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In this study, an advanced ordered weighted averaging (AOWA) operator is proposed for tackling

multicriteria decision making (MCDM) problems under uncertainties. The AOWA incorporates

techniques of interval theory and a center of gravity (COG) method within a traditional ordered

weighted averaging (OWA) operator. It can deal with the uncertain inputs under optimistic and

pessimistic conditions without knowing their distribution information and linguistic important

degrees of all inputs in MCDM systems. The results obtained help decision makers select the

optimal alternative according to their optimism degrees. A case study of planning electric power

problems is provided for demonstrating the applicability of the proposed method. The results

indicate that reasonable solutions have been generated for both discrete intervals and linguistic

inputs. For all criteria under consideration, corrective alternatives can be undertaken sensitively

under various optimism degrees and thus can help resolve the conflicts in electric power systems

under uncertainties.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Electric power problems are crucial for many cities throughout
the world. The limited energy reserves, rising environmental- and
health-impact concerns, increasing material prices, and different
technological, geographic, political and economic conditions are
having significant effects on electricity generation allocation pro-
blems (Cai et al., 2008). Moreover, development and application of
renewable energy for electric power have also aroused more and
more concerns. These issues are related to a multitude of impact
factors and objectives. Furthermore, in electric power systems,
there are lots of complicated factors need to be considered by
decision makers, such as electricity production, service life of
electricity generation facilities and the resulting greenhouse gas
(GHG)/pollutant emissions. In addition, many system parameters
(e.g., capital and operating cost, material sources, energy consump-
tion, existing and potential capacities) may appear uncertain and
may be given with optimistic and pessimistic data. The important
degrees of criteria given by experts and used for evaluation are
generally linguistic quantifiers. Such uncertainties may lead to
further complexities in the related decision making processes and
the generated decision support systems (Li et al., 2009; Chen et al.,
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2009; Kosugi, 2009). Therefore, effective technology for making
tradeoffs and yielding optimal decision alternatives in electricity
industry under various uncertainties is desired.

Previously, a number of studies were reported from the perspec-
tive of programming models to address multiple conflicting objec-
tives (such as cost, environmental concerns and energy efficiency
measures) in the electricity generation planning problems. For
example, Martins et al. (1996) developed a multiobjective linear
programming model for power generation expansion planning
incorporating demand-side management (DSM), wherein DSM was
the process of managing the consumption of energy, generally to
optimize available and planned generation resources and was
included by modeling it as a new generating group along with the
generating alternatives from the supply side. Christian (1999) pre-
sented a decision support framework for environmental planning in
developing countries, which was based on identifying the priorities
of conflicting goals by working through and reducing the conflicts.
Hsu and Chou (2000) proposed a multiobjective programming
approach integrated with a Leontief inter-industry model to evaluate
the impact of energy conservation policy on the cost of reducing CO2

emissions and undertaking industrial adjustment in Taiwan. Liu et al.
(2003) proposed a hybrid fuzzy-stochastic robust programming
(FSRP) method for a case study of regional air quality management,
which reflected complex tradeoffs between environmental and
economic considerations. Antunes et al. (2004) made a multi-
objective mixed integer linear programming for power generation
expansion planning that allowed the consideration of modular
expansion capacity values of supply-side options and also considered
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Nomenclature

AOWA advanced ordered weighted averaging
COG center of gravity
EOWA extended ordered weighted averaging
MCDM multicriteria decision making
OWA ordered weighted averaging
a the optimism degree of the decision maker
y the degree to which the aggregation is an or operation
l the left benchmark of normalized triangular fuzzy

number Z

m the value of normalized triangular fuzzy number Z

with the highest membership degree fZ(m)¼1
r the right benchmark of normalized triangular fuzzy

number Z

w a non-negative weighting vector of dimension n

x7 an interval number with known upper and lower
bounds but unknown distribution information

x� lower bound of x7

x7 upper bound of x7

xmin
i the minimum value in criterion i

xmax
i the maximum value in criterion i.
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demand-side management, which was possible to perform an
evaluation of the rate impact in order to further inform the decision
process. Li et al. (2006a) developed an interval-parameter multi-
stage stochastic linear programming method for water resources
decision making under uncertainty, whose results are helpful for
water resources managers in not only making decisions of water
allocation but also gaining insight into the tradeoffs between
environmental and economic objectives. Nasiri and Huang (2008)
proposed a fuzzy environmental policy analysis approach based on
multi-objective optimization and developed a post-optimization
assessment based on fuzzy set theory concept to determine the best
compromise plan for capacity planning in electricity generation.

Generally, most of the programming models for dealing with
multi-objective problems included two major methods: compromise
program and aspiration approach. In compromise programming
(Merino et al., 2003; Prodanovic and Simonovic, 2003), a variety of
distances between the solutions of the problem and the ideal value of
objectives were examined for evaluating the optimal solution. In
aspiration approach (Abel and Korhonen, 1996; Buchanan and
Gardiner, 2003; Li et al., 2007; Qin et al., 2007; Billionnet, 2009;
Yoshida and Matsuhashi, 2009), one of the multiple objectives was
optimized while the others were converted to model constraints.
Although the aspiration approach can provide a less complex and,
consequently, a more practical methodology, especially for large-scale
problems, the solutions may not be as preferred as those provided by
the compromising approach when ignoring the tradeoffs of objectives
(Nasiri and Huang, 2008). In addition, most of the optimization
models may only be effective for the measurable parameters but
ineffective for the parameters that cannot be quantified, such as the
linguistic quantifiers.

