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Non-local theory solution of two collinear mode-I permeable cracks
in a magnetoelectroelastic composite material plane
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P.O. Box 3010, No. 2 Yikuang Street, Harbin 150080, China
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The non-local theory solution of two collinear mode-I permeable cracks in
a magnetoelectroelastic composite material plane was investigated using
the generalized Almansi’s theorem and the Schmidt method. The problem
was formulated through Fourier transform into two pairs of dual integral
equations, in which the unknown variables are the jumps in displacements
across the crack surfaces. To solve the dual integral equations, the
displacement jumps across the crack surfaces were directly expanded as a
series of Jacobi polynomials. Numerical examples were provided to show
the effects of crack length, the distance between two collinear cracks and
the lattice parameter on the stress field, the electric displacement field and
the magnetic flux field near the crack tips. Unlike the classical elasticity
solutions, it is found that no stress, electric displacement or magnetic flux
singularities are present at the crack tips in a magnetoelectroelastic
composite material plane. The non-local elastic solutions yield a finite hoop
stress at the crack tip, thus allowing us to use the maximum stress as a
fracture criterion.

Keywords: magnetoelectroelastic composite materials; two collinear cracks;
non-local theory; Schmidt method; lattice parameter

1. Introduction

Combining two or more distinct piezoelectric and piezomagnetic (magnetostrictive)
constituents, the resulting piezoelectric/piezomagnetic composite material can
assume the advantages of each constituent and, consequently, have superior
coupling magnetoelectric properties compared to conventional piezoelectric or
piezomagnetic materials. Magnetoelectric coupling is a new product property of the
composite, since it is absent in each constituent. Consequently, they are extensively
used as electric packaging, sensors and actuators, magnetic field probes, acoustic/
ultrasonic devices, hydrophones, and transducers with the responsibility of electro-
magneto-mechanical energy conversion [1]. Therefore, the study of fracture
mechanics of magnetoelectroelastic composite materials is important in the design
of magnetoelectroelastic composite devices and magnetoelectroelastic composite
structures, such as dampers in controlling structural vibration, sensors and actuators
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in adhesively bonded joints and sensors in non-destructive testing. There have been
numerous studies on fracture parameters, stress intensity factors, electric displace-
ment intensity factors, magnetic flux intensity factors and energy release rate [2—12]
under different electric boundary conditions on crack surfaces. It is interesting
to note that very different results were obtained when changing the boundary
conditions [13]. However, these solutions contain stress singularities at the crack tips,
which is not reasonable according to physical nature. In fact, the stresses at the crack
tips are finite. As a result, beginning with Griffith, all fracture criteria in practice
today are based on other considerations, such as energy and the J-integral [14].

In contrast to the local approach of zero-range internal interactions, modern
non-local continuum mechanics, developed over the last four decades, postulates
that the local state at a point of a body is influenced by the action of all particles of
that body. This theory was constructed primarily by Edelen [15], Eringen [16], and
Green and Rivlin [17]. Pan and Takeda [18] described the basic theory of non-local
elasticity with emphasis on the difference between the non-local theory and classical
continuum mechanics. To overcome the stress singularity at the crack tips in the
classical elastic theory, Eringen [19-21] used non-local theory to investigate the stress
near the tip of a sharp line crack in an isotropic elastic plate subject to uniform
tension, shear and anti-plane shear loading. His solutions did not contain any stress
singularities at the crack tips. This enables us to employ the maximum stress criterion
to predict fracture in a more natural way. However, it is well-known that there is
disagreement between Eringen and co-workers [19-21] and Atkinson [22,23] over the
non-local mixed boundary value problem of crack. As discussed by Cheng [24], the
non-local theory can be used to solve brittle fracture problems, i.e. it can be used to
solve fracture problems in piezoelectric and magnetoelectroelastic materials.
Recently, the non-local theory was used to study fracture problems in piezoelectric
materials [25,26]. As expected, the solutions did not contain any stress and electric
displacement singularities at the crack tips. However, to the best of our knowledge,
the magneto-electro-elastic behavior of magnetoelectroelastic composite materials
with two collinear mode-I permeable cracks has not been studied by the non-local
theory.

2. Basic equations of the non-local magnetoelectroelastic composite materials

For the plane problem, the basic equations of linear, homogeneous, non-local
transversely isotropic magnetoelectroelastic composite materials, with vanishing
body force, are written as follows [6,10,25-27]:

0t . (x,2) 0ot _.(x,2) B

ox 0z
ot (x,z)  dt.(x,2) 0

0

ox 0z ( 1 )
oD (x,z) 9D.(x,z)
+—= =0
x 0z

0B (x,z)  0B.(x,z)
A + “~ —
x dz

0
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where the only difference from classical magneto-electro-elastic theory is in the
stress, electric displacement and magnetic flux constitutive equations, i.e. Equations
(2)(8), in which the stress t,(x,z) (i,k =x,z), electric displacement D,(x,z)
(k = x,z) and magnetic flux B,(x,z) (k = x,z) at a point (x, z) depend on u (x, z),
w (X, 2), px(x,2) and Y x(x,z) (k=x, p), at all points of the body. 7, (x,z), D;(x,z)
and B, (x,z) (i = x,z, k = x, z) are the plane stresses, in-plane electric displacements
and in-plane magnetic fluxes, respectively. u(x,z) and w(x,z) are the mechanical
displacements. ¢(x,z) and ¥(x, z) are the electric potential and magnetic potential,
respectively. ¢, (IxX" — x|, 1z —z]), ¢3(IX — x|, 12" —z]), (X — x|, |2 —z]) and
(X' — x|, |z — z|) are the non-local elastic stiffness parameters, &f,(]x" — x|,
|z —z[) and &§;(]x’ —x]|,|z/ —z|]) are the non-local dielectric parameters,
efs(Ix' — x|, 12/ — z), e5,(Ix" — x|, |2/ — z|) and e};(]x" — x|, |z’ — z|) are the non-local
piezoelectric parameters, fi5(|x" — x|, |z —z|), f5i(1x" — x|, |2/ — z|) and f35(]x" — x|,
|z —z[) are the non-local piezomagnetic parameters, g7, (|x" —xl,|z’ —z|) and
g5,(Ix" = x|, |z — z|) are the non-local electromagnetic parameters, and uj;(|x" — x|,
|2/ — z[) and p3;(|x" — x|, |z’ — z|) are the non-local magnetic permeability parameters,

