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Due to the scarcity of statistical data, epistemic uncertainties are inevitable in the mechanism. As a promising uncertainty
quantification technique, polynomial chaos has advantages over other methods in terms of accuracy and efficiency. In this paper,
an improved nonintrusive polynomial chaos method is proposed for the kinematic reliability analysis of the mechanism with fuzzy
and random variables as well as fuzzy failure/safety states. Klir log-scale transformation is applied to unify the fuzzy and random
variables. Meanwhile, the polynomial-chaos-based probability formula of the fuzzy event is developed to characterize the fuzzy
failure/safety states. The proposed method is applied to the reliability analysis of a retractable mechanical system.The results show
good accuracy and efficiency of the proposed method when compared with the response surface method (RSM), Kriging method,
and Monte Carlo simulation (MCS).

1. Introduction

Computational dynamics model, which extends the classical
mechanics into the multibody formalisms and computer
algorithms, is always applied to the investigation of com-
plicated kinematic outputs of mechanisms [1]. Kinematic
reliability is defined as the probability that the position
and/or orientation of the mechanism output remain within a
specified range of the desired position and/or orientation [2–
4]. In order to evaluate the kinematic reliability, uncertainty
should be propagated through the computational dynamics
model. The uncertainty propagation requires the numerical
solution of numerous high-order and nonlinear algebraic and
differential equations.Therefore, it is very time-consuming to
apply the crude MCS to quantify the uncertainty, especially
when the clearances of joints are considered in the computa-
tional dynamics model.

Many surrogate models, such as RSM, kriging method,
and artificial neural networks (ANN), have been developed
to improve the efficiency of the uncertainty quantification.
Among these surrogate model methods, polynomial chaos

expansion (PCE) is a technique that uses a polynomial-based
stochastic space to represent and propagate uncertainty [5].
It can be mathematically explained as the projection of the
stochastic process to the probability space. The polynomi-
als are the basis vectors of the probability space, and the
coefficients of PCE are the coordinates of the stochastic
process. Compared to the conventional surrogatemodels, it is
more accurate and efficient. Moreover, PCE converges to any
stochastic processes with finite second-order moments [6].

PCE can be divided into intrusive approaches and non-
intrusive approaches. Intrusive approaches calculate the
unknown polynomial coefficients by projecting the resulting
equations onto basis functions, which require the modi-
fication of the deterministic code. Thus they are difficult,
expensive, and time-consuming for many complex compu-
tational problems [7]. On the contrary, in the nonintrusive
approaches, simulations are used as black boxes, and the
sampling-based methods are usually employed to calculate
the PCE coefficients. Nonintrusive polynomial chaos (NIPC)
is easier to execute and thus more applicable to the kinematic
reliability analysis.
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Uncertainties exist in the analysis and design of mecha-
nisms can be divided into aleatory uncertainty and epistemic
uncertainty [8, 9]. Aleatory uncertainty is considered to
be irreducible variability inherent in the mechanisms. It is
usually described by probability. Epistemic uncertainty is
a potential inaccuracy due to the lack of knowledge [10].
Epistemic uncertainty sources inmechanisms usually include
(1) the epistemic uncertainty of parameters due to the small
sample size of the products and the scarcity of the test data
and (2) the epistemic uncertainty of the failure/safety state
due to the vagueness in the failure criteria. And possibility
theory is a powerful tool to measure the epistemic uncer-
tainty. However, probability and possibility are defined in
different measure spaces. As previously mentioned, PCE is a
projection in the probability space on the basis of polynomial
chaos. Therefore, conventional PCE methods cannot tackle
the uncertainty quantification with both fuzzy variables and
random variables.

In the research of PCE-based mixed uncertainty quan-
tification, Eldred [5] proposed an improved second-order
probability (SOP) method, in which a nested iteration is
employed. PCE is used to quantify the randomness in the
inner loop to obtain the cumulative distribution function.
And optimization-based interval estimation is applied to
calculate the maximum and minimum value of the system
responds. The system responses are finally expressed in
an interval form. Monti et al. [11] presented a framework
of uncertainty quantification by PCE, in which all of the
epistemic uncertainty is described by interval. Fuzzy variables
in the system are extended into the random fuzzy variables,
where a combination of alpha-cuts provides the confidence
level related to the probabilistic part and the nonprobabilistic
part of the uncertainty.

However, things are more complicated for the kinematic
reliability analysis and design. In the real engineering prob-
lem, in addition to the epistemic parameter uncertainties,
there are also epistemic uncertainties in the failure/safety
states due to the vagueness in the failure criteria of mech-
anisms. Since PCE-based approaches mentioned above are
unable to deal with the coexistence of the fuzzy failure/safety
states and the fuzzy/random variables in the mechanical sys-
tem, this paper proposes an NIPC-based method to evaluate
the kinematic reliability of the mechanismwith the fuzzy and
random variables as well as the fuzzy failure/safety state. Klir
log-scale transformation is employed to unify the fuzzy and
random variables. The fuzzy failure/safety state is character-
ized by the fuzzy probability theory. And the polynomial-
chaos-based probability formula of the fuzzy event is used to
calculate the kinematic reliability.The results of the kinematic
reliability analysis for a retractable mechanism show the
accuracy and efficiency of the proposed method.