Consequently, an ordered weighted averaging (OWA) operator
proposed by Yager (1988) was a general technology in multicriteria
decision making (MCDM) systems. The OWA solution process
included three steps: (i) reorder the inputs in descending order; (ii)
decide the weighting vector related with the OWA operators; and (iii)
aggregative procedure. The OWA operator was applied to many
environmental planning problems (Despic and Simonovic, 2000;
McPhee and Yeh, 2004; Mysiak et al., 2005; Makropoulos and
Butler, 2006; Sadiq and Tesfamariam, 2007). However, it assumed
that the inputs were definite and the important degrees for all inputs
were identical. In fact, in many real problems, inputs were often
uncertain and their important degrees were generally unequal. These
two facts limited its application to practical problems. As a result, a
number of literatures focused on the study of ascertaining the
weighting vector using different methods were proposed (Yager
and Filev, 1994, 1999; Herrera et al., 1996; Torra, 1997; Xu and Da,
2002; Fullér and Majlender, 2003; Chen and Chen, 2003, 2005; Xu,
2005; Zarghami and Szidarovszky, 2009). Nevertheless, few studies
are concerned with the inputs of uncertain nature. Actually, the
inputs in OWA are always uncertain and even have their respective
different important degrees, which are different from the weighting
vector. In addition, the important degrees of all inputs may be
generally shown in formulations of linguistic formats in MCDM
systems. Both of these could make the MCDM process more difficult
and complicated. Although the normalized triangular fuzzy numbers
and the max-membership method were employed by Zarghami et al.
(2008) to deal with the uncertainty when both of the inputs and the
important degrees of criteria were linguistic quantifiers, they were
unable to handle the uncertainty when the inputs had only the
optimistic and pessimistic information but unknown distribution
information. Moreover, the max-membership method can only be
applied in some specific cases.

Therefore, this study will propose an advanced ordered weighted
averaging (AOWA) operator to solve a MCDM problem containing
uncertain inputs and the linguistic important degrees of criteria in
electric power systems. In this study, interval parameters will be
introduced into AOWA to reflect the uncertain inputs under optimis-
tic and pessimistic conditions without knowing their distribution
information. Moreover, to make the defuzzying procedure more
simple and effective, vector method is adopted to solve the center
of gravity (COG) of a normalized triangular fuzzy number to quantize
the linguistic important degrees of criteria in plane right angle
coordinate. On the other hand, the weighting vector in AOWA will
be obtained by the minimal variability method here (Fullér and
Majlender, 2003; Zarghami et al., 2008). In this case, the AOWA
operator will be able to deal with uncertainties expressed as not only
discrete intervals but also linguistic quantifiers, and facilitate the
results analysis for decision maker to select the optimal alternative in
a decision making support system.

This study firstly depicts the OWA operator and the extended
OWA (EOWA) operator (Zarghami et al., 2008), and then advances
the OWA operator from three steps, wherein the theory proofs
and remarks about vector methods will be used for solving COG of
a normalized triangular fuzzy number, which would enhance the
feasibility and the reliability of AOWA. Secondly, a case study of
planning electric power problems is provided for demonstrating
the applicability of the developed AOWA. Afterwards, the results
analysis is shown in detail to afford the decision maker with an
optimal support solution for electric power systems. Finally,
comparisons between AOWA and EOWA are made to further
demonstrate the advantages of the proposed AOWA.
2. Methodology

2.1. Concept for OWA

In MCDM systems, there are two key factors: the important
degrees of criteria and the being assessed objectives with respect
to the criteria that need to be quantified. However, the first factor
is generally given by experts and represented in verbal terms such
as ‘‘high’’, ‘‘low’’ and ‘‘medium’’, and the second factor is not



Fig. 1. A triangular fuzzy number Z (B, A, C) (symbols ‘‘A’’ and ‘‘C’’ denote the left

and right benchmarks of fuzzy number Z, respectively, and fZðBÞ ¼ 1; symbols ‘‘D’’,

‘‘E’’ and ‘‘F’’ are the midpoint of segment ‘‘AB’’, ‘‘AC’’ and ‘‘BC’’, respectively; symbols

‘‘P(x)’’ and ‘‘Q(x)’’ mean the functions of segments ‘‘AB’’ and ‘‘BC’, respectively).
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defined exactly; instead, it is known to fall within a certain
interval. Both of these make further complexities in MCDM
systems. Therefore, this study will advance the OWA operator to
quantify the above two factors and enhance its application to
MCDM problems. Definition and concept about OWA and EOWA
will be, respectively, introduced as follows.

Definition 1. An OWA operator of dimension n is a mapping F :

In-I (where I¼ ½0,1�) with formulation below (Yager, 1988):

Fða1,a2,:::,anÞ ¼
Xn

i ¼ 1
wibi ¼w1b1þw2b2þ :::þwnbn ð1Þ

where bi is the ith largest element in the inputs a1, a2, y, an, and
w¼(w1, w2, y, wn) is a non-negative weighting vector of dimen-
sion n so that wiA ½0,1� and

P
wi ¼ 1, F is the integrated goodness

scoring of an alternative.