which are functions of the distance d = \/ (x' — x)* + () — y)* between the point of
interest and an arbitrary point in the body. As discussed in [28], the forms of
CT]('-X/ - X|, |Z/ - Z|)> CT}('-X/ - x|; |Z/ - Z|)7 C§3(|X/ - x|) |Z/ - Z|)’ C24(|xl - X|, |Z/ - Z|)a
en (1" = x, 12 = zI), &33(1x" — x[, |2/ — z), efs(IX — x|, 12" — z[), 5 (Ix" — x[, 12 — z]),
€>§3(|X/ - X|, |Z/ - Z|)n ](]*5(|X/ - xln |Z/ - Zl)a f?i('-x/ - X|, |Z/ - Z|)a f3>§(|xl - X|, |Z/ - Z|)a
gh(x = xl, 12" = z), (X" —x|,12 = z0), pf (X — x|, 12" —z]) and pi(1x" — x|,
|z — z|) can be assumed as follows:
[e11 (X" = x1, 12" = zI), 31X — x1, |2 — zI), 331X — x1, |2 — z])]

= o(|x" = x|, 12" — zD[enr, 13, €33]
[cas(Ix" — x1, 12" = z]), 7, (Ix" — x|, |2/ — z]), 35(Ix" — x], |2/ — z])]

= a(|x" — x[, 12" — z|)[c44, €11, €33]
212 = z])]

= o(|x" = x|, 12" — z)ers, e31, e33] )
/50" = x1, 12" = 2D, f51(0x" = x1, 127 — 2], f55(1x" — x[, 12" — 2])]

= o|x" = x1, 12" — zD[ /15, /31,./33]
[ghi(x" = xI, |2 = z]), g3 (Ix" — xI, |2 — z]), iy (Ix" = x[, |2 — z])]

=a(|x’ — x[, |z = zD[g11, &3, 1]

wis(IxX" = x|, |2 = z) = a(|x" — x1, |2/ — z])ss,

[efs(1x — x[, 12" — z[), €5, (Ix" — x[, |2/ — ), e55(]x" — x

o 7 —z|) = agexp{—(B/a)’[(x — x)* + (' — 2]}, (10)

where a(|x" — x|, |z' — z|) is known as the influential function. g and a are material
constants. Normally, a is a known constant as the characteristic length of a material,
which may be selected according to the range and sensitivity of the physical
phenomena to be investigated. For perfect crystals, ¢ may be taken as the lattice
parameter. For granular materials, « may be considered to be the average granular
distance and, for fiber composites, the fiber distance, etc. The material constant

x’—x},
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p may be determined experimentally. ¢, ¢,3, €33, Cag» €115 €335 €155 €315 €335 f15:S31- S 33>
g11-833. My, and p4y are elastic, dielectric, piezoelectric, piezomagnetic, electromag-
netic and magnetic constants, respectively. «g is determined by the normalization:

[o¢] 00

[.].

Substituting Equations (9) and (10) into Equation (11), we can obtain, in a
three-dimensional space,

(11)

a = (B/a)’ (12)

Substituting Equations (2)—(12) into Equation (1) and using the Green—Gauss
theorem, we have

2 / /
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where
du(x, z ow(x, z op(x, z ov(x, z
0..(x,2) = ¢13 x.2) + ¢33 ( )+ €33 o, 2) — /3 (4670
ox 0z 0z 0z
a ow 0 B
D.(x,z2) = e31 u(x, 2) +e33 wx2) _ €33 o(x.2) 833 px, 2) . (17)
ox 0z 0z 0z
u(x, z ow(x, z dp(x, z o(x, z
B.(x,2) = f3 ( ) +/33 ( )+g33 i )—M33 pix.2)
0z 0z 0z

The expressions in Equation (17) are the classical Hooke’s law. 1 — / is the length of
the crack, which will be discussed shortly. It is worth noting that the surface integrals
in Equations (13)—(16) may be dropped, since the displacement, electric displacement
and magnetic flux fields vanish at infinity.

As discussed in [19], we have that o..(x,07) —o0..(x,07) =0, D.(x,07)—
D.(x,07) =0 and B.(x,0") — B.(x,07) = 0. Therefore, it can be shown that the
general solutions of Equations (13)—(16) are identical to those of the following four
differential equations almost everywhere over the entire plane:

Pu(x, z u(x, z Pw(x,z
(Cll 0D+ cag TS )> + (c13 + C44)—353, !

2 -
+(e31 +e1s) 22D — (fy) + fi5) 2 ?ia” =

(18)
(c13 + caa) 3)(c§~2) +eas” ”(x Dy ey & ‘1';(45;")
I T )
(615 + 831) 3v3~b) + e5 & ‘g(‘éz) de 3“u(r 2)
—on T — oy TR g "5&3") —gu 52 =0 (19)
. 9% u(x, z) 9% w(x, z) Pw(x, 2)
(fis +fa) S5 + fis 52+ 3 =0
+gn " 52+ g3 33 2D — o T — s ‘lg(f 2 — (.

3. Mode-I crack

It was assumed that there are two mode-I Griffith cracks of length 1 —/ along the
x-axis in the magnetoelectroelastic composite material plane, as shown in Figure 1. 2/
is the distance between the two cracks. (The solution of two collinear cracks of length
r — [ in magnetoelectroelastic composite materials can easily be obtained by a simple
change in the numerical values of the present paper for crack length 1—//r.
r>1[>0.) As discussed in [29], the thickness of the crack is very small. So, in the
present paper, the electric potential, magnetic potential, normal electric displacement
and the normal magnetic flux were assumed to be continuous across the crack
surfaces, i.e. a permeable crack mode was adopted. It was assumed that a distributed
normal stress loading 7..(x,0) = —1y (here, 7y is the magnitude of the uniform
tension stress loading) was directly applied on the upper crack and the lower
crack surfaces, which is equivalent to investigating the perturbation fields for a
remotely loaded cracked-body through the standard superposition technique in
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Figure 1. Geometry and coordinate system for two collinear cracks.

fracture mechanics. Therefore, the boundary conditions can be written, respectively,
as follows:

W, 0N =2(x,01) =0, D(x,0M) =1P(x,07) = —1
dV(x,0M) = ¢P(x,07), ¥ I(x,07) =y (x,07) . I<Ixl<1 (20)
DW(x,07) = DP(x,07), BY(x,0") = BA(x,07)

uP(x,07) = u@(x,07), wh(x,0") = w?P(x,07)

(1)(x 0+) _ .[(2)(,C 07), (1)(x 0+) _ ‘L’(2)(‘C 07)
¢V(x,01) = pV(x.07), ¥ I(x,0%) = yO(x,07)
DW(x,0%) = DP(x,07), BD(x,0") = BA(x,07)

IX|>1 and 0<|x| <!