The paper is structured as follows. In Section 2 the theory
of the polynomial chaos and the Point-Collocation method
is reviewed. In Section 3 the representation of epistemic
uncertainty in the mechanism is discussed. In Section 4 the
theory, algorithm, and procedure of the proposed NICP
method are presented. The proposed method is applied to a
retractable mechanical system in Section 5 and conclusions
are drawn in Section 6.

Table 1: Optimality of the polynomial basis functions correspond-
ing to the standard forms of probability distributions.

Distribution Polynomial basis function Support range
Normal Hermite [−∞,∞]

Uniform Legendre [−1, 1]

Beta Jacobi [−1, 1]

Exponential Laguerre [0,∞]

Gamma Generalized Laguerre [0,∞]

2. Polynomial Chaos Theory

PCE is a stochastic method that was first introduced by Wie-
ner as “Homogeneous Chaos” [12]. The theory evolved into
the Wiener-Askey polynomial chaos which includes the
entire Askey scheme of orthogonal polynomials [6]. Recently,
PCE has become a research hotspot in the uncertainty
quantification [13–15].

System response 𝐺 can be represented by PCE as
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where 𝑎
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is the coefficient of the PCE and Γ
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the selected polynomial basis function with the freedom of 𝑛.
The polynomials are orthogonal because the inner product
of each two of them is zero. 𝜉

𝑖
1

is the random variable with
specific distribution that determines the polynomial basis
function. The optimality of these basis functions selections
derives from their orthogonality with respect to weighting
functions that correspond to the PDFs of the continuous
distributions when placed in a standard form [5]. According
to Askey scheme, the linkage between standard forms of
continuous probability distributions and polynomial bases is
shown in Table 1.

As the parameter uncertainty follows the standard nor-
mal distribution, the basis function ideally takes the form
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where 𝜉 is the vector of the standard normal random
variables. In practice, there are finite random variables in
PCE.Thus (1) can be shown in a compact formwith a product
of one-dimensional Hermite polynomials. Consider
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The total number of terms in the PCE of order 𝑝 includ-
ing 𝑛 random variables is given by
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(5)

Point-Collocation NIPC method is first proposed by Wal-
ters [16] to approximate the polynomial chaos coefficients
of a stochastic heat transfer problem. Hosder et al. [17]
applied the Point-Collocation method (PCM) to stochastic
fluid dynamics problems with geometric uncertainty. PCM
calculates the coefficients of PCE through the evaluation of
the system responses at collocation points. Hosder et al. [7]
have observed that using a number of collocation points that
are twice the total number of the coefficients gives a better
approximation to the statistics at each polynomial degree.The
coefficients can be calculated by PCM as follows:
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where 𝜉
𝑗
is the vector of the 𝑗th set of the collocation points.

In total, 𝑞 (𝑞 = 2𝑁
𝑎
) sets of collocation points are required.

Equation (6) is a linear system of equations that can be solved
by least squares method. The coefficients of PCE can be
calculated as
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and 𝐺 represents the vector
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3. Epistemic Uncertainty Representation

3.1. Epistemic Uncertainty in Parameters. Epistemic uncer-
tainty often exists in the parameters of the mechanism due

to kinematic unevenness caused by the scarcity of data [18].
Possibility theory is a powerful tool to measure the epistemic
uncertainty in parameters [19]. And it is an extension of fuzzy
set and fuzzy logic, which can be used to model uncertainties
when there is little information or sparse data [20]. In
possibility theory, the membership function is extended to
possibility distribution. The subjective knowledge of the
uncertain variable 𝑥 can be represented with a pair (𝜒, 𝑟),
where 𝜒 is the set of possible values for 𝑥 and 𝑟 is a function
defined on 𝜒. The function 𝑟 provides a measure of confi-
dence that is assigned to each element of 𝜒 and is defined
as the possibility distribution function for 𝑥. Possibility for
a subset 𝑢 of 𝜒 is defined by

𝜋 (𝑢) = sup {𝑟 (𝑥) : 𝑥 ∈ 𝑢} , (10)

where 𝑟(𝑥) is required to meet the following conditions:

sup (𝑟 (𝑥) : 𝑥 ∈ 𝜒) = 1

0 ≤ 𝑟 (𝑥) ≤ 1 𝑥 ∈ 𝜒.
(11)

3.2. Epistemic Uncertainty in the Failure/Safety State. The
kinematic reliability is always related with the failure criteria.
Since failure criteria are determined by customers or experts,
and sometimes these subjective failure criteria cannot be
precisely defined in a reasonable way, the binary failure/safety
state assumption is not applicable [21]. The vagueness in
the failure criteria leads to the epistemic uncertainty in the
failure/safety state. Meanwhile, randomness is also presented
in the failure/safety state for the stochastic characteristic
of the system response. In summary, both vagueness and
randomness exist in the failure/safety state of mechanisms.

