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AN IMPLICITLY RESTARTED REFINED
BIDIAGONALIZATION LANCZOS METHOD FOR COMPUTING

A PARTIAL SINGULAR VALUE DECOMPOSITION∗
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Abstract. The bidiagonalization Lanczos method can be used for computing a few of the largest
or smallest singular values and corresponding singular vectors of a large matrix, but the method may
encounter some convergence problems. In this paper the convergence of the method is analyzed,
showing why it may converge erratically and perhaps fail to converge. To correct this possible
nonconvergence and improve the method, a refined bidiagonalization Lanczos method is proposed.
The implicitly restarting technique due to Sorensen is applied to the method, and an implicitly
restarted refined bidiagonalization Lanczos algorithm (IRRBL) is developed. A new selection of
shifts is proposed for use within IRRBL, called refined shifts, and a reliable and efficient algorithm
is developed for computing the refined shifts. Numerical experiments show that IRRBL can perform
better than the implicitly restarted bidiagonalization Lanczos algorithm (IRBL) proposed by Larsen,
in particular when the smallest singular triplets are desired.

Key words. singular value, singular vector, the bidiagonalization Lanczos method, Ritz value,
Ritz vector, refined Ritz vector, the refined bidiagonalization Lanczos method, implicit restart, exact
shifts, refined shifts, convergence
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1. Introduction. We are concerned with the following problem.
Problem 1. Compute numerically the k largest or smallest singular values and

corresponding left and right singular vectors of a large real M×N matrix A ∈ RM×N ,
where k is much smaller than M and N .

Such a problem arises from many applications, e.g., total least squares problems,
determination of numerical rank of a matrix, regression analysis, and image processing
and pattern recognitions.

Without loss of generality, we assume that M ≥ N (otherwise we work on AT,
the transpose of A). Let σi, i = 1, 2, . . . , N , be the singular values of A, labeled in
decreasing or increasing order, and ui and vi the corresponding left and right singular
vectors. The triplets (σi, ui, vi) are called the singular triplets of A. We then have
the singular value decomposition (SVD) of A:

A = U

(
Σ
0

)
V T = U1ΣV

T,(1.1)

where U = (u1, u2, . . . , uM ) = (U1, U2) is orthogonal with U1 = (u1, u2, . . . , uN ),
V = (v1, v2, . . . , vN ) orthogonal, and Σ = diag(σ1, σ2, . . . , σN ).

Consider the augmented matrix

Ã =

(
0 A
AT 0

)
.(1.2)
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It is easily verified that Ã has the 2N eigenvalues ±σ1, . . . ,±σN and M − N eigen-

values zero. The eigenvectors associated with σi and −σi are 1√
2

(
uT
i , v

T
i

)T
and

1√
2

(
uT
i ,−vT

i

)T
, respectively, and the eigenvectors associated with the eigenvalues

zero are
(
uT, 0T

)T
, where the u’s are orthogonal to u1, . . . , uN . Therefore, we get an

eigenproblem equivalent to (1.1).

Problem 2. Compute numerically the k largest or smallest positive eigenvalues
of Ã and the associated eigenvectors.

Since M and N are assumed to be large and the dimension of Ã is M + N ,
only projection methods are reasonable to solve Problem 2. A typical method is
the symmetric Lanczos method [26]. However, if the method is applied to solve
Problem 2 directly and explicitly, then the computational complexity and the memory
requirement will be greatly increased. So it is not preferable to work on Ã directly.
Another consequence of using Ã explicitly is that the smallest positive eigenvalues
of Ã are now interior ones, while they are the leftmost (extreme) singular values of A.
Note that the symmetric Lanczos method usually favors the extreme eigenvalues and
the associated eigenvectors, and it is very difficult to compute interior eigenpairs [26].
Therefore, we should not work on Ã directly for computing the smallest singular
values of A.

Because of the mentioned drawbacks, we attempt to solve Problem 1 by working
on Ã implicitly. It will turn out that the bidiagonalization Lanczos method [4, 5, 9]
and its refined version to be proposed in this paper can settle these problems elegantly.

Over the past decade, the implicit restarting technique due to Sorensen [27] has
proven to be a powerful and efficient tool for restarting a Krylov subspace algorithm.
It has been used in various contexts, e.g., [2, 3, 9, 14, 17, 28, 29, 30]. It may save
computational cost considerably at each restart and maintain numerical stability.
However, it should be kept in mind that for an overall performance one of the keys
for the success of an implicitly restarted Krylov algorithm is reasonable selection of
shifts involved [14, 17]. Other applications of the technique are possible. Björck,
Grimme, and van Dooren [3] successfully applied the implicit restarting technique
to the lower bidiagonalization Lanczos method for ill-posed least squares problems.
Wang and Zha [30] proposed a variant of their algorithm for computing a few largest
singular values of A. Both algorithms take zeros as shifts. Larsen [22] developed an
implicitly restarted bidiagonalization Lanczos algorithm and discussed many issues,
including selection of shifts and the maintenance of semiorthogonality of Lanczos
vectors. A few packages are now available for computing a partial SVD of A, e.g.,
PROPACK and LANSO [21, 22] and ARPACK [23]. PROPACK works on A directly,
and LANSO is a symmetric Lanczos algorithm with selective orthogonalization and
solves the eigenproblem of ATA or Ã. Both packages work without restarting until
the desired singular values and/or singular vectors have been found, while ARPACK
solves the eigenproblems of ATA and Ã whose Matlab counterparts are eigs.m and
svds.m, respectively.