@1

u(x,2) = w(x,z) = ¢ (x,2) = ¥ (x,2) = 0 for v/x2 + 22 — o0, (22)

where ©'/)(x,2) (i = x,z, k= x,z, j=1,2) are the stresses, u/)(x,z) and w(/)(x, z)
represent the displacement components in the x- and z-axis directions, in which all
quantities with superscript j correspond to the upper half plane 1 (for j = 1) and the
lower half plane 2 (for j = 2) as shown in Figure 1, respectively.

4. Solution procedures

Equations (18) and (19) can be solved using of the generalized Almansi’s theorem as
given by Yang [30]. As expression in Yang’s work [30], Equations (18) and (19) can
be rewritten as follows:

u(x, z)
w(x, z)
#(x, 2)
Y(x, 2)

[MD] =0, (23)
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where the operator is

e P P & i
gateusz (e (e teas)ymm —(H1+/1s) 5

. . & L e O i & & &
(c3tcaa) g Caamgatenss  eszatenss —fs30— S5

[M D] = P2 P2 2 2 P P P
(e15 + €31) 53 eiszmtensm —Cligm—83B3m —Sllge — 83332

& & & & & & &
(fis+30)5g: Sisge /552 Cuget8B52  —Hige — K333z

The determinant of [MD] is

98 3 3 3 3
det{MD] = a->— + b d 7
UMDl = azs+bamast Covioa T g T oo

in which a, b, ¢, d and e are given in Appendix 1. They are constants that only depend
on the properties of the materials.

Based on the cofactors A, of det [MD] (i, k=1, 2, 3, 4), and the method
developed in [8,30], the general solutions of Equation (23) are expressed as follows:

[u(x, 2), w(ix, 2), (¥, 2), Y(x, DI = [Ain, Ao, A, A Fx, 2), (24)
with F(x, z) satisfying the equation
det[MD]F(x,z) = 0. (25)

In the following analysis, we use only ( A,;, Ay, A3, A,,) for problems symmetric
about the z-axis:

86 86 86
Ay = —
2= sy Ty s T s
36 86 36 36
Ary = R _
2= ax© +on ox*9z2 +on ax29z4 + o 920 (26)
() 86 86 86
Arry = R _
2=l ax© +om ax*9z2 toss ax29z4 + o 920
86 86 86 86
Ary = — —
24 = 041 96 + g 2 + 043 29 + gy 926°

where oy (i=1,2,3,4,k=1,2,3,4) can be obtained in Appendix 2. They are
constants that only depend on the properties of the materials.

Using its symmetry on the z-axis and the Fourier transform on x, F(x,z) can be
expressed as follows:

2 o8}
F(x,z) = - / f(s, z) cos(sx)ds. 27)
0
Substituting Equation (27) into Equation (25) yields

Ff(s.2) 5 0%/ (s, 2) 40 (s,2) 6 01 (s,2)
P bs 9z0 tos azt ds 9z2

a +es*f(s,2) =0, (28)
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which is a homogeneous equation. The solution of f(s, z) is a function of exp(—Asz),
in which X is the root of the algebraic equation:

ard — b+ et =P +e=0 (29)
whose roots ( A?) are

, b1 1 bl 2k | 8
x1=4——5m7\/2ks—&—27ﬁ
, b1 I bt 48
A2=E—§m+§\/2R5—Ré—ﬁ
, b1 I bty v
k3=5+§\/m7\/2125—126+ﬁ
, b1 1 by dhc 4 84
k4=@+§m+§\/2R5—R6+”471{;TR2,

where R; =20 — 9bed + 27ad? + 27b%e — T2ace, Ry = ¢* — 3bd+ 12ae, R =

1
/ +Ry)3 2
—4(R2)3 + (R])z, Ry = Ri+R:) %R3)3, Rs = —faz — —%2, Rg = 35]%4 + —1;;

Depending on the propezfties of A2, the function f(s, z) has five different general
solutions, as follows:

(a) I A2 # 23 #243 # 23>0, then

SO(s,2) = Ai()e™1 + Ax(s)e ™2 + As(s)e ™ + Ay(s)e ™, 2> 0 31
f (2)(s, z) = Bi(5)e"? + By(5)e™ + Bi(s)e™ + By(s)e™, z<0
(b) If A3 # 23 # A3 =23 >0, then
SO(s,2) = Ai()e™17 4 Ax(s)e ™2 + As(s)e™ + Ay(s)ze ™%, 2>0 32)
f (2)(s, 2) = Bi(5)e"? + By(s5)e’™ + Bi(s)e™*” 4 By(s)ze™**, z<0
(¢) If 22 # A3 =23 =23 > 0, then
FW(s,2) = A1(5)e™1 + Aa(s)e ™27 4 A3(s)ze ™2 + Ag(s)22e ™%, z>0 33)
f (2)(s, 2) = Bi(5)e"? + By(s5)e*? + Bs(s5)ze™ + B4(s)z2e’\3‘”, z<0
(d) If 23 =23 =13 =23 >0, then
FW(s,2) = A1(5)e™ 4 Ay(5)ze ™25 + A3(5)22e ™2 + Ay(s)2}e ™, 220 (34)
FO(s,2) = Bi()e™ + By(s)ze" + B3(5)z2¢"> + By(s)2¢7, 2 <0
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(e) If 23>0, A3>0, A} #23 and 3,23 <0 or A3 and A] being a pair
of conjugate complex roots, then, in this case, the A; and A, are a pair of
conjugate complexes —3 & iw. The solution of the function f(s, z) is

T (s,2) = A1()e™1% + Aa(s)e ™% + A3(s)e ™% cos(swz) + Au(s)e ™ sin(swz), z>0
[ (s,2) = Bi(s)€"1% + Ba(s)e™* + Bs(s)e® cos(swz) + Ba(s)e’ sin(swz), z <0,
(35)

where § and w > 0 and A(s), Bi(s) (i=1, 2, 3, 4) are two functions of s to be
determined by the boundary conditions.