Fuzzy probability theory is an extension of probability
theory to deal with mixed aleatory/epistemic uncertainty
[22]. The fuzzy probabilistic model is settled between the
probabilistic uncertainty model and nonprobabilistic uncer-
tainty models. It treats the elements of a population not as
crisp quantities but as set-valued quantities in an imprecise
manner [23].

In the analysis of the kinematic reliability, the fail-
ure/safety state is interpreted as a fuzzy event 𝑍 which has
a membership function determined by experts and cus-
tomers. The common membership functions of the fuzzy
failure/safety state, which is proved to be simple, effective and
reliable [18], are shown in Figure 1.
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Figure 1: Three common membership functions: (a) Trapezoid function, (b) Combinational normal function, (c) Combinational ridge
function.

(3) Combinational ridge function
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In (12) to (14), 𝑎, 𝑏, 𝑐, 𝑑 are parameters of these membership
functions, which is determined according to the limited data,
the mission requirements, and the expertise; 𝑔 is the actual
motion output of the mechanism and 𝜇

𝑍
(𝑔) is the fuzzy

membership of the output 𝑔 to the safety state.

4. NIPC-Based Kinematic Reliability
Analysis Method

Since both fuzzy and random variables exist in the design
process of mechanisms, NIPC is applied to quantify the
mixed-uncertainty. The PC formula (3) can be rewritten as

𝐺 (𝜉, v) =
𝑁
𝑎
−1

∑
𝑗=0

𝑎
𝑗
Ψ
𝑗 (𝜉, v) , (15)

where v is the vector of fuzzy variables. Because NIPC is a
projection in the probability space on the basis of Hermite
polynomials, it requires transforming fuzzy variables into
standard normal variables to unify the fuzzy and random
variables.

4.1. Klir Log-Scale Transformation. On the transformation
between the probability and the possibility, some meaningful
principles are followed, so that the transformation is not
arbitrary under these constraints. These principles include
the following.

(1) The principle of possibility/probability consistency
which formulates some conditions under which the
probability and the possibility distributions are con-
sidered to be consistent [20].

(2) The principle of insufficient reason which is used to
preserve the uncertainty of choices between outcomes
[24].

(3) The principle of information invariance which starts
from the viewpoint that the concept of uncertainty is
intuitively connected with information [25].

(4) The principle of preference preservationwhichmeans
that if an element is preferred over another element
according to possibility distribution, then this prefer-
ence is maintained in the probabilistic setting [26].

In engineering design, the ratio scale is widely used in the
transformation between possibility and probability [27, 28]. It
consists only of normalization of the data. Thus its advantage
is the simplicity to be realized. The ratio scale in the discrete
form is presented as
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where 𝜋(𝑠
𝑖
) is the possibility of the element 𝑠

𝑖
; 𝑝(𝑠
𝑖
) is the

probability of the element 𝑠
𝑖
. However, the ratio scale has

poor performance in the compliance of some principles
mentioned above [26]. It is too rigid to apply the ratio scale
to the transformations between probability and possibility.

Through the comparison of the most common probabil-
ity/possibility transformations found in the literature, Ous-
salah [26] proved that Klir log-scale transformation performs
very well in the compliance of all the above mentioned
principles. Klir log-scale transformation is created according
to the principle of information invariance [29]. It keeps the
Shannon entropy of the probabilistic uncertainty and the
possibilistic uncertainty unchanged after the transformation.
Thus this paper adopts the Klir log-scale transformation

 at BEIHANG UNIV LIB on June 18, 2015ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


Advances in Mechanical Engineering 5

to unify the fuzzy and random variables. Klir log-scale
transformation in the discrete form is presented as
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𝑖
, respectively, which are both presented in a

descend form.
Compared to the ratio scale transformation, the advan-

tage of Klir log-scale transformation is that the amount of
uncertainty and information is preserved under the transfor-
mations. It is also more excellent to satisfy other transfor-
mation principles. Nevertheless, it is difficult to obtain the
parameters of the Klir log-scale transformation. Numerical
solution is required to be solved to search the proper values
of 𝛼 and 𝛽.This paper presents an optimization algorithm to
obtain the value of 𝛼 and 𝛽. The optimization formulation is
written as

find 𝛼
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This optimization problem can be solved by sequential
quadratic programming (SQP) which considers both of the
accuracy and the convergence rate.