Remark 1. Zarghami et al. (2008) extended OWA (EOWA) from
three steps as follows:(i) the weighting vector in OWA can be
obtained by the minimal variability method; (ii) the linguistic
inputs can be converted into crisp numbers by using equivalent
normalized triangular fuzzy numbers and then be defuzzied using
the max-membership method; and (iii) the inputs should be
multiplied by their important degrees when the important degrees
of all criteria are different.

OWA supposes that the important degrees of all criteria are
identical and can deal only with the certain inputs, correspond-
ingly, the inputs in OWA contain only one kind of parameters: bi. In
fact, the inputs should be comprised of two kinds of parameters:
the important degrees of criteria and the being assessed objectives
with respect to the criteria because the first parameter could not be
equal to each other in real problems and are generally represented
in linguistic terms. Moreover, the being assessed objectives with
respect to the criteria (regarded as the inputs for OWA) in MCDM
systems are often uncertain and contain optimistic and pessimistic
data. Both of these make OWA unavailable. Although EOWA had
done improvements in defuzzying the linguistic terms using the
max-membership method, it has difficulties in dealing with the
uncertain being assessed objectives, which include optimistic and
pessimistic information. Moreover, the method for defuzzying the
linguistic terms should be improved. Therefore, more effective
method to deal with the uncertain data in MCDM systems is
desired to be developed.

2.2. Development of advanced OWA

An advanced OWA method, which is based on EOWA from two
main perspectives: introduction of interval theory to dispose the
uncertain inputs, which contain only optimistic and pessimistic
data and adoption of COG method to deal with the linguistic
information, will be developed. Firstly, a number of useful defini-
tions and theorems will be given for the algorithm of AOWA.

Definition 2. Let x denote a closed and bounded set of real
numbers. An interval number x7 is defined as an interval with
known upper and lower bounds but unknown distribution infor-
mation for x (Huang, 1996; Li et al., 2006b):

x7 ¼ ½x�,xþ � ¼ ½tAx9x�rtrxþ � ð2Þ

where x� and xþ are the lower and upper bounds of x7 ,
respectively. When x� ¼ xþ , x7 becomes a deterministic number,
i.e. x7 ¼ x� ¼ xþ .

Definition 3. A convex normalized fuzzy set Z ¼ fðx,fZðxÞÞ9xARg

on the real line R is called a fuzzy number if it satisfies that
(Rommelfanger, 1996): (I) there exits exactly one x0AR with the
membership degree fZðx0Þ ¼ 1; and (II) fZðxÞ is piecewise contin-
uous in R.
Definition 4. A fuzzy number Z ¼ fðx,fZðxÞÞ9xARg is regarded as a
normalized triangular fuzzy number if there exist reference
functions and scalars m,l,r40 such that

fZðxÞ ¼

ðx�lÞ=ðm�lÞ lrxrm

ðx�rÞ=ðm�rÞ mrxrr

0 otherwise

8><
>: ð3Þ

where l and r are the left and right benchmarks of normalized
triangular fuzzy number Z, respectively, and fZ(m)¼1. Accord-
ingly, the specific values of l, m and r are obtained based on the
given triangular fuzzy number Z. For example, if Z is a normalized
triangular fuzzy number Z (0.5, 0.4, 0.7), then l¼0.4, r¼0.7 and
m¼0.5 with fZ(0.5)¼1.

Based on Definition 4, a normalized triangular fuzzy number Z

can be easily and effectively converted into crisp data by COG
method. This COG approach aims to obtain the center of gravity of
a normalized triangular fuzzy number Z using the vector method,
whose specific calculation procedure can be seen in Theorem 1.
Because in a plane right angle coordinate system, a normalized
triangular fuzzy number Z has and only has one COG, it can be
represented by its COG. Moreover, vector method is much easier
to operate in solving COG than the integration method, which will
be testified by Theorem 2.

Theorem 1. If the coordinates of the three apexes of a normalized
triangular fuzzy number Z are Aðx1,y1Þ, Bðx2,y2Þ, Cðx3,y3Þ (see
Fig. 1), and f ðx2Þ ¼ y2 ¼ 1, f ðx1Þ ¼ y1 ¼ f ðx3Þ ¼ y3 ¼ 0, then the
coordinates of the COG about Z will be Gððx1þx2þx3Þ=3,
ðy1þy2þy3Þ=3Þ (means Gððx1þx2þx3Þ=3,1=3Þ).

Proof. Let the midpoint of segment AC be Eðx0,y0Þ, and the center
of gravity be G(x,y). According to the midpoint formulations, the
values of x0 and y0 are ðx1þx3Þ=2 and ðy1þy3Þ=2, respectively. In

the center of gravity theorem, BG
�!

: GE
�!
¼ 2 : 1. In this case, there

are equations below:

x2�x¼ 2ðx�ðx1þx3Þ=2Þ

y2�y¼ 2ðy�ðy1þy3Þ=2Þ
, and the results are

x¼ ðx1þx2þx3Þ=3

y¼ ðy1þy2þy3Þ=3

((

ð4Þ

Theorem 2. In plane right angle coordinate, the COG of a normal-
ized triangular fuzzy number Z obtained by vector method is the
same as the one obtained by the integration method, but its
calculation procedure is much easier than the latter one.