Due to the symmetry, it suffices to consider the problem for x >0, |z| < co.
Based on the solution of the auxiliary function f(s,z) for the case of
A3 # 243 # 23 # A3 >0, the displacements, stresses, electric displacements, electric
potentials, magnetic fluxes and the magnetic potentials satisfying Equation (22) were
calculated using Mathematica and via Equations (2)—(8), (24), (26), (27), (31)—(35)
for the problems, as follows (the other cases can be obtained using a similar method;
they were omitted in the present paper):

uV(x,z) = (1)/ A;(s)s® sin(sx)e*7ds
wD(x,z) = (2) / Ai(s)s® cos(sx)e > ds
(36)
2 o¢]
D(x,z) == (3)/ A;i(5)s° cos(sx)e 2 ds
$(x. 2) n;xk | Ads)s° cos(sx)
y(x,z) = (4)/ Ai(5)s® cos(sx)e 5 ds,
[o¢]
AD(x,z) = Z x(l ) / Bi(s)s® sin(sx)e**ds
0
00
wO(x,z) = Z X(2 ) / Bi(s)s® cos(sx)e’**ds
0
(37)
P (x,z) = (3 ) / Bi(s)s® cos(sx)e’**ds
2 * o o
YA (x,z2) = —Z A / Bi(s)s® cos(sx)e**ds,
T
i=1 0
h () A _ )L2 )L4 LA @) _ )LZ _ )\4 )Lﬁ _
Woore X o (o —apdi Faphdi) = —x Xk 5 0‘2(14)‘*‘0‘22 i T3 Foph =
Xi s X = ey Faphl —aghi fagd! = X0 , x =~y +aphl —aphit

6 (4%)
i = Xp s
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x.2) J2 22, allx = x1, |2 — z)oD(x, 2)dx'dZ
Tz (X =
+ 0% ax = Xl 12— 2)o@ (W, 2)dx'dz’

ST
Y

(x.2) Joo [0 allx' = xl, 12 = z))olD(x', 2)dx'dZ’
Ty (X =
+ 0% X = X112 — 2o (', 2)dx'dz’

- I
:/,m/,w[“("'

loD(x', 2)dx'dZ

(l)(A/, Z)dx'dZ

IS [ elx = xl, 12 = 2D, 2)dx'dz
DZ(xa Z) - 0 50 -
+ f—oo f—oo a(|x/ - XI, IZ/ - Z|)DE72)(X/, Z/)dx/dz/
S CEEE d
0 —00
0 00
NN
fOOO ffooo a(|x/ - X|, |Z/ - Z|)B§-l)(x/, Z/)dX,dZ/
B.(x,z) = 0
+ 0 S X = x|, |2 — z)BA(x, 2)dx'dZ
= / / ]BE,I)(X/, Z/)dx/dz/
0 —00

0 00
NN
where

O'g)(X, Z) Z ﬂ(l) / Ak(S, l‘)S7 COS(SX)eiA"’SZdS
(1)(35 Z) Z /3(2) / Ak(S, [)S7 sin(sx)e—k/(,vzds

DV (x,z) = Z ﬂ(3) / A(s, )s” cos(sx)e 5ds

B (x,z) = Z By / Ay (s, )57 cos(sx)e s,

2 /o /
_SZ) (¥, 2)dx'dZ,

lo?(x, 2)dx'dZ,

1753

(38)

(39)

(40)

(41)

(42)
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o(x,2) = Z,s“ ) / Ap(s, 1)s” cos(sx)e™*ds
k—
o(x,z) = Z ﬂ(z ) / Ar(s, 0)s” sin(sx)e™ds
(43)
DP(x,z) = Z /3(2 ) / Ar(s, 0)s” cos(sx)e**ds

BP(x,z) = Z B / Ap(s, 1)s” cos(sx)eds,

and
| ! 2 3 4
B =i — 533)%)(;() - 633“)(5() +fnka§<)

2 1 2 3 4
BY = —culhxn) + 171 — eisx) + fisx

3 3
/3( )= 631)(5{) €33MX + EzzAkX +g33)\kX;€)

4 ! 4
,35\) f31X() f33)\ka —g33)»kxk +M33MX§{)

1+ 2 3 4 1
B = i+ ennx + 633)»1\»)(5{ ' ) = -

(2" )] ) ﬁ(2)

2*) 1*
B = caalhixnl” — A8 ersxC )+ fisxl

3* 3* 3
,3,({ )26’31Xk +€33)»kxk —833)»ka —g33)»kX( ) = /327)

& - 2 4
B =l + faraxl) 4 gsnxl) — washaxl) = -2

Substituting for o from Equation (10) and applying Equations (42) and (43), the
integrations may be performed with respect to x” and z’' in Equations (38)—(41) by
noting the integrals [31]:

00 |
/0 exp(—py* — yy)dy = E(n/p)” exp(y?/4p)[1 — @(y/2/p)]

00 o sin&(x" + x) 12 ( ) { sin(&x) }
/,Oo exp(=px ){ cos&(X + x) } = (w/p)"exp cos(&x)

2 Z
d(z2) =7 fo exp(—1%)dz.

Therefore, Equations (38)—(41) can be expressed as follows:

D(x,2)== Zﬂ“) / hi(a, B, s,2) Ax(s)cos(sx)e#/'? ds

t(l)(x z)=— Zﬂ(z)/ hi(a, B, s,z)Ar(s) sin(sx)ef(ﬁ/")zzzds
(44)