After being transformed from possibility to probability,
uncertain parameters would follow nonstandard distribu-
tions. To convert these arbitrary random variables into the
standard normal random variables, the series approximation
is performed, which is under the assumption that an arbitrary
random variable can be represented by a series expansion of

the standard normal random variable. The series expansion
is written as follows:

𝑠 = 𝑏
0
+ 𝑏
1
𝜉 + 𝑏
2
𝜉
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑛
𝜉
𝑛
, (19)

where 𝑠 represents the arbitrary randomvariable, 𝜉 represents
the standard normal random variable, and 𝑏

𝑖
is the unknown

coefficient.The order of the expansion 𝑛 is determined by the
desired accuracy. The moments of the random variable 𝑠 are
computed by its probability distribution which has been
obtained through the Klir log-scale transformation. Because
the moments of the two sides of (19) should be equal, a linear
system of equations is constructed so that the coefficients of
the series expansion can be calculated. Then the relationship
of the fuzzy variable and the standard normal variable is
known. Consider

V
Klir log-scale transformation
→ 𝑠

Series approximationmethod
→ 𝜉. (20)

The unification of fuzzy variables and random variables
is realized by the Klir log-scale transformation and the
series approximation method. In this way, the NIPC can
be employed to approximate the motion output of the
mechanism. Equation (15) is then rewritten as

𝐺(𝜉, �̃�) =

𝑁
𝑎
−1

∑
𝑗=0

𝑎
𝑗
Ψ
𝑗
(𝜉, �̃�) . (21)

4.2. NIPC-Based Kinematic Reliability Analysis. The motion
error function of the mechanism is given by

𝑔 (x, v) = 𝜙 (x, v) − 𝜙
𝑑
, (22)

where x is the vector of random variables; v is the vector
of fuzzy variables; 𝜙(x, v) is the actual motion output which
is obtained by the computational dynamics model since the
structure of the mechanism is complicated, and 𝜙

𝑑
is the

desired motion output.
After the transformation of fuzzy variables and NIPC

is performed to approximate the motion output of the
mechanism, (22) can be presented as

𝑔 (x, v) = 𝜙 (𝜉, �̃�) − 𝜙
𝑑
, (23)

where 𝜙(𝜉, �̃�) is the approximatedmotion output obtained by
NIPC.

To ensure that themechanismworks properly, themotion
error should be less than an allowable error 𝜀. Thus the event
that the mechanism is in the safety state reads as

𝑍 = {
𝑔 (x, v) ≤ 𝜀} = {


𝜙 (𝜉, �̃�) − 𝜙

𝑑


≤ 𝜀} . (24)

The kinematic reliability of the mechanism can be obtained
as follow:

𝑅
𝑘
= 𝑃 {𝑍} = 𝑃 {

𝑔 (x, v) ≤ 𝜀} . (25)

Since vagueness exists in the safety state, the event that the
motion error belongs to the safety state is a fuzzy event. In this
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situation, the probability formula of the fuzzy event, which
is a significant basis to the fuzzy probability theory, can be
employed to calculate the kinematic reliability:

𝑅
𝑘
= 𝑃 (𝑍) = ∫

+∞

−∞

𝜇
𝑍
(𝑔) 𝑝 (𝑔) 𝑑𝑔, (26)

where 𝑔 is the motion error of the mechanism; 𝜇
𝑍
(𝑔) is the

membership function which is used to decide the member-
ship that the motion error belongs to the fuzzy safety state 𝑍;
𝑝(𝑔) is the probability density function of the motion error.
Since the error function by NIPC approximation is explicit
and simple, (26) can be solved by MCS.

The algorithm to evaluate the kinematic reliability is
developed and shown as follows.

Step 1. In total, 𝑁 sets of random numbers that follow the
standard normal distribution are generated and brought into
(21) to obtain the approximate motion outputs.

Step 2. The approximated motion outputs are then brought
into (23) to compute the corresponding motion errors 𝑔

𝑖
(𝑖 =

1, 2, . . . , 𝑁).

Step 3. The motion error 𝑔
𝑖
is carried into the membership

function of the safety state to calculate itsmembership𝜇
𝑍
(𝑔
𝑖
).

Step 4. The approximated kinematic reliability is the mean
of these memberships calculated according to the following
equation:

𝑅
𝑘
≈

1

𝑁

𝑁

∑
𝑖=1

𝜇
𝑍
(𝑔
𝑖
) . (27)

The accuracy of the approximated kinematic reliability
depends on the accuracy of the NIPC and the total sam-
pling number 𝑁. The sampling number can be taken as a
big value for the simple polynomial function of the PCE
approximation. Therefore, it requires little solution time and
the accuracy of the approximated kinematic reliability can be
relatively high. The accuracy and efficiency of the proposed
method would be demonstrated in the case study.