The paper is organized as follows. In section 2, we describe the bidiagonalization
Lanczos process, and we show how the process can be combined with the Rayleigh–
Ritz procedure for computing a partial SVD of A. We then make a convergence
analysis of approximate singular values (Ritz values) and approximate singular vec-
tors (Ritz vectors). We show that, under the natural hypothesis that the deviations of
a desired singular vector from a sequence of Krylov subspaces tend to zero, there is a
Ritz value that converges to the desired singular value, while, on the other hand, the
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associated Ritz vectors may converge erratically and even may fail to converge to the
desired left and right singular vectors. In section 3, based on the refined projection
methods for large matrix eigenproblems [28, 29] proposed by Jia [10, 12, 13, 15, 16], by
exploiting the bidiagonalization Lanczos process we propose a refined bidiagonaliza-
tion Lanczos method for Problem 1. The refined method has a different background
from the standard method. The fundamental difference between the refined method
and the standard method is that rather than using Ritz approximations, the former
seeks new approximate singular vectors, called refined singular vector approximations
or simply refined Ritz approximations, from certain Krylov subspaces that minimize
the norms of certain residuals and use them to approximate the desired singular vec-
tors. We analyze the convergence of refined Ritz approximations and show that they
always converge, provided that the deviations tend to zero. In section 4, we review
an implicitly restarted bidiagonalization Lanczos algorithm (IRBL) for Problem 1,
in which the shifts are often selected as those unwanted approximate singular values
(Ritz values) [21, 22], called exact shifts. In order to compute the large close singu-
lar values and improve performance, Larsen [22] proposed a simple adaptive shifting
strategy that replaces bad shifts by zero. This strategy often appears to be quite ef-
fective. In section 5, motivated by Jia’s work [14, 17], we discuss the selection of shifts
involved in an implicitly restarted algorithm, and we propose a new shifts scheme,
called refined shifts, for use within the implicitly restarted refined bidiagonalization
Lanczos algorithm (IRRBL). Still, we exploit Larsen’s adaptive shifting strategy to
compute the large close singular values. We show qualitatively that the refined shifts
are better than the exact shifts for use within IRBL. We discuss how to compute
the refined shifts efficiently and reliably. However, Larsen’s adaptive shifting strategy
cannot work for computing the smallest close singular values. To this end, we give
a heuristic analysis and propose to replace bad shifts by the largest Ritz value at
the current cycle. In section 6 we make numerical experiments on several real-world
problems, indicating that IRRBL can be more efficient than IRBL, in particular for
computing the smallest singular triplets. To be complete, we also compare our algo-
rithm with PROPACK, LANSO, and ARPACK and show the superiority of IRRBL.
Finally, in section 7 we draw some conclusions.

Some notation to be used is introduced now. Throughout the paper, denote
by || · || the Euclidean norm, by Km(C,w1) = span{w1, Cw1, . . . , C

m−1w1} the m-
dimensional Krylov subspace generated by C and a unit length vector w1, and by em
the mth coordinate vector of dimension m.

2. The bidiagonalization Lanczos process and method.

2.1. The bidiagonalization Lanczos process. We first describe the lower
bidiagonalization Lanczos process due to Paige and Saunders [25], which is a variant
of the upper bidiagonalization Lanczos process due to Golub and Kahan [7].

Algorithm 1. The m-step bidiagonalization Lanczos process.

1. Start: Choose a unit length vector p1 of dimension M , β1 = 1 and let q0 = 0.
2. For i = 1, 2, . . . ,m

(a) ri = ATpi − βiqi−1

αi = ||ri||, qi = ri/αi
(b) zi = Aqi − αipi

βi+1 = ||zi||, pi+1 = zi/βi+1

Endfor
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Define Qm = (q1, q2, . . . , qm) and Pm+1 = (p1, p2, . . . , pm+1). Then Algorithm 1
can be written in matrix form

AQm = Pm+1Bm,(2.1)

ATPm+1 = QmBT
m + αm+1qm+1e

T
m+1.(2.2)

Therefore, we have

PTm+1AQm = Bm,(2.3)

where

Bm =




α1

β2 α2

β3
. . .

. . . αm
βm+1




∈ R(m+1)×m

is called the projection matrix of A with the left subspace span{Pm+1} and the right
subspace span{Qm}.

Note that the above three relations can also be written as

Ã

(
Pm+1 0
0 Qm

)
=

(
Pm+1 0
0 Qm

)(
0 Bm

BT
m 0

)
+

(
0 0

rm+1e
T
m 0

)

=

(
Pm+1 0 0
0 Qm qm+1

) 0 Bm
BT
m 0

αm+1e
T
m 0


 .(2.4)

In finite precision arithmetic, it is well known [26] that the orthogonality of
Pm+1 and Qm, Lanczos basis vectors, may lose soon. In order to maintain numerical
(semi)orthogonality, an efficient approach is to use a partial reorthogonalization. For
details, refer to Larsen [21, 22].

It is known that there is a close relationship between the above bidiagonalization
process and the symmetric Lanczos process applied to ATA and AAT, both of which
have the same nonzero eigenvalues σ2

i , i = 1, 2, . . . , N , as well as Ã. For details, see
[4, 8, 21].

2.2. The bidiagonalization Lanczos method. Let θi, i = 1, 2, . . . ,m, be the
singular values of Bm, and let wi and si be the corresponding left and right singular
vectors. Define

ũi = Pm+1wi, ṽi = Qmsi.

It follows from (2.1) and (2.2) that

Aṽi = θiũi,(2.5)

ATũi = θiṽi + αm+1qm+1e
T
m+1wi.(2.6)

Therefore, if αm+1 = 0, then (θi, ũi, ṽi), i = 1, 2, . . . ,m, are exact singular triplets
of A. The bidiagonalization Lanczos method uses the triplets (θi, ũi, ṽi) as approxi-
mate singular triplets of A. This is the way of achieving the Ritz–Galerkin process on
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the Krylov subspaces Km(ATA,AT q1) and Km+1(AAT, q1). So, the triplets (θi, ũi, ṽi)
are simply called Ritz approximations of singular triplets. Similar to the symmetric
Lanczos method, the largest and smallest singular values of Bm converge usually
rapidly to the largest and smallest singular values of A [4, 8, 21].

We claim an approximate triplet (θi, ũi, ṽi) to have converged if√
‖Aṽi − θiũi‖2 + ‖ATũi − θiṽi‖2 = αm+1 | eTm+1wi |≤ tol,(2.7)

where tol is a user-prescribed tolerance. Therefore, we do not need to form the Ritz
approximations ũi, ṽi explicitly until the convergence occurs.

We next show that the method is an orthogonal projection method that projects
Ã onto a suitable subspace. Define the subspace

E = span

{(
Pm+1 0
0 Qm

)}
.(2.8)

Then it follows from (2.4), (2.5), and (2.6) that the pairs

(θi, ϕ̃i) =

(
θi,

1√
2

(
ũi
ṽi

))
, i = 1, 2, . . . ,m,

satisfy the orthogonal projection (Rayleigh–Ritz approximation){
ϕ̃i ∈ E,

Ãϕ̃i − θiϕ̃i⊥E,
(2.9)

and the projection matrix is B̃ = ( 0
BT

m

Bm

0 ). The (θi, ϕ̃i) are part of the Ritz pairs

of Ã with respect to E.
Jia [11, 15] and Jia and Stewart [18, 19] have proved that, for a general matrix and

a general projection subspace, the Ritz vectors may fail to converge. In the context
of this paper, note that the spectral condition number of B̃ is always one. Then from
Theorem 2.1 of [19], we can get the following simplified result.