DY(x.2)= ZE” / (@, B.5,2) Ai(s) cos(sx)e™ ¥ = ds

/c—

Bgl)(X,Z)Z (4)f hi(a, B.s,2) Ar(s)cos(sx)e /92 ds,
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(2)(x z) = (] )/ hi(a, B, s, z) Bi(s) cos(sx)e™ (Blar2 45

r.(¥2:)(x’ 2) = Z ,3(2 ) / hi(a, B, s, 2)Bi(s) sin(sx)e~#/ a’'? 4

(45)
DP(x,2) =~ Z g / ua. B, 5,2)Bi(s) cos(sx)e™ = ds
T
Bf_z)(x, z) = (4 )/ hi(a, B, s, z) Bi(s) cos(sx)e™ Blayz ds,
_ 2. 12 _ 2,
%exp(— ) {exp(“”j;fj;’) DI — @55
where /iy (a, B,s,z) = Dt 208/) Aok 2B and we
+6Xp("7)[ — (5N

4(B/ay’ 2(/a)

have Lin(} hi(a, B,s,0) = 1.
To solve the problem, the jumps in displacements across the crack surfaces were
defined as follows:

(46)

fi(x) = uV(x, 07) = uP(x,07)
fr(x) = wD(x,07) — w@(x,07).

It can be verified that fij(x) is an odd function about the variable x and f>(x) is an
even functions about the variable x.

Substituting Equations (36) and (37) into Equation (46), then applying the
Fourier transform along with the Equations (44) and (45) and the boundary
conditions Equations (20) (22), we have

Z X Au(s) - Z X Bi(s) = fi(s)/5°

Z X0 Ak(s) — Z X Bils) = fo(s)/s°

@7
Z X Ak(s) — Z X () Bils) =
_ /\
4
> Ans) - Z X () Bils) =
k=1
4 4 )
> BUHa, B.5)Ak(s) = Y B hi(a, B,5)Bi(s) = 0
k=1 k=1
4 4
Y B H(a, B, 9)A(s) = Y B hi(a, B,5)Bils) =0
=1 k=1 (48)

4 4
D AN B 5)Aks) = - AT N 5,5)Bi(s) = 0
k=1 k=1

4 4
> BIHa, B.5)Ak(s) = Y B hia, B,$)Bi(s) =0,
k=1

k=1
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where 7hj(a,B,s) = h(a,B,s,0). A top bar indicates one-dimensional Fourier
transform with respect to x, as shown in Equation (27).

Solving the eight equations of Equations (47) and (48) with eight unknown
functions, and substituting the results into Equations (44) and (45) and applying the
boundary conditions Equations (20) and (21), we can obtain

D(x,0) = % / sgi(a, B, )f>(s) cos(sx)ds = —19, [ <x <1, (49)
0
W0 = [Csp@pofiesinends =0. I=x=1 (50
0

/ Ooﬁ (s) sin(sx)ds = 0, / oo,fz(s) cos(sx)ds =0, x>land0<x</I  (51)
0 0

where gi(a, B, s)(k = 1,2) is a known function, as shown in Appendix 3. Here, we just
give these constants for A # A3 # A3 # A7 > 0. The other cases can be obtained
using the same method. To determine the unknown functions fi(s) and f>(s), the
above two pairs of dual integral equations (49)—(51) must be solved.

5. Solution of the dual integral equations

As the only difference between the classical and non-local equations is in the
influence function gi(a, B, s)(k = 1,2), it is logical to utilize the classical solution to
convert the system equations (49)—(51), to an integral equation of the second kind
that is generally better behaved. However, the dual integral equations (49)—(51)
cannot be transformed into a Fredholm integral equation of the second kind because
gi(a, B,s)(k =1,2) does not tend to a constant C (C #0) for s — oco. This is
explained in Eringen’s papers [19,20]. Of course, the dual integral equations (49)—(51)
can be considered as a single integral equation of the first kind with discontinuous
kernel. It is well-known in the literature that integral equations of the first kind are
generally ill-posed in the sense of Hadamard, i.e. small perturbations of the data can
arbitrarily yield large changes in the solution. This makes the numerical solution of
such equations quite difficult. To overcome the difficulty, the Schmidt method [32—
34] was used to solve the dual integral equations (49)—(51). The displacement jumps
across the crack surfaces were expanded as the following series:

1
S g pU2 (22 (1 _ G407
ﬁ(x)z I;)anpn (121,><] (]T,,)Z 5 ISXSL (52)

0, x>1 and 0<x</

S p/21) (=Y (1 _ =Y

0, x>1 and 0<x<]
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where a, and b, are unknown coefficients to be determined, and P{/>1/(x) is a
Jacobi polynomial [31]. The Fourier transforms [35] of Equations (51) and (52) are
expresses as follows:

2 (1) cos(s1#),n = 1,3,5,7, ...

(54)

n=0

- > 1 1— (=1 sin(st), n=0,2.4,6, ...
.fl (S) = ZanFnGgl)(S)EJn-&-l (S—/>, GSJ)(S) = { ( 2

. > 1 1 — —D)fcos(s¥), n=0,2,4,6, ...
fz(s)zanFntf)(s)—JnH(s /> fo)(s)z{( yeos(s i), n
S
n=0

2 (—1)Fsin(s1$),n =1,3,5,7, ...

(55)

where F, =2/7 F(":IH%), I'(x) and J,(x) are the Gamma and Bessel functions of
order n, respectively.

Substituting Equations (54) and (55) into Equations (49)—(51), it can be shown
that Equation (51) was automatically satisfied. Equations (49) and (50) were reduced

to forms, as follows:

| gl(a,ﬁ,s)Gf,”(s)JnH(s12‘ ’) cos(s)ds = —m, I<x<1, (56)
n=0 0

1 & 0 1 -
}Za”F”/O 2(a, B, s)Gf})(s)JnH (s 5 /> sin(sx)ds=0, /<x<I1. (57)

n=0

From Equation (57), it can be derived that @, =0 (n =0,1,2,3, ....), i.e. fi(x) = 0.
Equation (56) can now be solved for the coefficients b, using the Schmidt method
[32-34]. For brevity, Equation (56) can be rewritten as follows:

ibnE”(x) —Ux), I<x<l, (58)

n=0

where E,(x) and U(x) are known functions; coefficients b, are unknown and to be
determined. A set of functions P,(x) which satisfy the orthogonality conditions

1 1
[ PaPx = N N, = [P (59)
/ /

can be constructed from the function, E,(x), such that

n

Min
Po) = Y 1B, (60)
i—0 nn
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where M; is the cofactor of the element dj; of D, defined as

[ doo, dor. doa - . ., don

dio, di1,dr, .. dy

o, do1, doa, - .., doy |

D” e, 5 d!‘,' 2/ E,‘(X)E,’(X)dx. (61)
!