4.3. Procedure of the Method. The proposed NIPC-based
kinematic reliability analysis method is employed to quantify
themixed uncertainty in the computational dynamicsmodel.
Then the kinematic reliability of the mechanism with fuzzy
safety state is calculated based on the fuzzy probability theory.
The procedure of the proposed method is shown in Figure 2.

Firstly, the computational dynamics model of the mech-
anism is constructed. The uncertainty sources in the model
are identified.The epistemic uncertainty is represented by the
fuzzy variables which are measured by possibility distribu-
tions. The aleatory uncertainty is represented by the random
variables which are measured by probability distributions.
Secondly, the Klir log-scale transformation is employed to
unify the fuzzy variables and random variables. Then the
series approximation method is conducted to transform the
arbitrary random variables into the standard normal random

variables. Thirdly, the sensitivity analysis is conducted to
screen out the important uncertainty variables. The NIPC is
constructed iteratively to determine the proper order ofNIPC
by comparing themomentswith lower-orderNIPC. Fourthly,
the proper order NIPC is used to construct the motion error
function. The membership function of the safety state is
determined by experts and customers. Finally, the probability
formula of the fuzzy event is solved numerically to calculate
the kinematic reliability of the mechanism.

5. Case Study

A four-link mechanism consisting of the hydraulic actuator,
rods, and joints as shown in Figure 3 is employed as our
example.

The retractable mechanism is driven by the hydraulic
actuator to make the device arm rotate to a specified angle.
Then the device can switch between working position and
stopping position. The kinematic reliability of the retractable
mechanism is related to the rotating angle, which is affected
greatly by the joint clearance and geometric tolerance.

5.1. Kinematics Modeling and Simulation. The computational
dynamicsmodel of the retractablemechanism is constructed.
Meanwhile, the hydraulic control system with a PID con-
troller is also built to be cosimulated with the computational
dynamics model. And the kinetic outputs of the retractable
mechanism can be obtained from the cosimulation. The
structure of the cosimulation model is presented in Figure 4.

The time-varying cosimulation results of the mechanism
at the nominal state during the retracted process are shown
in Figures 5 and 6.

Because of the clearances in the joints, the mechanism
would vibrate when it begins to retract. This phenomenon
reflects on the drive force in Figure 5. And the drive force
fluctuates during the initial 0.5 second. Then the drive force
tends to be stabilized under the control of the PID controller.
Figure 6 shows that the total operating time is 8.6054, and
the rotating angle is 101.9966∘, which is in the specified range
between 101.2∘ and 102.8∘.

Experiments have been conducted and practical kinetic
data have been extracted from these experiments to verify
and validate the kinematics model of the retractable mech-
anism.

5.2. NIPC-Based Mixed Uncertainty Quantification. Accord-
ing to the result of sensitivity analysis, the most impor-
tant uncertain parameters for the kinematic reliability of
the retractable mechanism are selected and their probabil-
ity/possibility distributions are shown in Table 2.

“Length of the upper rod”, “length of the actuator slider”,
and “clearance of the joint that links the actuator slider
and the nether rod” are determined to follow a normal
distribution according to the machining errors and assembly
errors. “Coordinates𝑋 and𝑌 of the position of the connector
that links the device arm and the nether rod” are regarded
as fuzzy variables. The reason can be summarized as follows.
Uncertainties of these two position variables are determined
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Computational dynamics modeling

Identify the uncertainty sources 

Fuzzy variables Random variables

Standard normal random variables

Construction of the PCE

Selection of the collocation points

Kinematics simulation at collocation points 

Calculation of the PCE coefficients

Construct the motion error function 

Determine the membership function of the 
safety state 

Numerical solution of the probability formula of the 
fuzzy event 

Yes

No

Transformation

Sensitivity analysis

Kinematic reliability of the nechanism

Determine the PCE dimension

Determine the initial PCE order “i”

Comparison with the one-order-lower PCE

Meet the desired accuracy?

i + 1

Figure 2: The procedure of the proposed NIPC-based kinematic reliability analysis method.

Hydraulic actuator

Upper road

Nether road
Device arm

Joint

0

Figure 3: The schematic of the retractable mechanism.

by both the machining errors and the assembly errors of
the device arm and the nether rod. The accurate position
coordinates of the connector are difficult to measure. Mean-
while, because of the small production of the mechanism,

Hydraulic control system model

Cosimulation

Collocation points

Nonintrusive polynomial chaos

System responses

Computational dynamics model

∙ Drive force of the
hydraulic cylinder

∙ Position of the piston
∙ Velocity of the piston

Figure 4: The procedure of the construction of NIPC.

scarcity data can be obtained to construct the probability
distribution of these two uncertain variables. Probability
theory is inapplicable in this case. Therefore, possibility
theory is employed to measure the uncertainty with limited
information of geometric parameters as well as the expertise.
Coordinates 𝑋 and 𝑌 of the position of the connector follow
triangular possibility distribution.