Proof. Since the COG of a normalized triangular fuzzy number Z

obtained by vector method has been proved in Theorem 1, it only
needs to verify the result obtained by integration method.
Assuming that the density of Z is uniform, the integral expression
for the center of gravity of Z is

xG ¼
R

SxdS
� �

=S

yG ¼
R

SydS
� �

=S

(
ð5Þ
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where S is the area of triangle. Let P(x) and Q(x) be the functions of
segments AB and BC, respectively, then the COG of Z can be
formulated as (see Fig. 1):

xG ¼
R x2

x1
xPðxÞdxþ

R x3

x2
xQ ðxÞdx

� �
=
R x2

x1
PðxÞdxþ

R x3

x2
QðxÞdx

� �
yG ¼

R y2

y3
yQ�1ðxÞdy�

R y2

y1
yP�1ðxÞdy

� �
=
R y2

y3
Q�1ðxÞdy�

R y2

y1
P�1ðxÞdy

� �
8><
>:

ð6Þ

where

PðxÞ ¼ ððy2�y1Þ=ðx2�x1ÞÞðx�x1Þþy1

Q ðxÞ ¼ ððy2�y3Þ=ðx2�x3ÞÞðx�x3Þþy3

(
ð7Þ

In addition, P�1ðxÞ and Q�1ðxÞ are the inverse functions of P(x)
and Q(x), respectively. Through integration of Eqs. (7) and (8),
Eq. (6) can be obtained as follows:

xG ¼ ðx1þx2þx3Þ=3

yG ¼ ðy1þy2þy3Þ=3

(
ð8Þ

It can be seen that Eq. (8) is the same as Eq. (4). Furthermore,
the calculation procedure of integration method is more compli-
cated than the vector method. At this point, this theorem is
confirmed.

According to Theorems 1 and 2, the linguistic terms can be
transformed into crisp values such that there are only crisp data
in the important degree vector of criteria. If linguistic terms also
exist in other impact vector, the same method can be used.
Therefore, the developed AOWA integrated with the interval
theory and COG method can effectively deal with the dual
uncertainties: interval and fuzzy, and can be meaningfully and
efficiently applied in MCDM systems. The specific calculation
steps for AOWA operator will be described as follows:

Step 1. The uncertain inputs including optimistic and pessi-
mistic data in OWA can be quantified as interval numbers
based on Definition 2 and can be formulated as (Wang and
Kerre, 2001)

x7 ¼ ½x�,xþ � ¼
faxþ þð1�aÞx�g, for positive inputs

fax�þð1�aÞxþ g, for negative inputs

(
ð9Þ

where xþ and x� represent the optimistic and pessimistic data
for the positive criterion in this study, respectively, vice versa.
In addition, aA ½0,1� and a value represents the optimism
degree of the decision maker, in which the higher a value
the more optimistic the decision maker. Moreover, when the
inputs have different units, they are necessary to be normal-
ized as follows:

xn

ij ¼
ðxij�xmin

i Þ=ðx
max
i �xmin

i Þ, for positive inputs

ðxmax
i �xijÞ=ðx

max
i �xmin

i Þ, for negative inputs

(
ð10Þ

where xmax
i and xmin

i are the maximum and the minimum
values in criterion i, respectively.
Step 2. For the linguistic important degrees, it is required to
transfer the linguistic quantifiers into crisp data. Firstly,
linguistic quantifiers should be converted into their equivalent
normalized triangular fuzzy numbers according to Hwang and
Chen (1992). Secondly, the normalized triangular fuzzy num-
bers can be defuzzied by the vector method of COG based on
Theorem 1.
Step 3. Based on Steps 1 and 2, the new inputs of OWA
operator can be obtained as follows:

a¼ ða1,a2,:::,anÞ ¼ ðc1d1,c2d2,:::,cndnÞ ð11Þ

where ai ¼ cidi, and ci and di are the results of Steps 1 and 2,
respectively. In addition, the weighting vector can be explored
by the minimal variability method (Zarghami et al., 2008) with
a fixed y as follows:

Minimize VarðwÞ ¼
Xn

i ¼ 1

1=nðwi�EðwÞÞ2 ¼ 1=n
Xn

i ¼ 1

w2
i

� 1=n
Xn

i ¼ 1

wi

 !2

¼ 1=n
Xn

i ¼ 1

w2
i �1=n2 ð12aÞ

subject to

1=ðn�1Þ
Xn

j ¼ 1

ðn�jÞwj ¼ y ð12bÞ

Xn

j ¼ 1

wj ¼ 1 ð12cÞ

wjZ0 ð12dÞ

In order to obtain a unique weighting vector for optimization,
the Kuhn�Tucker second-order sufficiency conditions can be
used for solving the above model (Fullér and Majlender, 2003),
and the results can be formulated as follows:

w1 ¼ ð2ð2n�1Þ�6ðn�1Þð1�yÞÞ=ðnðnþ1ÞÞ

wn ¼ ð6ðn�1Þð1�yÞ�2ðn�2ÞÞ=ðnðnþ1ÞÞ

wj ¼ ððn�jÞ=ðn�1ÞÞw1þððj�1Þ=ðn�1ÞÞwn, if jAf2,:::,n�1g ð12eÞ

where yA ½0,1� is an independent variable representing the degree
to which the aggregation is an or operation. When y¼0, the
weighting vector w is (0, 0, y, 1), which means that only the
minimal element in the inputs can be satisfied and the OWA
becomes a minimum operator. Conversely, when y¼1, the
weighting vector w is (1, 0, y, 0), which means that only the
maximal element in the inputs can be satisfied and the OWA
becomes a maximum operator.