Theorem 2.1. Define ε = sin �
((
u
v

)
, E
)
and assume that ε is small enough.

Then there is a matrix F satisfying

||F || ≤ ε√
1− ε2

||A||(2.10)

such that σ is an exact eigenvalue of

B̃m + F =

(
0 Bm

BT
m 0

)
+ F.

Furthermore, there exists a positive eigenvalue θ of B̃m such that

|σ − θ| ≤ ||F ||.(2.11)

This theorem shows that there is always a Ritz value θ that converges to a desired
σ once the deviation ε of (uT, vT)T from E tends to zero.

Theorem 3.2 in [19] reduces to the following result.
Theorem 2.2. Let (θ, w̃, s̃) be a singular triplet of Bm, and let (w̃, W̃⊥) and

(s̃, S̃⊥) be orthogonal matrices such that(
w̃T

W̃T
⊥

)
Bm

(
s̃, S̃⊥

)
=

(
θ 0
0 C

)
.(2.12)
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Define the matrix C̃ = ( 0
CT

C
0 ), and assume that σI − C̃ is nonsingular. Let the

separation of σ and the spectra of C be defined by

sep(σ, C̃) = ||(σI − C̃)−1||−1.(2.13)

Then if

sep(σ, C̃) ≥ sep(θ, C̃)− | θ − σ |> 0,(2.14)

we have

sin �
((u

v

)
,

(
ũ

ṽ

))
≤
(
1 +

||A||√
1− ε2sep(σ, C̃)

)
ε

≤
(
1 +

||A||√
1− ε2(sep(θ, C̃)− |θ − σ|)

)
ε.(2.15)

Suppose that Algorithm 1 does not break down, i.e., αm+1 �= 0. Then Bm only
has simple singular values, i.e., θ is different from the singular values of C in (2.12).
As a consequence, assumption (2.14) holds with ε → 0 as θ → σ. However, we must
point out that sep(θ, C̃)− | θ − σ | can be arbitrarily near zero because C may have
a singular value that is arbitrarily close to σ, though it is different from σ. Thus, the
right-hand side of (2.15) may converge to zero erratically and even may not approach
zero although ε → 0, which means that the Ritz vector (ũT, ṽT)T may converge
erratically and even may not converge to (uT, vT)T.

Next we establish an inequality on approximate left and right singular vectors ũ
and ṽ.

Theorem 2.3. We have

sin2 � (u, ũ) + sin2 � (v, ṽ) ≤ 2 sin2 �
((u

v

)
,

(
ũ

ṽ

))
.(2.16)

Proof. By definition, we obtain

sin2 � (u, ũ) + sin2 � (v, ṽ) = min
α

||u− αũ||2 +min
α

||v − αṽ||2

≤ min
α

(||u− αũ||2 + ||v − αṽ||2)

= min
α

∥∥∥∥(uv
)
− α

(
ũ

ṽ

)∥∥∥∥
2

= 2min
α

∥∥∥∥ 1√
2

(u
v

)
− 1√

2
α

(
ũ

ṽ

)∥∥∥∥
2

= 2 sin2 �
((u

v

)
,

(
ũ

ṽ

))
,

which completes the proof.

Combining Theorems 2.1–2.3, we conclude that under the natural hypothesis that
ε → 0 there is a Ritz value θ that converges to the desired singular value uncondi-
tionally, while the corresponding ũ and ṽ may converge erratically and may even fail
to converge to the desired left and right singular vectors u and v.
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3. The refined bidiagonalization Lanczos method. As was seen previously,
the bidiagonalization Lanczos method may have convergence problems for computing
singular vectors. In order to correct this deficiency, we apply the principle of the
refined eigenvector approximation advocated by Jia [10, 12] and popularized by Jia
[13, 15, 16, 17] (also see [2, 28, 29]) to the bidiagonalization Lanczos method, and
we propose a refined bidiagonalization Lanczos method. For Ã, a refined projection
method seeks for each θi, i = 1, 2, . . . , k, a unit length vector ψ̃i ∈ E satisfying the
optimality property

||Ãψ̃i − θiψ̃i|| = min
ψ∈E,||ψ||=1

||Ãψ − θiψ||(3.1)

and uses them as new approximations to the desired eigenvectors 1√
2
(uT
i , v

T
i )

T, i =

1, 2, . . . , k. We call ψ̃i a refined eigenvector approximation or simply a refined Ritz
vector of Ã with respect to θi and the spectral norm. Partition

ψ̃i = (ψ̃T
i1, ψ̃

T
i2)

T,(3.2)

with ψ̃i1 and ψ̃i2 being m+ 1- and m-dimensional, respectively, and take

ûi =
ψ̃i1

‖ψ̃i1‖
, v̂i =

ψ̃i2

‖ψ̃i2‖
.(3.3)

Then accordingly, we call the triplet (θ, ûi, v̂i) a refined Ritz triplet for approximating
the singular triplet (σi, ui, vi) of A.

Based on Theorem 3.2 of Jia [12], we have the following result.
Theorem 3.1. Let zi = (xT

i , y
T
i )

T be the right singular vector of the matrix
 0 Bm

BT
m 0

αm+1e
T
m 0


− θi


 I 0

0 I
0 0




associated with its smallest singular value σmin, where xi and yi are m + 1- and m-
dimensional, respectively. Then

ψ̃i =

(
Pm+1 0
0 Qm

)
zi,(3.4)

ûi =
Pm+1xi
‖xi‖ , v̂i =

Qmyi
‖yi‖ ,(3.5)

||Ãψ̃i − θiψ̃i|| = σmin.(3.6)

The computational cost of each zi is O(m3) flops. So if k is small, the extra
cost of the refined bidiagonalization Lanczos method is very low, compared with
the bidiagonalization Lanczos method. So, we can compute the refined approximate
singular triplets efficiently and accurately.