Klir log-scale transformation is applied to unify the
random and fuzzy variables. The proposed optimization
algorithm is used to obtain the values of parameters 𝛼 and 𝛽.
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Figure 5: The time-varying drive force function.
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Figure 6: The time-varying rotating angle function.

The value accuracy of the Coordinates 𝑋 and 𝑌 is 0.01mm.
Thus for the Coordinate 𝑋, the discrete values are presented
as 𝑋 ∈ [850.00, 850.01, 850.02, . . . , 870.00]. The parameters
are obtained as 𝛼 = 0.3536, 𝛽 = 522.3872, and the
transformed probability distribution is given by

𝑝
𝑋 (𝑥) =

{{{{{{{

{{{{{{{

{

[1.9143𝑒
−3

⋅ (0.1𝑥 − 85)]
2.8281

𝑥 = 850 : 0.01 : 860

[1.9143𝑒
−3

⋅ (−0.1𝑥 + 87)]
2.8281

𝑥 = 860 : 0.01 : 870

0 otherwise.

(28)

For the Coordinate𝑌, the discrete values are presented as𝑌 ∈

[−928.00, −927.99, −927.98, . . . , −912.00]. The parameters

are obtained as 𝛼 = 0.3512, 𝛽 = 415.7603, and the trans-
formed probability distribution is given by

𝑝
𝑌
(𝑥) =

{{{{{{{

{{{{{{{

{

[2.4052𝑒
−3

⋅ (0.125𝑥 + 116)]
2.8474

𝑥 = −928 : 0.01 : −920

[2.4052𝑒
−3

⋅ (−0.125𝑥 − 114)]
2.8474

𝑥 = −920 : 0.01 : −912

0 otherwise.

(29)

The possibility distributions and probability distributions of
theCoordinate𝑋 andCoordinate𝑌 are shown in Figures 7(a)
and 7(b), respectively.

Since the Shannon entropy of the possibilistic variable
and the probabilistic variable is preserved after the transfor-
mation, Klir log-scale transformation can generate a good
transformation result.

The series approximation method is then used to con-
vert the transformed random variables into standard nor-
mal random variables. The conversion formulas of the five
parameters are shown in the last column of Table 2. The 3-
order origin moment estimation errors of the approximate
conversion formula of Coordinates 𝑋 and 𝑌 are 1.1289𝑒 − 5

and 2.6097𝑒−8, respectively, which bothmeet the conversion
accuracy.

The NIPC is conducted based on the Point-Collocation
method. The 2-order and 3-order PCEs of the final rotating
angle are built. As mentioned above, the number of colloca-
tion points that is twice more than the total number of the
coefficients gives a better approximation. According to (5),
the total numbers of coefficients of 2-order and 3-order PCEs
are 21 and 56, respectively as there are five random variables.
And the optimum numbers of collocation points are 42 and
112, respectively. Then the sets of standard normal random
values are selected and converted into variable values of the
computational dynamics model to obtain the final rotating
angles through cosimulations. Equation (7) is applied to
calculate the PCE coefficients. The 2-order and 3-order PCE
formulas are shown in Appendix. After the construction of
the PCEs, MCS with 10

6 samplings is performed on PCEs to
obtain moments of the final rotation angle.

In Table 3, MCS with 10000 samplings is a benchmark
for the comparison. The Kriging model and 2-order RSM
are constructed based on 42 stochastic collocation points,
which is the same amount of collocation points as the 2-order
PCE. And it means that the RSM, Kriging model, and the
2-order PCE require the same amount of executions of the
cosimulation. As shown in Table 3, the 2-order PCE is more
accurate than the RSM and Kriging model on both the mean
and the standard variance of the final rotating angle. This is
especially true to the standard variance of the final rotating
angle, where the relative error of the 2-order PCE is closed to
1/30 of the RSM, 1/5 of the Kriging model.

Meanwhile, the results of the 2-order PCE and the 3-
order PCE are compared in Table 4. As mentioned above, 112
collocation points are required in the 3-order PCE, which is
more than twice of that required by the 2-order PCE. It is
shown in Table 4 that the relative error of the mean of the 3-
order PCE is about 1/10 of the 2-order PCE. Its relative error of

 at BEIHANG UNIV LIB on June 18, 2015ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


Advances in Mechanical Engineering 9

850 852 854 856 858 860 862 864 866 868 870
0

Coordinate X (mm) Coordinate X (mm)
850 852 854 856 858 860 862 864 866 868 870

0.2

0.4

0.6

0.8

1

Po
ss

ib
ili

ty
 d

ist
rib

ut
io

n

X

0

0.4

0.8

1.2

1.6

2
×1−3

Pr
ob

ab
ili

ty
 d

ist
rib

ut
io

n

(a)

Coordinate Y (mm)

Y

0

0.2

0.4

0.6

0.8

1

Po
ss

ib
ili

ty
 d

ist
rib

ut
io

n

−928 −926 −924 −922 −920 −918 −916 −914 −912

Coordinate Y (mm)
−928 −924 −920 −916 −912
0

0.5

1

1.5

2

2.5
×10−3

Pr
ob

ab
ili

ty
 d

ist
rib

ut
io

n

(b)

Figure 7: Possibility distribution functions and the corresponding transformed probability distribution functions: (a) possibility and
transformed probability distribution functions of Coordinate 𝑋; (b) possibility and transformed probability distribution functions of
Coordinate 𝑌.

