2= 0.9942; SD=0.0046) was prepared
with rutin. The TF content was measured in triplicate and expressed as
rutin equivalents in mg g-1 dry weight of asparagus.

Total Phenolic (TP) Content Determination. The TP content was
determined colorimetrically using Folin-Ciocalteau reagent, as described
by Emmons, Peterson, and Paul (24), with modifications. Total phenolic
assay was conducted by mixing 8.3 mL of deionized water, 0.5 mL of
extracts, 0.7 mL of 20% Na2CO3, and 0.5 mL of Folin-Ciocalteu
reagent. After 40 min of reaction in a water bath at 40 �C, the absorbance
at 755 nm was measured using a spectrophotometer. A standard curve
(y = 0.0903x - 0.0011; R2 = 0.9969; SD = 0.0015) was prepared with
gallic acid. Final results were expressed as gallic acid equivalents (GAE)
mg/g of dry asparagus. The TP content was measured in triplicate.

DPPHRadical ScavengingActivity (SA)Determination.The free
radical scavenging activity of plant extracts was evaluated using the stable
radical DPPH as described by Maisuthisakul et al. (25). DPPH radical in
methanol (5 mM) was prepared, and this solution (100 μL) was added to
sample solutions in methanol (4.9 mL). After 30 min in the dark,
absorbance was measured at 517 nm. SA was measured in triplicate
samples. The percentageofDPPHradical scavenging activity of eachplant
extract was calculated using the following equation:

Scavenging activity ð%Þ ¼ A0 -ðA1 -AsÞ
A0

� �
� 100 ð1Þ

where A0 is the absorbance of the control solution (containing only
DPPH); A1 is the absorbance of the DPPH solution containing plant
extract; and As is the absorbance of the sample extract solution without
DPPH.

ANN Analysis. The ANN is a mathematical algorithm inspired by
studies of the brain and nervous systems in biological organisms, which
has the capability of relating the input and output parameters, learning
fromexamples through iteration,without requiring prior knowledge of the
relationships between the process variables (26). A feed forward network
structure with input, output, and hidden layers was used in this study as
shown in Figure 2. The input layer consisted of two neurons which
corresponded to blanching time and temperature. The output layer had
one neuron representing the percentage loss of nutrient (eg, ascorbic acid,
total phenols, flavonoid, or antioxidant activity). The neural network can
have more than one hidden layer; however, theoretical works have shown
that a single hidden layer is sufficient for the neural network to approx-
imate any complex nonlinear function (27, 28). Hence, the one-hidden-
layer ANNs are used in this study. The number of neurons within each of
these layers varied from 2 to 10. The back-propagation algorithm was
utilized in the training of ANNmodels (27). A hyperbolic tangent sigmoid
was used as the transfer function in the hidden layer and output layer.

Table 1. Blanching Time and Temperature for Fresh Asparagus

temperature (�C) blanching time (min)

60 40 80 120 160

65 35 70 105 140

70 30 60 90 120

75 25 50 75 100

80 20 40 60 80

85 15 30 45 60

90 10 20 30 40

95 5 10 15 20

Figure 1. Specimens formeasuring ascorbic acid, total phenols, flavonoid,
and DPPH radical scavenging activity.

Figure 2. Schematic diagram of artificial neural networks for the prediction of the percentage loss of ascorbic acid, total phenols, flavonoid, and DPPH radical
scavenging activity used in this study.
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Minimizationof errorwas accomplishedusing theLevenberg-Marquardt
(LM) algorithm (29, 30). The numerical values of the input and output
variables used by the ANN were normalized values in the range 0-1.

Training was based on a supervised method with back-propagation
strategy and was finished when the mean square error (MSE) converged
and was less than 0.1. If the MSE did not go below 0.1, training was
completed after 1,000 epochs, where an epoch represents one complete
sweep through all of the data in the training set. The ANN modeling
program was designed and programmed under Matlab software, version
6.1.

The prediction performances of the various ANN models were com-
pared usingmean squared error (MSE). TheMSEwas calculated using the
following equation:

MSE ¼ 1

N

XN
i ¼1

ðkE -kPÞ2 ð2Þ

where N is the total number of data; kP represents the predicted output
from the neural network model for a given input, while kE is the
experimental value.