Apparently, the developed AOWA not only can deal with the
uncertain data containing optimistic and pessimistic information
in the being assessed objectives with respect to different criteria
but also can dispose the linguistic important degrees of criteria.
Moreover, the introduction of interval theory and COG method
make the decision support systems proposed by AOWA more
suited to the actual MCDM problems. For better understanding of
the procedural steps of the developed AOWA, a framework is
shown in Fig. 2.
3. Case study

The following electric power problem is used to demonstrate the
applicability of the developed AOWA operator. In the study system,
multiple power stations need to know how many generation shares
they are permitted while the decision maker needs to decide which
one should be first developed. Conventional and renewable power
stations with different availabilities are employed. Among them,
conventional power stations, such as a coal-fired power station,
have larger capacity but more serious pollution, which may cause
irreparable environmental problems under large-scale development.
On the contrary, although most of renewable power stations have
little pollution, their efficiency is relatively low and need many
capital and time to develop which is not useful for rapid economic
development. Moreover, renewable power stations would be greatly
affected by many natural, spatial and temporal factors, such as
precipitation and cloud variation, as well as temperature profiles
and may not be able to meet the local demand for electricity
(Cai et al., 2009; Chen et al., 2009). Therefore, the decision maker
is expected to make a reasonable electricity generation allocation
based on the current generation capacity, available resources and



Fig. 2. Framework of AOWA (AOWA is the advanced ordered weighted averaging operator).
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pollution severity about various power stations to satisfy electricity
needs, economic development and environment requirements.
Generally, most of the parameters (such as generation capacity
and available resources) have the optimistic and pessimistic data
but have not the distribution information. Meanwhile, the important
degrees of various criteria are often different and represented as
linguistic quantifiers, such as low (L), low to medium (LM), medium
(M), medium to high (MH) and high (H).

The study system is composed of seven power stations: coal-
fired power station, hydropower station, nuclear power station,
natural gas-fired power station, wind power station, biomass
power station and oil/diesel-fired power station, and eight criteria:
operation and maintenance costs (OMC), capital cost (CC), energy
intensity (EN), GHG intensity (GHG), retirement (R), current
capacity (CUC), potential capacity (PC) and service life (SL)
(Fig. 3). The specific meanings about eight criteria are shown in
Table 1, and their important degrees (H, H, MH, MH, L, MH, LM
and M) are represented in Table 2. Moreover, the current optimistic
and pessimistic data of seven power stations with respect to eight
criteria can be seen in Table 2. The objective is to make an
electricity generation allocation about the seven power stations
to decide how many share they can take to ensure the sustainable
development of the electricity industry in this city in the next
5 years.

Firstly, the optimistic and pessimistic data in Table 2 should be
quantified as interval numbers according to Step 1 in AOWA. The
lower bounds of OMCj, CCj, ENj, GHGj and Rj represent the
optimistic data, while their upper bounds denote the pessimistic
data. These conditions are just the opposite for criteria CUC, PC
and SL. For example, the value of OMC�5 in Table 2 is 33.600,
which means that the estimated levelized capital cost of wind
power station based on discount rate 5% is $ 33.6�103 per GWh
under optimistic condition. Because the data of every power
station on eight criteria have different units, they should be
normalized using Eq. (11). Furthermore, the linguistic important
degrees of eight criteria should be converted into their equivalent
normalized triangular fuzzy numbers (Fig. 4) and then be trans-
ferred into crisp numbers based on Step 2, whose corresponding
results are shown in Table 3, wherein real lines in Fig. 4 represent
the normalized triangular fuzzy numbers in Table 3 while broken
lines denote the equivalent normalized triangular fuzzy numbers
for the changed linguistic important degrees.

Moreover, the values of xn

ij should be multiplied by their
different important degrees according to Step 3 and then the
results are regarded as the new inputs of AOWA. The results under
a¼0.5 are shown in Table 4, and the other results corresponding
to the a values can be achieved by the same calculation procedure.
(Since the positive and negative criteria have been normalized,
and the important degrees for different criteria also have been
calculated, the same a value for all criteria means that all
objectives are evaluated under the same optimism degree of the
decision maker. Correspondingly, the other a values is used to
conduct risk analysis for the decision maker.) The last step of
AOWA is to solve the weighting vector. It is noted that the value of



Table 1
Specific meanings of eight criteria.

Criteria Specific meanings Units

OMC Levelized operation and maintenance costs of power stations based on discount rate 5% $1000/GWh

Capital cost Levelized capital cost of power stations based on discount rate 5% $1000/GWh

Energy intensity Unit energy consumption for power stations TJ/GWh

GHG intensity Unit greenhouse gas emission resulted from power stations KT/GWh

Retirement Scheduled retirement of generation capacity for power stations in the next five years GW

Current capacity Current generation capacity for power stations GW

Potential capacity Forecasted potential development capacity for power stations GW

Service life Estimated service life for power stations Year

Note: GW, GWh, KT and TJ are gigawant, gigwant hour, kiloton and terra joule, respectively.

Fig. 3. Framework for the case study.

Table 2
Data for case study.