Table 2: Type, distribution, and conversion formula of the important uncertain parameters.

Parameters Type of uncertainty Probability/possibility
distributions (mm) Conversion formula

Length of the upper rod Random 𝑁(1312, 3) 1312 + 3𝜉
1

Length of the actuator slider Random 𝑁(1600, 3) 1600 + 3𝜉
2

Clearance of the joint that links the
actuator slider and the nether rod Random 𝑁(1.5𝑒 − 2, 0.5𝑒 − 2) 1.5 × 10

−2
+ 0.5 × 10

−2
𝜉
3

Coordinate𝑋 of the position of the
connector that links the device arm and
the nether rod

Fuzzy Triangular function
[850, 860, 870]

862.2361 − 2.2361𝜉
2

4

Coordinate 𝑌 of the position of the
connector that links the device arm and
the nether rod

Fuzzy Triangular function
[−928, −920, −912]

−921.5152 + 1.5152𝜉
2

5

Table 3: Comparison of approximate results between the PCE and RSM.

Type of methods Executions of
cosimulations Mean (∘) Standard

variance
Relative error
of mean (%)

Relative error of
standard

variance (%)
MCS 10000 101.9653 0.3682 / /
RSM 42 101.9145 1.8285 0.0498 396.6051
Kriging 42 101.9114 0.0792 0.0529 78.4900
2-order PCE 42 101.9183 0.3143 0.0461 14.6388
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Table 4: Comparison of approximate results between different order PCEs.

Type of methods Executions of
cosimulations Mean (∘) Standard

variance
Relative error
of mean (%)

Relative error of
standard

variance (%)
MCS 10000 101.9653 0.3682 / /
2-order PCE 42 101.9183 0.3143 0.0461 14.6388
3-order PCE 112 101.9603 0.3498 0.0049 4.9973

1

Final rotation
 angle error

−1.0 0.8−0.8 1.0

𝜇Z (g)

Figure 8:Membership function of the safety state of themechanism.

the standard variance is closed to 1/3 of the 2-order PCE.The
accuracy of PCE increases with its order obviously. But higher
order PCE requiresmore collocation pointswhichmeans that
more executions of simulations are needed. Thus a tradeoff
should be made to balance the efficiency and accuracy.

5.3. Kinematic Reliability Analysis Based on Fuzzy Probability
Theory. The failure criterion of the mechanism is related to
the final rotating angle. According to the mission require-
ments and expertise, the membership function of the safety
state of themechanism is determined as a trapezoid function,
as shown in Figure 8.

The formula of the membership function is written as
follows:

𝜇
𝑍
(𝑔) =

{{{{

{{{{

{

5𝑔 + 5 −1 < 𝑔 < −0.8

1 −0.8 ≤ 𝑔 ≤ 0.8

−5𝑔 + 5 0.8 < 𝑔 < 1

0 otherwise.

(30)

The algorithmpresented in Section 4.2 is executed, and in
total, 10

6 samplings are employed for RSM and Kriging, as
well as 2-order and 3-order PCEs to calculate the kinematic
reliability.The results are compared with the MCS, RSM, and
Kriging method in Table 5.

The kinematic reliability in Table 5 demonstrates that
the proposed NIPC-based method is able to quantify the
mixed uncertainty and compute the kinematic reliability for
the mechanism with fuzzy and random variables as well as
fuzzy states. Meanwhile, the comparisons in Tables 3 and
5 show that PCE is more accurate than RMS and Kriging
method with the same number of collocation points. Thus

Table 5: Kinematic reliability calculated by the PCE, RSM, and
MCS.

Type of methods Executions of
cosimulations

Kinematic
reliability
with fuzzy
safety state

Relative error
with MCS

(%)

MCS 10000 0.9823 /
RSM 42 0.8723 11.1982
Kriging 42 0.9967 1.4669
2-order PCE 42 0.9874 0.5192
3-order PCE 112 0.9849 0.2647

it is demonstrated that the proposed NIPC-based kinematic
reliability analysis method has high computational accuracy
and efficiency.