_an> dnla ans ) dnn n

Using Equations (58)—(61), we obtain

< M, . 1 [
’ /g‘n 7 g Nj// UEF; (x)dx (62)

6. Numerical calculations and discussion

Once we determine the coefficients b,, we can obtain the entire stress fields. However,
in the fracture mechanics, it is important to determine the stresses o', oll), electric
displacement D" and magnetic flux B{) near the vicinity of crack tips. In the present
study, o), o) DI and B along the crack line can be, respectively, expressed as

follows:

1 & o0 1-1
rg)(x, 0) = - ”2:(; b, F, /0 gi(a, B, S)GEIZ)(S)J,H_l (s 2) cos(sx)ds, (63)
W(x,0) =0, (64)

1 & © 1 -
Dgl)(x, 0) = - E b,F, /0 g3(a, B, S)GZZ)(S)J”H <ST/> cos(sx)ds, (65)
n=0

1 & o 1—1
BE—I)(Xa 0) = ; Z ann A g4(a, /3: S)G§12)(.S')J,1+1 (S 2) COS(SX)dS, (66)
n=0

where gi(a, B,s) (k = 3,4) is a known function, as shown in Appendix 3.

As discussed in [25,26,34], it can be seen that the Schmidt method is performed
satisfactorily if the first 10 terms of the infinite series in Equation (58) are retained.
From the expressions of functions gx(a, 8, s) (k = 1, 3,4), we see that the semi-infinite
integration and the series in Equations (63)—(66) are convergent for any variable x
for a/B #0. Equations (63)-(66) give a finite stress field, a finite electric
displacement field and a finite magnetic flux field all along z = 0; therefore, there
is no stress, electric displacement and magnetic flux singularity at the crack tips.
However, for a/8 = 0, the classical stress, electric displacement and the magnetic flux
singularities will be present at crack tips because Lim /i (a, 8,5,0) = 1. At I < x < 1,
D (x,0)/7y is very close to negative unity, and for’y' % 1, t)(x, 0)/7) possesses finite
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values diminishing from finite values at x =/ and x =1 to zero at x = oo. The
semi-infinite numerical integrals, which occur, were evaluated easily by Filon’s
method [36] due to the rapid diminution of the integrands. In all computations, the
material properties were assumed as given in Table 1 based on [27,37] and the
variables of all were selected as dimensionless.

The calculated stress, electric displacement and magnetic flux fields near crack
tips are plotted in Figures 2—-11. Now, we will discuss the results as follows:

(1)

(ii)

(1i1)

(iv)

Table 1.

In the present paper, the traditional concept of the non-local theory was
extended to deal with the fracture problem of magnetoelectroelastic
composite materials by means of the generalized Almansi’s theorem and
the Schmidt method [32-34].

In the present paper, the generalized Almansi’s theorem was applied and the
basic non-local theory solution was obtained for potential functions, stress,
electric displacement and magnetic flux fields near the crack tips in
magnetoelectroelastic composite materials. This method in the present paper
is feasible for general cases, as discussed in Equations (31)—(35); thus, the
obtained solution is valid for general cases. However, the Eshelby—Stroh
method, as adopted in [10], is valid only for the cases of non-degenerate
materials.

For a/B # 0, it can be proved that the semi-infinite integration and the series
in Equations (63), (65) and (66) are convergent for any variable x. So, the
stress, electric displacement and magnetic flux fields give finite values along
the crack line, as shown in Figures 2-5. Contrary to the classical
electro-elastic theory solution, it is found that no stress, electric displace-
ment or magnetic flux singularities are present at the crack tips; also, the
present results converge to the classical results when far away from the crack
tip. The maximum stress does not occur at the crack tip, but slightly away
from it, as shown in Figures 2 and 3. This phenomenon has been thoroughly
substantiated in Eringen’s paper [38]. The distance between the crack tip and
the maximum stress point is very small, and is dependent on crack length
and the lattice parameter.

The stress at the crack tip becomes infinite as the lattice parameter a — 0.
This is the classical continuum limit of square root singularity, which
can be shown from Equations (49)—~(51). For L1m hi(a, B,s,0) =1,
Equations (49)—(51) will reduce to the dual integraf ¢ equatlons for the

Material properties of magnetoelectroelastic composite materials.

11 (10"°N/m?) c12 (101°N/m?) ¢35 (10"°N/m?)  Cs3 (10'°N/m?) a4 (10'°N/m?)
12.5 12.4 21.6

0.005

22.6 . 4.4

es1 (C/m?) ex3(C/m?) EIS(C/m ) en(10' C*/Nm?) e33(10 ' C*/Nm?)
2.2 9.3 56.4 63.5

fi1 (N/Am) fi3 (N/Am) Fis (N/Am) p11(10© Ns*/C?)  pa3(10°© Ns?/C?)
290.2 350.0 275.0 297.0 83.5

811 (10

9 Ns/VC) g33 (102 Ns/VC)
0.008
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20 1 L 1 L 1 L 1 L 1

15 4

-5 T T T T T T T T T
0.0 0.5 1.0 1.5 2.0
X

Figure 2. Stress along the crack line versus x for /= 1.0 and a/8 = 0.001.

15

T,/ Ty

_5 T T T T T T
0.98 0.99 1.00 1.01 1.02
X

Figure 3. Locally enlarged graph of Figure 2 near the right crack tip.

same problem in classical magnetoelectroelastic composite materials. These
dual integral equations can be solved by using the singular integral equation
for the same problem in the local magnetoelectroelastic composite materials.
However, the stress, electric displacement and magnetic flux singularities are
present at the crack tips in local magnetoelectroelastic composite materials,
as is well known.
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12 A

T T T T T T T T T
0.0 0.5 1.0 15 2.0
X

Figure 4. Electric displacement along the crack line versus x for / = 1.0 and a/8 = 0.001.