Write

x̂i =
xi

‖xi‖ , ŷi =
yi

‖yi‖ .
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Then it follows from (2.1) and (2.2) that

‖Av̂i − θiûi‖ = ‖AQmŷi − θiPm+1x̂i‖
= ‖Pm+1Bmŷi − θiPm+1x̂i‖
= ‖Bmŷi − θix̂i‖(3.7)

and

‖ATûi − θiv̂i‖ =
√
‖BT

mx̂i − θiŷi‖2 + α2
m+1 | eT

m+1x̂i |2.(3.8)

Therefore, we can claim a refined Ritz triplet (θi, ûi, v̂i) to have converged if

√
‖Bmŷi − θix̂i‖2 + ‖BT

mx̂i − θiŷi‖2 + α2
m+1 | eT

m+1x̂i |2 ≤ tol,(3.9)

where tol is a user-prescribed tolerance. This important relation means that, similar
to the bidiagonalization Lanczos method (cf. (2.7)), we do not need to form the refined
Ritz approximations ûi and v̂i explicitly before they converge.

Jia [20] proved that if ||Ãψ̃i − θiψ̃i|| �= 0, i.e., the refined Ritz triplet (θi, ûi, v̂i) is
not an exact singular triplet of A, then ψ̃i �= ϕ̃i, i.e., the refined approximations ûi and
v̂i are different from the Ritz approximations ũi and ṽi. Moreover, if ||Ãϕ̃i−θiϕ̃i|| �= 0,
then ||Ãψ̃i−θiψ̃i|| < ||Ãϕ̃i−θiϕ̃i||. Furthermore, if θi is very close to one of the other
distinct Ritz values θj , j �= i, then it may happen that ||Ãψ̃i−θiψ̃i|| � ||Ãϕ̃i−θiϕ̃i||.
Therefore, ûi and v̂i is more accurate and may be much more accurate than ũi and ṽi.

Jia and Stewart [18] derived a priori error bounds on the refined Ritz vector. The
following result is a direct corollary of Theorem 4.1 of [18].

Theorem 3.2. Let (σ, u, v) be a singular triplet of A, and let (u, U⊥) and (v, V⊥)
be orthogonal matrices such that

(
uT

UT
⊥

)
A(v, V⊥) =

(
σ 0
0 L

)
,(3.10)

where L = UT
⊥AV⊥. Define L̃ = ( 0

LT
L
0 ). Assume that (θ, ψ̃) is the refined Ritz pair

approximating (σ, 1√
2
(uT, vT)T). Then if

sep(θ, L̃) ≥ sep(σ, L̃)− |θ − σ| > 0,(3.11)

then

sin �
(
ψ̃,
(u
v

))
≤ ||Ã− θI||ε+ |θ − σ|√

1− ε2(sep(σ, L̃)− |θ − σ|) .(3.12)

Recall that Theorem 2.1 shows θ → σ as ε → 0. Note that sep(σ, L̃) is a positive
constant independent of ε, assuming that A has only simple singular values. Therefore,
Theorem 3.2 indicates that the refined Ritz approximations û and v̂ converge to the
left and right singular vectors u and v, respectively, as ε → 0. Generally, they
can be expected to be more accurate than the corresponding Ritz approximations
ũ and ṽ. Hence the refined bidiagonalization Lanczos method corrects the possible
nonconvergence of the standard bidiagonalization Lanczos method.
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4. Implicit restart. In practice, due to the limitation of memory and compu-
tational complexity, m should not be large. However, for a small m, it is often the
case that ε is not small enough, so that it cannot guarantee the convergence of the
bidiagonalization Lanczos method and its refined counterpart. Therefore, we usually
have to restart the methods in order to compute the desired singular triplets with
prescribed accuracy. Over the past decade, the implicit restarting technique due to
Sorensen [27] has proven to be a very successful and powerful restarting scheme and
has been used either trivially or nontrivially in various contexts. In what follows,
we review the technique and show how it is applied to the bidiagonalization Lanczos
method and its refined counterpart.

For a general matrix C whose eigenpairs are (λi, ϕi), the m-step Arnoldi process
[27] is

CVm = VmHm + rmeT
m.(4.1)

Assume that the eigenpairs (λi, ϕi), i = 1, 2, . . . , k, are desired. Given m − k shifts
µj , j = 1, 2, . . . ,m− k, for the m×m upper Hessenberg matrix Hm, we successively
apply QR iterations to the shifted Hm − µjI, deriving

(Hm − µ1I)(Hm − µ2I) · · · (Hm − µm−k) = QR,(4.2)

where Q is orthogonal (unitary) and R is upper triangular. Define H+
m = Q∗HmQ,

V +
m = VmQ, and H+

k to be the k× k leading principal matrix of H+
m and V +

k the first
k columns of V +

m . Then it holds by the k-step Arnoldi process that

CV +
k = V +

k H+
k + r+

k e
T
k .(4.3)

It has been shown [27] that the new initial vector

v+
1 = p(C)v1(4.4)

with p(λ) = α
∏m−k
j=1 (λ − µj) and α a normalizing factor. Furthermore, it is shown

[27] that

r+
k = 0 if and only if v+

1 ∈ span{ϕ1, ϕ2, . . . , ϕk}.(4.5)

In this case the Arnoldi process breaks down at step k, V +
k spans an invariant subspace

of C associated with λ1, λ2, . . . , λk, and the eigenvalues of H+
k are just λ1, λ2, . . . , λk.

If r+
k is approximately zero, V +

k spans an approximate invariant subspace of C, and
the eigenvalues of H+

k are accepted to have converged to λ1, . . . , λk.
The implicit restarting technique can be adapted to the bidiagonalization Lanczos

process, as was done in [3, 22, 30]. They work in the following way: given the m− k
shifts µ1, . . . , µm−k, the implicit restarting technique leads to{

(BmBT
m − µ2

1I) · · · (BmBT
m − µ2

m−kI) = Q̃R,

P̃TBmQ̃ still (lower) bidiagonal,
(4.6)

where P̃ and Q̃ are the accumulation matrices of Givens rotations applied to Bm
from the left and right, respectively. Define P+

m+1 = Pm+1P̃ , Q+
m = QmQ̃, and

B+
m = P̃TBmQ̃. The process is achieved implicitly from BmBT

m to B+
m(B+

m)T by
working directly on Bm. This is a typical step of the Golub–Kahan SVD algorithm [7]
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for a lower bidiagonal Bm. Then by exploiting the special structure of P̃ we obtain
by manipulation

Ã

(
P+
k+1 0
0 Q+

k

)
=

(
P+
k+1 0
0 Q+

k

)(
0 B+

k

B+
k

T
0

)

+

(
0 0

(αk+1p̃m+1,k+1qm+1 + α+
k+1q

+
k+1)e

T
k+1 0

)
,(4.7)

with p̃m+1,k+1 being the (m+1, k+1) entry of P̃ . Since αk+1p̃m+1,k+1qm+1+α+
k+1q

+
k+1

is orthogonal to Q+
k , we get a k-step bidiagonalization Lanczos process (Algorithm 1).