RESULTS AND DISCUSSION

Blanching is a heat treatment preferably in awetmediumeither
by steam or hot water which provides uniform heating and high
heat transfer rate (4). Water blanching is by far the most popular
and commercially adopted process because it is the simplest and
most economical method. In addition, the household practice of
cooking vegetables is usually in the presence of water. However,
water blanching may have some negative effect on vegetable
quality, such as excessive loss of texture, unwanted changes in
color, and nutritional losses (8,31-33). In our study, theAA, TP,
TF, and SA in green asparagus markedly decreased, depending
on the blanching time and temperature. A representative graph
for nutritional losses in the bud segment of asparagus is given in

Figure 3, and the percentage losses of AA, TP, TF, and SA were
calculated in the bud segment of asparagus and given in
Tables 2-4. In recent years,many authors have developed kinetic
models to describe the quality changes in vegetables during
blanching (34-38). However, to our knowledge no previous
study has been reported on using ANN to predict the percentage

Figure 3. Water blanching effect on ascorbic acid (A), total phenols (B), flavonoid (C), and DPPH radical scavenging activity (D) of the bud segment of
asparagus.

Table 2. Learning Data Seta Used in the Development of ANNs

percentage loss (%)

temperature (�C) time (min) AA TP TF SA

60 80 26.32 3.93 13.34 33.41

60 160 38.66 14.25 23.02 51.08

65 35 29.48 4.13 12.52 28.30

65 105 33.68 10.88 15.30 53.41

65 70 32.88 5.52 13.64 39.66

70 30 35.02 5.15 11.97 35.55

70 60 38.72 7.56 14.45 45.50

70 120 51.73 22.91 26.51 65.83

75 25 38.06 11.82 11.45 33.10

75 75 53.47 26.95 24.20 59.57

80 20 36.79 12.43 13.50 27.24

80 40 38.68 18.13 14.27 33.48

80 80 60.74 30.89 34.13 49.66

85 15 37.58 13.96 13.46 25.20

85 45 53.55 28.82 29.21 43.93

85 60 60.42 38.63 38.46 50.33

90 10 41.63 14.90 14.91 29.81

90 30 56.98 27.21 30.95 40.88

90 40 61.72 37.45 35.58 49.17

95 5 46.62 15.02 19.08 33.74

95 15 50.90 20.90 22.11 37.20

95 20 59.40 32.37 31.24 38.14

a These data were collected from bud segments of asparagus as representatives.
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loss of ascorbic acid, total phenols, flavonoid, and antioxidant
activity of different segments of green asparagus during blanching
in water. So far, the application of neural networks in the food
science area has broad coverage: sensory analysis, classifications,
microbial predictions, thermal control, etc. (17, 18, 21, 39, 40).
The purpose of this study was to prove that the ANN is a
convenient and potential tool for the prediction of the quality
changes of different segments of green asparagus during water

blanching as a function of blanching time and temperature. The
development of the ANN model involves three basic steps:
training, validation, and prediction phases.

Training of the Neural Network. In our study, 75% of the data
were used to generate the model, and validation was performed
with 12.5% of the total data. In addition, the remaining 12.5% of
the data were used in the prediction phase. Table 2 shows the
training set, which was presented to the network, and a back-
propagation algorithm automatically adjusted the weights until
the output response to input vector was as close as possible to the
desired response (39). The one-hidden-layer ANNs are used in
this study because many researchers have shown that a single
hidden layer is sufficient to approximate any complex nonlinear
function (27, 28). The optimal number of nodes in the hidden
layer was selected by using a trial and error method. Figure 4

shows the changes ofMSE in the prediction of the percentage loss
of AA, TP, TF, and SA in the bud, upper, middle, and butt
segments of asparagus with different numbers of neurons in the
hidden layer. Our results showed that the optimal number of
nodes in the hidden layer was 5, 5, 7, and 5 in the bud segment of
asparagus, 5, 7, 5, and 7 in the upper segment, 8, 4, 6, and 7 in the
middle segment, and 5, 5, 5, and 7 in the butt segment, for
predicting the percentage loss of AA, TP, TF, and SA, respec-
tively. The abovemodels were developed for asparagus diameters
varying from 0.8 to 1.0 cm and temperatures from 65 to 95 �C.
These ANN models, however, did not consider temperatures
below 65 �C and above 95 �C or diameters of asparagus below
0.8 cm and above 1.0 cm.