Criteria Important degrees Approximation Seven power stations

j¼1 j¼2 j¼3 j¼4 j¼5 j¼6 j¼7

Coal-fired Hydro Nuclear Natural gas Wind Biomass Oil/diesel

OMC H Optimistic 26.100 22.150 24.770 29.200 33.600 50.100 38.620

($1000/GWh) Pessimistic 31.200 33.920 30.100 46.600 93.300 63.200 70.080

Capital cost H Optimistic 9.920 17.360 16.330 3.610 27.300 35.660 11.360

($1000/GWh) Pessimistic 15.680 30.500 18.720 7.220 76.700 44.270 22.840

Energy intensity MH Optimistic 10.620 3.490 11.540 8.590 0.098 10.390 8.078

(TJ/GWh) Pessimistic 11.500 3.700 11.570 10.080 0.106 10.510 10.610

GHG intensity MH Optimistic 0.920 0.005 0.003 0.460 0.008 0.016 0.650

(KT/GWh) Pessimistic 1.030 0.012 0.016 0.510 0.009 0.027 0.828

Retirement L Optimistic 9.435 0.197 1.000 3.206 0.06 0.597 6.881

(GW) Pessimistic 15.901 15.607 9.425 4.528 1.000 1.532 7.426

Current capacity MH Optimistic 19.902 80.275 14.951 17.762 0.705 1.921 9.667

(GW) Pessimistic 15.334 70.035 10.551 11.254 0.505 1.315 5.227

Potential capacity LM Optimistic 0.186 11.162 4.087 6.679 30.120 0.003 0.003

(GW) Pessimistic 0.159 11.042 4.001 6.325 27.890 0.001 0.002

Service life M Optimistic 45 100 35 55 25 30 20

(year) Pessimistic 25 60 20 35 12 15 13

M.Q. Suo et al. / Engineering Applications of Artificial Intelligence 25 (2012) 72–81 77
y in this study is supposed to be 0.33, representing that many
criteria considered in this decision making system are satisfied.
Under this assumption, the weighting vector w calculated by Eq.
(13) is (0.0276, 0.0554, 0.0832, 0.1111, 0.1389, 0.1668, 0.1946,
0.2224), where n¼number of criteria (n¼8). Finally, the results of
the shares taken by seven power stations in the case study can be
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calculated by Equation (1), and then the final decision support
system can be obtained by arranging the integrated goodness
scorings of seven power stations at different optimism degrees of
the decision maker.
4. Result and discussion

4.1. Result from AOWA under different a values

AOWA can effectively deal with uncertainties presented as both
linguistic quantifiers and intervals within a MCDM system. Solu-
tions of AOWA provide an effective linkage between the optimism
degrees and the final decision support systems. The obtained
results under different optimism degrees can help the decision
maker identify desired policies for a number of conflicting objec-
tives. Table 5 shows the solutions obtained from AOWA for the
case study and their corresponding ranking orders of seven power
stations.
L
µ

LM HMHM

x0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Triangular fuzzy numbers with different left�right benchmarks (symbols

‘‘L’’, ‘‘LM’’, ‘‘M’’, ‘‘MH’’ and ‘‘H’’ denote ‘‘low’’, ‘‘low to medium’’, ‘‘medium’’,

‘‘medium to high’’ and ‘‘high’’, respectively).

Table 3
Linguistic quantifiers-equivalent normalized triangular fuzzy numbers-crisp data.

Linguistic Triangular fuzzy numbers Crisp data

Variables MAX COG

Low (0.00, 0.00, 0.30) 0.00 0.10

Low to medium (0.25, 0.25, 0.25) 0.25 0.25

Medium (0.50, 0.20, 0.20) 0.50 0.50

Medium to high (0.75, 0.25, 0.25) 0.75 0.75

High (1.00, 0.30, 0.00) 1.00 0.90

Note: MAX¼membership method.

Table 4
New inputs of AOWA about seven power stations when a¼0.5.

Criteria New inputs about seven power stations

Coal-fired Hydro Nuclear

OMC 0.8378 0.8526 0.8670

Capital cost 0.7296 0.5224 0.6416

Energy intensity 0.0324 0.52130 0.0000

GHG intensity 0.0000 0.2496 0.2494

Retirement 0.0000 0.0521 0.0815

Current capacity 0.1712 0.7500 0.1222

Potential capacity 0.0051 0.3318 0.1208

Service life 0.1457 0.5000 0.0866
When a¼0.3, shares taken by coal-fired power station, hydro-
power station, nuclear power station, natural gas-fired power
station, wind power station, biomass and oil/diesel-fired power
stations over the next 5 years would be 0.0987, 0.3462, 0.1371,
0.1799, 0.0977, 0.0743 and 0.0660, respectively, and the ranking
orders of them are 4, 1, 3, 2, 5, 6 and 7, respectively. This is a
pessimistic scenario, which means that the decision maker keeps a
conservative attitude, and thus relatively more capital and resources
would be put to use in order to meet local demand for electricity.

When a¼0.5, it means that the decision maker keeps neutral
attitude. The results and the ranking orders of seven power
stations are (0.1006, 0.3490, 0.1381, 0.1834, 0.0993, 0.0635,
0.0661) and (4, 1, 3, 2, 5, 7, 6).

When a¼0.7, the integrated goodness scorings would be
0.1020 (for coal-fired power station), 0.3536 (for hydropower
station), 0.1386 (for nuclear power station), 0.1879, 0.1132,
0.0373 and 0.0675 (for natural gas-fired power station, wind
power station, biomass power station and oil/diesel-fired power
station, respectively), and the ranking orders of seven power
stations are 5, 1, 3, 2, 4, 7 and 6, respectively. This implies that the
usage of less capital and resources can ensure local demand for
electricity.