6. Conclusion

In this paper, the problem of mixed uncertainty quantifica-
tion in the analysis of kinematic reliability is addressed. For
this purpose, the NIPC-based method is extended to tackle
with the coexistence of the fuzzy and random variables in
the mechanisms through the Klir log-scale transformation.
Meanwhile, the fuzzy states of the mechanisms are also
considered by the fuzzy probability theory. Corresponding
procedure and algorithm are developed to obtain the kine-
matic reliability. We use the retractable mechanical system as
an example to show that the proposed NIPC-based method
is able to evaluate the kinematic reliability under both fuzzy
and random variables as well as fuzzy failure/safety state.The
results are more accurate and efficient than the RSM and
Kriging method. The accuracy of the proposed NIPC-based
method would increase with the PCE order.The proper order
can be obtained through the comparison of the accuracy
with the lower-order PCE until the difference satisfies the
predetermined requirement.

Appendix

During the construction of the 2-order and 3-order PCEs, the
polynomial would be abandoned as its coefficient value is less
than 0.0001. The 2-order PCE of the final rotating angle is
given by

𝐴
2
= 101.9183 − 0.1382𝜉

1
− 0.2586𝜉

2
− 0.0002𝜉

3

+ 0.0003𝜉
4
+ 0.0002𝜉

5
− 0.0799 (𝜉

2

1
− 1)
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+ 0.0008 (𝜉
2

2
− 1) + 0.0090 (𝜉

2

3
− 1)

− 0.0035 (𝜉
2

4
− 1) − 0.0002 (𝜉

2

5
− 1)

− 0.0001𝜉
1
𝜉
2
+ 0.0001𝜉

1
𝜉
3
+ 0.0001𝜉

1
𝜉
4

+ 0.0004𝜉
1
𝜉
5
− 0.0001𝜉

2
𝜉
3
− 0.0001𝜉

2
𝜉
4

+ 0.0004𝜉
2
𝜉
5
+ 0.0001𝜉

3
𝜉
4
− 0.0001𝜉

4
𝜉
5
.

(A.1)

And the 3-order PCE of the final rotating angle is given by

𝐴
3
= 101.9603 − 0.2058𝜉

1
− 0.2584𝜉

2
− 0.0003𝜉

3

+ 0.0003𝜉
4
− 0.0001𝜉

5
− 0.0653 (𝜉

2

1
− 1)

+ 0.0011 (𝜉
2

2
− 1) + 0.0011 (𝜉

2

3
− 1)

− 0.0032 (𝜉
2

4
− 1) + 0.0002 (𝜉

2

5
− 1)

+ 0.0276 (𝜉
3

1
− 3𝜉
1
) − 0.0001 (𝜉

3

2
− 3𝜉
2
)

− 0.0002 (𝜉
3

4
− 3𝜉
4
) − 0.0003𝜉

1
𝜉
2
+ 0.0001𝜉

1
𝜉
4

− 0.0001𝜉
2
𝜉
3
− 0.0001𝜉

2
𝜉
5
+ 0.0001𝜉

3
𝜉
4

+ 0.0001 (𝜉
1
𝜉
2

2
− 𝜉
1
) − 0.0001 (𝜉

1
𝜉
2

3
− 𝜉
1
)

+ 0.0003 (𝜉
1
𝜉
2

4
− 𝜉
1
) − 0.0001 (𝜉

1
𝜉
2

5
− 𝜉
1
)

− 0.0002 (𝜉
2
𝜉
2

1
− 𝜉
2
) + 0.0001 (𝜉

3
𝜉
2

2
− 𝜉
3
)

+ 0.0001 (𝜉
5
𝜉
2

2
− 𝜉
5
) − 0.0001𝜉

1
𝜉
2
𝜉
5

+ 0.0001𝜉
1
𝜉
4
𝜉
5
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2
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4
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5
.

(A.2)

Abbreviations

Acronyms

MCS: Monte Carlo simulation
NIPC: NonIntrusive polynomial chaos
PCE: Polynomial chaos expansion
PDF: Probability density functions
RSM: Response surface method
SOP: Second-order probability
SQP: Sequential quadratic programming.

Notations

𝐺(𝜉): System response
𝑎
𝑖
: The 𝑖th coefficient of the PCE

Γ
𝑛
(𝜉
𝑖
1

, . . . , 𝜉
𝑖
𝑛

): The selected polynomial basis function
𝜉
𝑖
1

: The random variable with specific
distribution

𝑝: The order of the PCE
𝑛: The total number of random variables

𝑁
𝑎
: The total number of coefficients of the PCE

𝑞: The total number of the sets of collocation
points

𝜉: The vector of the standard normal random
variables

v: The vector of fuzzy variables
𝑝(𝑠
𝑖
): The probability of the element 𝑠

𝑖

𝜋(𝑠
𝑖
): The possibility of the element 𝑠

𝑖

𝛼: The parameter of the Klir log-scale
transformation

𝛽: The parameter of the Klir log-scale
transformation

𝜙(x, k): The actual motion output of the mechanism
𝜙
𝑑
: The desired motion output of the mechanism

𝑅
𝑘
: The kinematic reliability.
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