It is then extended to an m-step bidiagonalization Lanczos process in a standard way.
So we avoid restarting Algorithm 1 from scratch and doing it from step k+1 upwards.
This way saves computational cost of the first k steps of Algorithm 1 by performing a
sequence of implicit shift SVD steps on the small Bm at low cost. As a result, we have
formally sketched an implicitly restarted bidiagonalization Lanczos algorithm (IRBL)
and an implicitly restarted refined bidiagonalization Lanczos algorithm (IRRBL) for
computing a partial SVD of a large matrix, which will be detailed later.

5. Selection of shifts. As was seen previously, we can run IRBL and IRRBL
once the shifts µj , j = 1, 2, . . . ,m − k, are given. However, in order to make them
work as efficiently as possible, we must select the best possible shifts available for each
of them. For an implicitly restarted Krylov subspace algorithm for the eigenproblem,
it has been shown [14, 17] that if the shifts are more accurate approximations to some
of the unwanted eigenvalues of the original matrix, then the resulting new Krylov
subspace will contain more accurate eigenvectors to the desired eigenvectors, so that
the algorithm may converge faster. For IRBL and IRRBL, the same conclusion still
holds. In an ideal case, similar to Theorem 3 of [17], we can prove the following result.

Theorem 5.1. Assume that the sets {σ1, . . . , σk} and {σk+1, . . . , σN} are dis-
joint and A has only simple singular values. Then if m − k distinct ones among
σj , j = k + 1, . . . , N , are selected as shifts at each restart, then IRBL and IRRBL
converge after at most �N−k

m−k � restarts.
Note that p+

1 can be expressed as

γp+
1 =

m−k∏
i=1

(AAT − µ2
i I)p1,(5.1)

with γ being a normalizing factor. Then by a continuity argument of polynomials,
it is seen from this theorem and the above relation that the better µj approximates
an unwanted singular value σji with ji > k, the smaller the component of p+

1 is
in the direction of uji , so that Km(ATA,AT p1) and Km+1(AAT, p1) contain more
accurate approximations to v1, v2, . . . , vk and u1, u2, . . . , uk. As a consequence, IRBL
and IRRBL usually converges faster.

For the implicitly restarted Arnoldi algorithm (IRA), Sorensen [27] proposed to
select those unwanted Ritz values as shifts, called exact shifts. In some sense, this se-
lection scheme is best for the algorithm as the exact shifts are the best approximations
available obtained by the algorithm to some unwanted eigenvalues. So, for IRBL, we
still use the exact shifts θj , j = k + 1, . . . ,m, as they are the best approximations
to some unwanted singular values obtained by IRBL at the current cycle. However,
these exact shifts are not best for IRRBL as we can find better possible shifts than
them based on the refined approximations ûi, v̂i, i = 1, 2, . . . , k, as shown below.
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Note that the refined Ritz approximations ûi, v̂i are more accurate than the corre-
sponding Ritz approximations ũi, ṽi, i = 1, 2, . . . , k. This motivates us to seek better
possible shifts than θj , j = k + 1, . . . ,m based on ûi, v̂i, i = 1, 2, . . . , k. Let us make
the orthogonal direct sum decompositions

span{Pm+1} = span{û1, û2, . . . , ûk} ⊕ span{û1, û2, . . . , ûk}⊥(5.2)

= span{ũ1, ũ2, . . . , ũk} ⊕ span{ũ1, ũ2, . . . , ũk}⊥,(5.3)

span{Qm} = span{v̂1, v̂2, . . . , v̂k} ⊕ span{v̂1, v̂2, . . . , v̂k}⊥(5.4)

= span{ṽ1, ṽ2, . . . , ṽk} ⊕ span{ṽ1, ṽ2, . . . , ṽk}⊥,(5.5)

where ⊕ denotes the direct sum. Then clearly

span{ũ1, ũ2, . . . , ũk}⊥ = span{ũk+1, . . . , ũm+1},
span{ṽ1, ṽ2, . . . , ṽk}⊥ = span{ṽk+1, . . . , ṽm}.

Define

Ũk = (ũ1, ũ1, . . . , ũk), Ṽk = (ṽ1, ṽ2, . . . , ṽk)

and

Ũm−k = (ũk+1, . . . , ũm+1), Ṽm−k = (ṽk+1, . . . , ṽm).

Then it is easily justified from the bidiagonalization Lanczos method that the wanted
Ritz values θ1, θ2, . . . , θk are the singular values of A with respect to the left and right
subspaces span{ũ1, ũ2, . . . , ũk} and span{ṽ1, ṽ2, . . . , ṽk}, that is, they are the singular
values of the projection matrix

ŨT
k AṼk,

while on the other hand the unwanted Ritz values θk+1, . . . , θm are the singular
values of A with respect to the left and right subspaces span{ũ1, ũ2, . . . , ũk}⊥ and
span{ṽ1, ṽ2, . . . , ṽk}⊥, that is, they are the singular values of the projection matrix

ŨT
m−kAṼm−k.