Based on the above description, it can be concluded that the
three rank results are basically uniform for hydropower station,
natural gas-fired power station and nuclear power station which are
the first three ranks. The coal-fired power station and wind power
station take the fourth and fifth place when a¼0.3 and 0.5,
respectively, and exchange when a¼0.7. Oil/diesel-fired power
station comes at the last place when a¼0.3, while biomass power
station gets the least scoring when a¼0.5 and 0.7. In addition, the
specific share taken by each power station would vary slightly. All of
these result from the different a values, meaning different optimism
degrees. In general, a higher a value represents a relatively high
degree of optimism but a higher risk level. Under this condition,
the decision maker can select the optimal alternative according to
his/her optimism degree.
Natural gas Wind Biomass Oil/diesel

0.6151 0.0000 0.1637 0.2191

0.8670 0.0000 0.2240 0.6495

0.1454 0.7500 0.0724 0.1448

0.1265 0.2496 0.2459 0.2500

0.0962 0.1330 0.1269 0.0603

0.1399 0.0000 0.0102 0.0688

0.1943 0.8670 0.0000 0.0000

0.2244 0.0157 0.0472 0.0000

Table 5
Results from AOWA under different a values.

Power stations Integrated goodness scoring Ranking orders

a¼0.3 a¼0.5 a¼0.7 a¼0.3 a¼0.5 a¼0.7

Coal-fired 0.0987 0.1006 0.1020 4 4 5

Hydro 0.3462 0.3490 0.3536 1 1 1

Nuclear 0.1371 0.1381 0.1386 3 3 3

Natural gas-fired 0.1799 0.1834 0.1879 2 2 2

Wind 0.0977 0.0993 0.1132 5 5 4

Biomass 0.0743 0.0635 0.0373 6 7 7

Oil/diesel 0.0660 0.0661 0.0675 7 6 6



Table 7
Results from EOWA and AOWA under changed important degrees for criteria.

Power stations EOWA’Integrated goodness scoring-AOWA

a¼0.3 a¼0.5 a¼0.7 a¼0.3 a¼0.5 a¼0.7

Coal-fired 0.1081 0.1103 0.1137 0.0959 0.0976 0.0988

Hydro 0.3619 0.3622 0.3647 0.3419 0.3453 0.3496

Nuclear 0.1379 0.1376 0.1365 0.1371 0.1384 0.1419

Natural gas-fired 0.1760 0.1805 0.1864 0.1817 0.1846 0.1886

Wind 0.0909 0.0926 0.1059 0.1000 0.1014 0.1146

Biomass 0.0625 0.0533 0.0269 0.0765 0.0656 0.0385

Oil/diesel 0.0626 0.0635 0.0659 0.0668 0.0671 0.0681
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4.2. Comparison between AOWA and EOWA

The main difference between AOWA and EOWA is the process
of converting normalized triangular fuzzy numbers into crisp
data; this leads to the results of AOWA and EOWA are signifi-
cantly different (as shown in Table 3). In EOWA, the max-
membership method is used to defuzzy the normalized triangular
fuzzy numbers; in comparison, COG method is used for defuzzy-
ing the normalized triangular fuzzy numbers in AOWA. In this
part, there are two comparisons between AOWA and EOWA: one
is reached under different a values and the other is obtained
under changed criteria important degrees.

4.2.1. Results under different a values

Table 6 shows the solutions from EOWA for the corresponding
ranking order of the seven power stations. The corresponding
values of seven power stations are (0.1081, 0.3619, 0.1379, 0.1760,
0.0909, 0.0625, 0.0626) under a¼0.3, (0.1103, 0.3622, 0.1376,
0.1805, 0.0926, 0.0533, 0.0635) under a¼0.5, and (0.1137, 0.3647,
0.1365, 0.1864, 0.1059, 0.0269, 0.0659) under a¼0.7. Although the
integrated goodness scorings of seven power stations under three
a values are different, their ranking orders are the same. This
means that the final decision support systems provided by EOWA
cannot reflect the decision maker’s optimism degree. Under this
condition, it is not necessary for the existence of the optimism
degrees, which is inconsistent with the actual situations. On the
other hand, when a¼0.3, the ranking orders of biomass power
station and oil/diesel power station are 7 and 6, respectively;
when a¼0.7, the ranking orders of wind power station and coal-
fired power station are 5 and 4, respectively. Both these are
different from those obtained from AOWA. In addition, the specific
generation shares obtained by EOWA and AOWA are also different
for seven power stations under three a values. For example, when
a¼0.5, the precise generation shares for coal-fired power station
and hydropower station obtained from EOWA are higher than the
results from AOWA, while the conditions are opposite for nuclear
power station, natural gas-fired power station, wind power sta-
tion, biomass power station and oil/diesel-fired power station.
This is because different processes of defuzzying the normalized
triangular fuzzy numbers in the two operators.

In EOWA, the crisp data of L, LM, M, MH and H are 0.00, 0.25,
0.50, 0.75 and 1.00, respectively. Compared with the ones in
AOWA, the value of L is lower while the value of H is higher; thus
the range between L and H is much larger. Furthermore, because
of H¼1, the important degrees of OMC and CC higher than the
ones in AOWA. In this case, the integrated goodness scoring of
coal-fired power station higher than the integrated goodness
scoring of wind power station when a¼0.7, which is opposite
for AOWA. On the other hand, due to L¼0, the negative side of oil/
diesel-fired power station is neglected when a¼0.3; thus biomass
power station comes at the last place. Furthermore, the different
crisp data about the triangular fuzzy numbers of two methods
Table 6
Results from EOWA under different a values.