T T T T T T T T T
0.0 0.5 1.0 1.5 2.0
X

Figure 5. Magnetic flux along the crack line versus x for /= 1.0 and a/8 = 0.001.

(v) The results of the stress, electric displacement and magnetic flux fields at the
crack tips tend to decrease with an increase in the lattice parameter, as
shown in Figures 6-8.

(vi) For the a/B = constant, viz. the lattice parameter does not change, the value
of the stress, electric displacement and magnetic flux concentrations (at the
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12 z,, (1,0)/ 7,
£ 8- 7, (1,0)/1,
X
4 -
T T T T T T T
0.000 0.005 0.010 0.015

Figure 6. Stress at the crack tips versus a/f.

10 | s | s | s |
8 -
D, (1,0)/7,
%
.—40 6
N
Q D, (1,0)/1,
4
5 -
T T T T T T T
0.000 0.005 0.010 0.015
alp

Figure 7. Electric displacement at the crack tip versus a/g.
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B, (1,0)/7,

/

B, (1,0)/7,

T T T T T T T
0.000 0.005 0.010 0.015
alfB

Figure 8. Magnetic flux at the crack tip versus a/pB.

! | ! | ! | ! | !
7,, (1.0)/7,
12
z,, (1,0)/7,
t@
N 8 A
o
4
T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 9. Stress at the crack tip versus /.

(vii)

crack tip) increase with increasing crack length, as shown in Figures 9-11.
Noting this fact, experiments indicate that magnetoelectroelastic composite
materials with smaller cracks are more resistant to fracture than those with
larger cracks.

It can be ascertained that the stress fields near inner crack tips are greater
than those near outer crack tips, as shown in Figures 2-11.
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1 L 1 L 1 L 1
9 - D, (1,0)/1,
D, (1,0)/1,

2 6-
&
N

3 -

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

l

Figure 10. Electric displacement at the crack tip versus /.

1 1 " 1 1
3_
B, (1,0)/7,

S 2- B, (1.0)/1,
g
mN

1 4

——
0.0 0.2 0.4 0.6 0.8 1.0

/

Figure 11. Magnetic flux at the crack tip versus /.

(viii) For the electric displacement and magnetic flux fields near the crack
tips, they have the same changing tendency as stress fields, as indicated in
Figures 2-11. However, the amplitude values of the electric displacement
and magnetic flux fields are very small, as shown in Figures 4-11, because
the perturbation electric displacement and the perturbation magnetic flux
fields near the crack tips are cased only by the mechanical loading.
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7. Conclusions

The non-local theory solution of two collinear mode-I cracks in a magnetoelec-
troelastic composite material plane was given by the generalized Almansi’s theorem
and the Schmidt method. Numerical examples were provided to show the effects of
crack length, the distance between two collinear cracks and lattice parameter on the
stress field, electric displacement field and the magnetic flux field near the crack tips.
Unlike classical elasticity solutions, it was found that no stress, electric displacement
and magnetic flux singularities are present near the crack tips in a magnetoelec-
troelastic composite material plane. The non-local elastic solutions yield a finite
hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture
criterion.
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Appendix 1

a = cul—2e3f3383 + 6’%3#33 —f323833 + C33(g§3 + 133833)]
b= —{e3,/5 + 2c33e31/15833 + 2c33€31/31833 — 2013€31/33833 — 2Ca4€31/33833 — 2033C44811833
+ (1183 — C1103383; + 20130833 — 333, 133 + e33(f15 + 2fisf31 151 — caatin — Crinas)
+ e15(f53 — e33m33) + 2ers{less(fis +/51) — ciafaslgss + e (f — caaps))
— 2es3{—caaf33811 + 13f15€33 + C13/31€33 + caaf31833 — c11f33833
+eis(f1s/33 + 133 — cisnsz) + el fisfzs + 513 — was(ens + cas)l}
+ casfhen — cxscasmtazen + exf e + 203afisf31€3 + caafsiess
= 2c13f15/33833 — 2c13/31/33833
— 2cafyifsess + ClifiE3 — €33Caa11633 + (3133833 — C11C3A33ET + 2C13Caa433E33 ),
¢ = 2ci3e3fi5gn + 2c3esfagin + 2casennfaign — 2cniesfagin + ¢33cagty — 201e33/15833
- 20%35’115’33 + 2c11033811833 — 4C13¢44811833 + 0116’44&%3 + 6’116%3#11
+ e15(2f31/f5 + expnn — 2c13i33) + €3, (=2f15/33 + i + caaptss)
—2eisles(fis +/31) g1 — ciafig — 2¢13f15833 — c13f31833 + ciif33833
+ e33(f15/31 +f321 + ez — crius3)]
+ 2es1{—c33/15g11 — 3331811 + 13f33811 + caaf33g11 + 13/15833 — Caaf31€33
+enlfi +fisfs — (e13 + cant] + ers(—fisfss +faufss + e — ci3pa)}
—exafen — 2efisfien — effien + 2e3fisfnen + 2enfsifnen + 2cafsifnen
- 6‘11]323,811 + €33¢44 011611 — 6'%3#33811 + crica3pszgn — 2c13¢aa 433811 + 2L‘13f125833
+ 2e13fi5f31633 — canfii €33 — 2011f15/33633 — C13H11€33 + C1IC33 1€
— 2¢13¢44 011833 + €11C44 /43333,
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d = —2ci1e03f15811 — 181 + criengly — 2¢i3cagy) + 2c11cugngs + €3y (—fi5 + casfiin)
+ 2e31(e15/15/31 + c1afisgn — caaf31811 — cizerspnn)
+ 2e15[c13(2f1s + f30) g1 — c11(f33811 +/15833 — esapnn)]
— els(f51 + 2ci3p1 — cripaz) + 2enafisen + 2a3fisfien — cafien — 2e1fisfen
- C%gullsll + c116330011€11 — 2C13C44 11 E11 + C11Ca4 /433811 — 011f125833 + cricaat11€33,

, 2 L2 2 o
e = =2cpie15f15811 + cr1¢aagy) + criejsiin — Ciifse1 + Clicaaptii€n.