Keep in mind that ûi, v̂i are generally more accurate than ũi, ṽi, i = 1, 2, . . . , k,
respectively. Then it is clear that span{û1, û2, . . . , ûk}⊥ and span{v̂1, v̂2, . . . , v̂k}⊥
contain more accurate approximations to the unwanted left and right singular vectors
uk+1, . . . , uN and vk+1, . . . , vN than span{ũ1, ũ2, . . . , ũk}⊥ and span{ṽ1, ṽ2, . . . , ṽk}⊥,
respectively. As a consequence, the Ritz values ξi, i = 1, 2, . . . ,m−k, of A with respect
to the left and right subspaces span{û1, û2, . . . , ûk}⊥ and span{v̂1, v̂2, . . . , v̂k}⊥ should
be generally more accurate approximations to some m− k unwanted singular values
than the unwanted Ritz values θk+1, . . . , θm of A with respect to the left and right
subspaces span{ũ1, ũ2, . . . , ũk}⊥ and span{ṽ1, ṽ2, . . . , ṽk}⊥. Therefore, this suggests
that we take the ξi’s as shifts for use within IRRBL. In terms of Jia’s terminology [14,
17], they are called the refined shifts. Jia [14, 17] presented very efficient and reliable
algorithms to compute the refined shifts for use within the implicitly restarted refined
Arnoldi algorithm and the implicitly restarted refined harmonic Arnoldi algorithm,
respectively. Adapted from Jia’s trick [14], we can propose an efficient algorithm to
compute the refined shifts ξi’s for IRRBL as follows.
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Note that ûi = Pm+1x̂i, v̂i = Qmŷi, i = 1, 2, . . . , k. Define

Ûk = (û1, . . . , ûk) = Pm+1(x̂1, . . . , x̂k) = Pm+1X̂k

and

V̂k = (v̂1, . . . , v̂k) = Qm(ŷ1, . . . , ŷk) = QmŶk.

Then we compute the full QR decompositions

X̂k = WR1, Ŷk = SR2

and partition

W = (Wk,Wm−k), S = (Sk, Sm−k),

from which it can be proved, similarly to Jia [14], that

span{û1, û2, . . . , ûk}⊥ = span{Pm+1Wm−k},(5.6)

span{v̂1, v̂2, . . . , v̂k}⊥ = span{QmSm−k}.(5.7)

Recall from (2.3) that PTm+1AQm = Bm. Then it is known that the projection
matrix of A with respect to the left subspace span{û1, û2, . . . , ûk}⊥ and the right
subspace span{v̂1, v̂2, . . . , v̂k}⊥ is

G = (Pm+1Wm−k)TA(QmSm−k) = WT
m−k(P

T
m+1AQm)Sm−k = WT

m−kBmSm−k,

which can be formed at cost of (m − k)2m flops. So we have exploited the relation
PTm+1AQm = Bm to formG, which avoids computingG = (Pm+1Wm−k)TA(QmSm−k)
directly and reduces the computational cost considerably.

Based on the above arguments and the algorithms for computing the refined shifts
[14, 17], we are now able to present the following algorithm.

Algorithm 2. The computation of refined shifts ξi’s.
1. Form the projection matrix

G = WT
m−kBmSm−k.

2. Compute the m− k singular values ξj , j = 1, 2, . . . ,m− k, of G.
3. Take the ξj ’s as the refined shifts for use within IRRBL.

Thus, starting with the refined Ritz approximations ûi, v̂i, i = 1, 2, . . . , k, we can
compute the refined shifts ξj ’s using O(m3) flops, which is negligible compared with
one cycle of IRBL.

As Larsen [22] noted, when large close singular values are present, IRBL with
exact shifts may have very poor performance and even stagnation. IRRBL inherits
the same deficiency. This is explained as follows: By inspecting the relation (5.1),
we see the component along the desired kth singular vector uk is greatly damped if a
shift µi is very close to σk, so that θk converges to σk very slowly. Since µ1 = θk+1

in the exact shifts and it is an approximation to σk+1, it is a bad shift when σk and
σk+1 are close and θk+1 is approximating σk+1. For this case, the refined shifts have
the same deficiency as there is a refined shift that is approaching σk+1.

To correct this problem, Larsen [22], for IRBL with the exact shifts µi = θk+i,
i = 1, 2, . . . ,m − k, proposed the adaptive shifting strategy that required that the
relative gaps

relgapki =
(θk − εk)− µi

θk
(5.8)
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between the smallest Ritz value θk (i.e., the desired kth largest singular value) and
all the shifts µi, i = 1, 2, . . . ,m− k, be larger than some prescribed tolerance, where
εi is the residual norm (2.7). Since θk− εk is an approximation to σk, relgapki can be
considered to be an approximation of the relative gap of σk and the shift µi.

However, there is an oversight in (5.8), as relgapki is only guaranteed to be positive
when θk is approaching σk, i.e., the IRBL is starting to converge. Clearly, if θk is still
not converging, then εk is not small. In this case, relgapki can be negative, so that
the strategy cannot work. A simple correction we propose is to replace relgapki by
its absolute value. As in Larsen [22], if

| relgapki |≤ 10−3,

we claim µi to be a bad shift and set it to zero. Zero shifts will amplify the component
along uk in p+

1 and thus overcome the drawback of the exact shifts.
So the combination of the exact shifts and zero shifts will amplify the components

along ui, i = 1, 2, . . . , k, in p+
1 and at the same time dampen those along the unwanted

ui, i = k + 1, . . . , N . It holds to the refined shifts. So we combine the refined shifts
with zero shifts for use within IRRBL when computing the largest singular triplets.
However, we must point out that the above adaptive strategy works only for comput-
ing the largest singular values σi, i = 1, 2, . . . , k. It cannot be adapted to compute
the smallest close singular values of A.

To see why, suppose that we are required to compute the k smallest singular
values σ1 < σ2 < · · · < σk, and we use the k smallest Ritz values θi, i = 1, 2, . . . , k,
to approximate them. Now the exact shifts are the remaining m− k unwanted large
Ritz values µi = θk+i, i = 1, 2, . . . ,m − k, as shifts. Expand q1 in the left singular
basis vectors {uj}Mj=1 as

p1 =

N∑
j=1

αjuj +

M∑
j=N+1

αjuj .

Then

γp+
1 =

k∑
j=1

αj

m∏
i=k+1

(σ2
j − θ2

i )uj +

N∑
j=k+1

αj

m∏
i=k+1

(σ2
j − θ2

i )uj +

M∑
j=N+1

αj

m∏
i=k+1

(−θ2
i )uj .

It is clear that if θk+1 is close to σk, then the component of p+
1 in uk is very small

relative to the others. A good cure for this is to replace such a θi by the largest Ritz
value θm−k. This way will amplify the components of p+

1 along ui, i = 1, 2, . . . , k, and
meanwhile possibly dampen those along ui, i = k + 1, . . . , N .