Power stations Integrated goodness scoring Ranking orders

a¼0.3 a¼0.5 a¼0.7 a¼0.3 a¼0.5 a¼0.7

Coal-fired 0.1081 0.1103 0.1137 4 4 4

Hydro 0.3619 0.3622 0.3647 1 1 1

Nuclear 0.1379 0.1376 0.1365 3 3 3

Natural gas-fired 0.1760 0.1805 0.1864 2 2 2

Wind 0.0909 0.0926 0.1059 5 5 5

Biomass 0.0625 0.0533 0.0269 7 7 7

Oil/diesel 0.0626 0.0635 0.0659 6 6 6
lead to the different generation shares for seven power stations,
even under the same a value. Actually, the values of H and L

resulted from the max-membership method are a relatively
extreme case for practical problems. Comparatively, the crisp
data of the normalized triangular fuzzy numbers defuzzied by
COG method in Table 3 are more proper, and can more effectively
reflect the decision maker’s optimism degree. Hence the corre-
sponding final solutions calculated by AOWA are more exact and
sensitive. In comparison, AOWA can afford the decision maker
with a more reasonable and sensitive decision support system
than EOWA.

4.2.2. Results under changed important degrees

Table 7 shows the results calculated by AOWA and EOWA
under the changed important degrees for all criteria. It is pointed
that the changed important degrees are only different in the left
and right benchmarks of normalized triangular fuzzy numbers L,
M and H, which are denoted by broken lines in Fig. 4. It can be
obtained that neither the integrated goodness scorings nor rank-
ing orders from EOWA have changed, which are just converse to
the results from AOWA. The reason is that the changed important
degrees for criteria don’t change the max-membership degrees of
normalized triangular fuzzy numbers. In this case, the crisp data
of normalized triangular fuzzy numbers resulted from the max-
membership method will not have any change; thus the solutions
from EOWA are still same with the ones in Table 6. Conversely,
since the COG method is sensitive to the changes of the normal-
ized triangular fuzzy numbers, the crisp data of L and H have
changed and caused the different solutions provided by AOWA.
Compared with the original important degrees, the values of H

and L become smaller and larger, respectively; correspondingly,
the important degrees for criteria OMC, CC and R become lower,
lower and higher, respectively. In this case, the ranking orders
between wind power station and coal-fired power station have
exchanged when a¼0.3 and 0.5.

In general, the results from AOWA are more effective than the
ones from EOWA when the changes of important degrees for
criteria have happened. Actually, these kinds of changes in MCDM
problems indeed exist. For example, when the numbers of experts
for making important degrees for criteria have changed or the
local economic policy and/or other social factors have altered,
changes as shown in Fig. 4 will happen and finally result in the
changes of the decision making systems. Therefore, it can be
concluded that AOWA is more sensitive and more suit for MCDM
problems, and simultaneously supplies the decision maker with
an optimal and reasonable decision support system.
5. Conclusions

In this study, an advanced ordered weighted averaging operator
has been developed for dealing with multicriteria decision making
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problems under uncertainties. Based on the traditional OWA, this
operator employs interval theory and center of gravity method.
AOWA is capable of dealing with the linguistic quantifiers and the
uncertain information which is given under optimistic and pessi-
mistic conditions without knowing their distribution information.
Therefore, it can make up the defects in OWA and EOWA. Mean-
while, the application of the vector method for solving COG of a
normalized triangular fuzzy number in plane right angle coordinate
makes the calculation procedure much simpler than the integration
method. Furthermore, the adoption of COG method for defuzzying
the normalized triangular fuzzy numbers makes AOWA more
sensitive and exact in important degrees for criteria and optimism
degrees. Consequently, AOWA can afford a reasonable and applic-
able decision support system under different optimism degrees.

The developed AOWA has then been applied to a case of
planning electric power problems. The obtained results under
different optimism degrees can be used for generating decision
alternatives and thus help the decision maker identify desired
policies for a number of conflicting objectives. In addition, two
comparisons between AOWA and EOWA also further imply the
superiority and sensitivity of AOWA. Although this study is the first
attempt for planning electric power systems through the devel-
oped AOWA operator, the results suggest that this operator is
applicable for other MCDM problems containing uncertainties
and linguistic quantifiers. Furthermore, the developed method
can also be used to advance the fuzzy logic controllers based on
genetic algorithm. Since the factors effecting on controllers include
not only the size of every fuzzy set membership function covering
domains but also the every fuzzy set membership function shape,
for simplicity and feasibility of the algorithm, the simplest isosceles
triangle membership function is generally chosen and used as a
defuzzying technique; this may neglect lots of useful information
in real-case problems and reduce the effectiveness of the con-
trollers. On the other hand, the AOWA can defuzzy triangular fuzzy
numbers with simple algorithm but without assuming the trian-
gular fuzzy number is isosceles; meanwhile, it can provide more
sensitive results than the max-membership method for defuzzifi-
cation. Therefore, the introduction of AOWA into the fuzzy logic
controllers may be an interesting research work in future.
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