Appendix 2

an = —[—es1fisgin + c13g1) + casgly + efsin + eis(—2fisgu — 51811 + espn)
—fken = fisfnen +cnpnen + capnenls
2 = e31/33811 + e31/15833 — 2¢13811€33 — 2c44g11833 + e[ fisgu + 51811 — (e1s + es)in]
— efsuss +eis(frgin + 2f1sg3 + 183 — eatias) +fisfen +fifnen
— C13MU433811 — C44 433811
+ 13833+ f15/31633 — CI31411€33 — Caafli1 €33
a3 = —{—e15f33833 — e31/5383 + C1385; + caagiy + en[—fisg3 — 5193 + (€15 + e3n)iss]
— f15/33833 — f31/33633 + C13U33633 + Caapeazensl,
| = Cll(g%l + (i),
an = —2e31(fis +f31) g1 + caaghy + 2¢1181183 + efsiiin + €3
—2e15(f15gn1 +/51810 — esipnnn)
—fEen = 2fisfien —fhen + caspnien + cripesen + ciipnies
3= —2e31(fis +/51) €33 + 2casgni g + C11g3; + €53 + e 1433
—2e15(f15833 +/31833 — €311433)
+ caapi33€n —f125833 = 2/1s/51€3 —f321833 + C44/011€33 + C111433E33,
@ = cas( @y + 1a3en), a3 = —cii(fisgn — eisiin)s
oz = —{—c13f15g11 — 1331811 — caaf31811 + cnfgu + afisgss — cnfign
+es1[—f5 — fisfs1 + (i3 + cadpn] + eis(fisfsr + 51 + iz — cipias)},
a3z = —[—e1sf15/33 — e31f15/33 — e15/31f33 — es1f31f3 + caafiagn — c1afisg3
— C13/31833 — €44/31833 + C11/33833 + c13€15133 + C13€31U33 + C44€31 1433
+e3(f5 4 2fisfs1 + /5 — caatrn — enipss)),
o34 = —c4s(f33833 — e33p33),  aar = crilersgn +fisen)s
ap = —{—e3,fis + elsfs1 + (13 + cadesigin — criengi
+ eisles1 (/15 +./31) + c13gin — c11g3al
+ c1afisen + ciafaien + caafsien — enfaen — cnfisessl,
3 = e1sf3 + €3,/33 + cuensgin + criesgss — ersless(fis +/51) — 2e31/35 + c13g3]
— es1leas(fis +.51) + (13 + caa) €3] + caafizen — c13fisess — ciaf31e3
— caaf31833 + C1f33€33,
oy = cas(e33g3s +/33€33)-

o

o

)

o

[
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Appendix 3

Z.-G. Zhou et al.

Equations (47) and (48) can be rewritten as follows:

where

ra
1

A
N
B
A
A
e
Ay

s

Ma+ Mb =

1
x5

1) %
B3
3) %
B
4
£ s

1
x5

(1)
By I3
B
B

By

B
By

So, it can be obtained that

1 fl/SG 1
1o -
=-M"! ~
a 0 +2N
0

fi/s°
0

0 s

0

1
X

ph;
ol
ol

f/s°
0
Na — Nb = R
0
0
2 2 2
XK KD
3 3 3
e e
- 4) (4) 4)
X1 X2 X3

2 2 2
BOh BN B

So, the unknown functions A4; and B; can be expressed as follows:

1 s - 1 s 3
A; = 5(%1}‘1 +naf2)/s%, Bi= E(milfl —nuf2)/s°,

where [mylyq = [M]7, [nylyq =[N 7' . .
Substituting Equation (69) into Equation (67), it can be obtained:

1
A

7| B
/1 A
1 1

B

2

X(1>

3

]?2 X(])
4

X(|)

2 2 2 2
pOm B BORy BN

(1)

(1)

X2 X3
Bl s
Bl s
By B
X(22) X(32)
X(23) X(33)
X(24) X§4)

1
oy

1)«
ﬂi& )h4
B

4
B

2
o

3
ol

4
o

mi _fl
my | |0
my | |0
myy 0
nn ,];2
my | |0
n31 B

ngy 0

2
X

3
X

4
x5

2
B

(67)

(68)

(69)

(70)

(71)
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Therefore, we have

()
1 1 1 1 ! =0
WM XY A rmy | ,;’3 i =
1 1 1 1
/3(1 )hT /3(2 )h§ ﬂg )hik i)hi nyy 0 4 3)
) 3) 3 ) = =) XA him =0,
Bhy Byl ByUIY hii ms 0 i=1
Drs  pgWps @) <4> m 0 4
Bl By'hs Byl By 4 S B )h* my =0
i=1
4
@ Lo @ O > Vg =0
X1 X2 X3 X4 ni 1 =
3 3 3 3
oS A || 0 L@
@ @ 4 4 =lg| T 2xmm=0
Xi X X3 X4 31 =l
2 2 2 2 4
BOh Bhs B gD L 0 B2 hny =0
i=1
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(72)

(73)

Substituting Equation (69) into Equation (44) and applying Equations (72) and (73), we have

1 g - .
W(x,0) = —/ Zsﬁf(l)h,t(a, B, )1 fi + niif2) cos(sx)ds
T Jo

k=1

00 4 _ 00 _
= ! / s Z ﬂ}cl)lﬁ(a, B, $)ni1f> cos(sx)ds = ! / sgi(a, B, s)f> cos(sx)ds
T Jo k=1 T Jo

o) 4
D (x,0) = / [VZ BOh(a, B, s)(mi fi + n,dfz)} sin(sx)ds

= —/ s Z ,3,2)h,&(a B, s)ml\lfl sin(sx)ds = 1/00 sga(a, B, s)];l sin(sx)ds

T Jo

1 00 4 _ _
DI(x,0) = - / 53 BN (a, B )i + miafo) cos(sx)ds
0 k=1

00 4 ~ . .
= % / s Z B hi(a, B, ) f cos(sx)ds = % / sg3(a, B, 5)f> cos(sx)ds
0 k=1 0

1> & - -
B0 =[5 Y A Bl +mafo) cos(sx)ds
0 k=1

oo 4 00
= % / s Z ﬁf)h}ﬁ(a, B. )ng1f> cos(sx)ds = 1 [ sga(a, B, $)f> cos(sx)ds.
0 k=1

T Jo

(74)

(75)

(76)

(77