Obviously, the above adaptive shifting strategy can be combined with the refined
shifts. The differences are now that εk is the residual norm (3.9) and bad shifts are
replaced by the largest refined shift. Having done the above, we now come to the
following practical algorithm.

Algorithm 3. IRRBL with the refined shifts.
1. Assume a unit length vector p1 of dimension M and the steps m, the number

k of the desired largest or smallest singular triplets (σi, ui, vi), i = 1, 2, . . . , k,
and a user-prescribed tolerance tol.

2. Run Algorithm 1 to construct Bm, Pm+1, and Qm+1.
3. Compute the singular values θi, j = 1, 2, . . . ,m, and take the first k ones as

approximations to the desired σi, i = 1, . . . , k. For each θi, i = 1, 2, . . . , k,
compute zi satisfying (3.4).
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4. Check if (3.9) for i = 1, 2, . . . , k is below tol. If yes, stop and explicitly com-
pute the refined Ritz approximations ûi = Pm+1xi/‖xi‖ and v̂i = Qmyi/‖yi‖,
where xi and yi are the vectors consisting of the first m+ 1 components and
the last m components of zi, respectively (see (3.5)); otherwise, continue.

5. Use Algorithm 2 to compute the refined shifts ξi, i = 1, 2, . . . ,m− k.
6. Go to step 2 and implicitly restart combined with the adaptive shifting strat-

egy.
We see it is not necessary to explicitly form the refined Ritz approximations

ûi, v̂i, i = 1, 2, . . . , k, before the algorithm converges. This way saves some computa-
tional work.

6. Numerical experiments. We have tested IRBL, IRRBl, PROPACK,
LANSO, and ARPACK, whose Matlab counterparts are lansvd.m, laneig.m (down-
loaded from [22]), and eigs.m, respectively. We ran experiments on an Intel Celeron
1700 MHz with main memory 256MB using Matlab 5.3 with machine precision
u = 2.22 × 10−16. Recall (2.7) and (3.9). The stopping criterion for IRBL and
IRRBL is

stopcrit = max
1≤i≤k

√
‖Av̂i − θiûi‖2 + ‖ATûi − θiv̂i‖2.

If

stopcrit ≤ tol ×max{‖Bm‖, 1},

then

stopcrit ⇐ max
1≤i≤k

stopcrit

||A||1 .

If stopcrit < tol, stop.
By taking m = 2k we intend to make all the restarted algorithms as black-box

solvers for computing the largest singular values. To make a fair comparison, we
used the same starting vector generated randomly in a uniform distribution whenever
possible for all the restarted algorithms. In experiments, we took tol = 10−6. In all
the tables, “iter” denotes the number of restarts, “CPU” the CPU timings in second,
and m > 1000 denotes no convergence of LANSO or PROPACK when the steps m
(i.e., the subspace dimension) exceeded 1000. We terminated LANSO and PROPACK
and counted CPU timings when m > 1000.

Example 1. We took some test matrices from [1, 6] for our purpose. Keep
Ã = [0, A;A′, 0] in mind. IRBL and IRRBL used the same initial vector p1, eigs(Ã)
used (pT

1 , 0)
T, and eigs(ATA) used AT p1 as initial vectors.

From Tables 6.1–6.3, we see that IRRBL works at least as efficiently as IRBL
in terms of restarts. For k = 50 and well1850, illc1850, and tols4000, it consumed
significantly more CPU time than IRBL for some of the test matrices. This is because
we had to compute k small SVDs to obtain refined Ritz vectors. In all the other cases,
IRRBL was as good as IRBL and could be significantly better than IRBL both in
terms of restarts and CPU timings. In particular, for can1054, saylr4, and add32,
IRRBL was much faster than IRBL. Both algorithms were significantly better than
ARPACK applied to Ã. ARPACK applied to ATA was faster than IRRBL for five of
the eight test matrices but was considerably slower than IRRBL for af23560, saylr4,
and add32. However, ARPACK applied to ATA is not able to compute the left



260 ZHONGXIAO JIA AND DATIAN NIU

Table 6.1
Computing 10 largest singular triplets.

Matrix well1850 illc1850 tols4000 af23560
Program steps time steps time steps time steps time
lansvd 70 0.47 70 0.53 21 0.16 47 9.00

laneig(ATA) 75 0.27 75 0.27 155 2.80 51 7.30

laneig(Ã) 139 1.45 115 1.14 225 11.3 155 67.7
iter time iter time iter time iter time

eigs(ATA) 18 1.02 11 0.77 22 11.4 8 50.2

eigs(Ã) 55 10.13 25 5.84 36 31.5 22 112.1
IRBL 7 2.16 7 2.23 19 16.5 5 23.5
IRRBL 7 2.41 7 2.59 17 15.5 5 23.6

Matrix can1054 dwt1242 saylr4 add32
Program steps time steps time steps time steps time
lansvd 45 0.27 70 0.41 369 14.1 349 28.4

laneig(ATA) 67 0.30 115 0.66 401 18.8 371 29.8

laneig(Ã) 129 2.23 183 4.84 807 349 531 208
iter time iter time iter time iter time

eigs(ATA) 6 1.41 7 2.30 42 43.4 72 152

eigs(Ã) 14 6.34 16 9.67 107 207.3 81 417
IRBL 43 11.3 27 7.98 n.c. - 79 56.8
IRRBL 8 2.50 15 5.33 48 41.9 44 39.0

Table 6.2
Computing 20 largest singular triplets.