Validation and Prediction Phases. In validation and predic-
tion phases, we used the selected topology of ANN models with

Table 3. Validating Data Seta Used in the Development of ANNs

percentage loss (%)

temperature (�C) time (min) AA TP TF SA

60 40 18.10 3.78 7.14 22.18

65 140 36.01 12.35 16.61 56.84

75 100 54.78 30.79 23.12 61.93

80 60 50.12 21.65 24.47 46.52

90 20 45.10 22.41 20.36 35.68

a These data were collected from bud segments of asparagus as representatives.

Table 4. Testing Data Seta Used in the Development of ANNs

percentage loss (%)

temperature (�C) time (min) AA TP TF SA

60 120 30.25 8.11 14.72 47.98

70 90 49.12 21.41 25.04 64.90

75 50 36.42 17.56 9.47 47.06

85 30 40.89 22.63 15.44 35.62

95 10 61.01 41.29 33.06 42.65

a These data were collected from bud segments of asparagus as representatives.

Figure 4. Mean squared error (MSE) in the prediction of the percentage loss of ascorbic acid (0), total phenols (O), flavonoid (3), and DPPH radical
scavenging activity (4)with different numbers of neurons in the hidden layer for bud, upper, middle, and butt segments of asparagus during blanching inwater.
The arrows signify the optimal number of nodes in the hidden layer.
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Figure 5. Correlation of experimental and predicted percentage loss of ascorbic acid (A), total phenols (B), flavonoid (C), and DPPH radical scavenging
activity (D) with training and validation data sets, as well as the prediction data set for the bud segment of asparagus during water blanching using the optimal
ANN.

Table 5. Mean Squared Errors (MSE) and the Correlation Coefficients (R2) in the Prediction of the Percentage Loss of AA, TP, TF, and SA in Different (Bud, Upper,
Middle, and Butt) Segments of Asparagus with the Optimal ANNs

AA TP TF SA

MSE (%) R2 MSE (%) R2 MSE (%) R2 MSE (%) R2

bud segment 10.6745 0.9868 51.2112 0.8166 7.6963 0.9088 32.8099 0.9620

upper segment 62.1037 0.8318 30.7957 0.8767 12.7976 0.8234 33.6940 0.8716

middle segment 28.2051 0.9205 44.4763 0.8568 4.6623 0.9780 75.3507 0.8665

butt segment 24.1384 0.9654 14.8777 0.8597 7.3191 0.9862 26.9330 0.9129
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the previously adjusted weights. Representative graphs of the
correlations between the predicted and experimental values in
respect to the training set, validation set, and prediction set are
shown in Figure 5, together with the full description of equations
of the linear regression model. In addition, Table 5 shows the
MSE and the correlation coefficients (R2) between experimental
andANNpredicted values in the prediction of the percentage loss
ofAA, TP, TF, and SA in different (bud, upper,middle, and butt)
segments of asparagus with the optimal ANNs. The optimal
ANN could predict the percentage loss of AA, TP, TF, and SA in
asparagus with the MSE of 10.6745%, 51.2112%, 7.6963%, and
32.8099% for the bud segment, 62.1037%, 30.7957%, 12.7976%,
and 33.6940% for the upper segment, 28.2051%, 44.4763%,
4.6623%, and 75.3507% for the middle segment, and 24.1384%,
14.8777%, 7.3191%, and 26.9330% for the butt segment, respec-
tively. In addition, the correlation coefficients between experi-
mental and ANN predicted values ranged from 0.8166 to 0.9868,
as shown inTable 5. Therefore, the ANNmodel as a potential tool
can be used to determine the percentage loss of AA, TP, TF, and
SA during water blanching.

In conclusion, the ANN, a convenient and potential tool, can
be a promising method for modeling the nutrient losses of
vegetables during water blanching. Therefore, the ANN seems
to find application in the quality analysis of functional pro-
perties of food of plant origin for the prediction of not only the
ascorbic acid, total phenols, flavonoid, and DPPH radical
scavenging activity but also for the control of food quality during
processing.

ABBREVIATIONS USED

AA, ascorbic acid; TP, total phenols; TF, total flavonoid; SA,
DPPH radical scavenging activity.
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