Matrix well1850 illc1850 tols4000 af23560
Program steps time steps time steps time steps time
lansvd 150 2.38 141 3.28 41 0.33 83 17.0

laneig(ATA) 143 0.84 141 1.05 167 3.55 85 14.7

laneig(Ã) 139 8.20 279 7.91 303 22.8 173 102.7
iter time iter time iter time iter time

eigs(ATA) 14 2.89 20 4.05 9 21 6 82.9

eigs(Ã) 32 27.2 53 38.7 15 59.8 17 299
IRBL 7 7.41 11 13.0 9 27.8 4 64.2
IRRBL 7 10.9 8 13.3 8 28.6 4 66.0

Matrix can1054 dwt1242 saylr4 add32
Program steps time steps time steps time steps time
lansvd 74 0.66 122 1.19 445 21.5 467 49

laneig(ATA) 83 0.42 145 1.09 575 43.2 505 63

laneig(Ã) 167 4.22 259 12.4 >1000 862 >1000 1844
iter time iter time iter time iter time

eigs(ATA) 4 2.70 8 5.83 29 82.7 72 152

eigs(Ã) 10 14.2 18 26.7 77 352 81 417
IRBL 4 3.23 8 8.17 33 93.5 38 116
IRRBL 4 5.48 8 12.5 31 103 12 43

singular vectors simultaneously and is less preferable, as it can lead to severe loss
of accuracy of small singular values. LANSO failed in some cases when m exceeded
1000. It could be faster than IRBL and IRRBL in some cases but required (much)
more memory to save Lanczos basis vectors for computing singular vectors. LANSO
applied to Ã could be much slower than IRRBL and meanwhile used much more
memory. PROPACK was faster than IRRBL in most cases but used much more
memory.
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Table 6.3
Computing 50 largest singular triplets.

Matrix well1850 illc1850 tols4000 af23560
Program steps time steps time steps time steps time
lansvd 422 38.5 315 12.4 101 1.47 154 75.8

laneig(ATA) 423 13.0 319 4.52 215 6.16 167 52.1

laneig(Ã) 847 129 635 47.1 473 59.1 333 14340
iter time iter time iter time iter time

eigs(ATA) 21 29 13 18 2 40 5 302

eigs(Ã) 48 236 31 173 9 206 15 1560
IRBL 9 64 6 40 4 67 3 287
IRRBL 9 219 6 142 4 135 3 319

Matrix can1054 dwt1242 saylr4 add32
Program steps time steps time steps time steps time
lansvd 135 1.69 223 4.25 808 123 505 64.5

laneig(ATA) 139 1.08 213 2.59 >1000 277 469 51.6

laneig(Ã) 281 12.8 423 30.9 >1000 641 >1000 2459
iter time iter time iter time iter time

eigs(ATA) 3 8.69 5 20.8 37 489 19 288

eigs(Ã) 8 52.3 12 97.8 81 1680 27 1042
IRBL 2 7.83 4 22.8 1019 38774 13 339
IRRBL 2 43.6 4 92.9 139 6126 7 291

Example 2. We now report some test results for computing a few of the smallest
singular triplets by IRBL and IRRBL. In contrast to Example 1, it appears that
the computation of smallest singular triplets is much more difficult. It turns out
that it is hard to use them as black-box solvers. So we test each case for several m.
Since LANSO, PROPACK, and ARPACK exploit shift-and-invert to compute smallest
singular triplets, we are not able to compare IRBL and IRRBL with them now and
can only give a comparison between IRRBL and IRBL. The test matrices are from
[1, 6]. In the tables, “n.c.” denotes no convergence after 2000 restarts are used. Tables
6.4–6.13 list the results obtained.

We see that in contrast to Tables 6.1–6.3 it was much more difficult to compute
the smallest singular triplets. We could use neither IRBL nor IRRBL as a black-box
solver. Performance of IRBL and IRRBL depended heavily on m. However, it is
clearly seen from Tables 6.4–6.13 that IRRBL was much more efficient than IRBL,
and the latter often failed but the former solved a problem quite successfully.

Table 6.4
well1850, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 1077 204 697 138 1351 209 933 153
15 372 152 294 125 347 128 190 76
20 193 138 132 98 161 107 71 49
25 116 129 74 84 91 96 60 66
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Table 6.5
dw2048, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
20 n.c. - n.c. - n.c. - 1393 1067
30 n.c. - 1716 3835 955 1566 667 1140
40 1516 6121 806 3350 493 1449 285 882
50 929 4470 481 2394 301 1433 209 1042

Table 6.6
lshp2233, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
20 1475 1574 734 808 n.c. - 1587 1638
30 602 1440 311 756 949 2130 581 1348
40 328 1402 214 933 499 2084 284 1237
50 207 1380 165 1163 309 2197 207 1491

Table 6.7
bcspwr06, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
15 271 86.3 158 51.1 1179 338 829 250
20 137 72.3 68 36.7 521 251 419 221
25 85 69.8 48 40.7 293 224 192 156

Table 6.8
bcspwr07, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 n.c. - 1231 199 n.c. - n.c. -
15 709 246 417 149 n.c. - 1685 548
20 361 211 265 160 1069 557 615 346
25 215 196 124 115 595 538 394 350

Table 6.9
bcspwr08, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 1385 237 691 113 n.c. - n.c. -
15 485 182 287 102 n.c. - 1691 561
20 245 144 153 93.3 1563 843 1067 619
25 149 137 116 110 885 786 582 547
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Table 6.10
bcspwr09, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 1063 183 693 121 n.c. - n.c. -
15 371 139 319 121 1041 347 497 169
20 189 117 165 102 463 262 274 159
25 113 110 83 82 263 236 186 171

Table 6.11
pde900, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 n.c. - 1431 146 n.c. - 1827 155
15 913 201 649 143 797 151 398 79.1
20 458 177 311 121 355 138 285 118
25 164 204 199 122 204 124 108 64.3

Table 6.12
jpwh991, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
15 1371 343 1039 255 n.c. - 1627 380
20 665 279 421 176 968 397 746 317
25 381 252 284 194 527 322 349 221
30 265 246 193 181 325 280 234 214

Table 6.13
plat1919, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
15 1569 671 785 335 n.c. - n.c. -
20 763 560 307 223 n.c. - n.c. -
25 451 489 244 267 n.c. - 1526 1642
30 145 179 117 183 n.c. - 947 1450

7. Conclusion. Both IRRBL and IRBL can be used to compute a partial SVD
of a large matrix. But IRRBL is much more efficient than IRBL for computing the
smallest singular triplets; in some cases, it can be significantly better than IRBL for
computing the largest singular triplets. In comparison with IRBL, it is safer to use
IRRBL as a black-box solver for computing the largest singular triplets. For comput-
ing the smallest singular triplets, IRBL and IRRBL still cannot perform as black-box
solvers, and their performance depends heavily on m. Numerical experiments have
demonstrated that (1) the refined Ritz approximations can be much more accurate
than the Ritz approximations and (2) the refined shifts can be much better than the
exact shifts. For the effect of the refined approximations and the refined shifts on a
refined restarted algorithm, see [14, 17] for more analysis.

Note the difficulty of computing the smallest singular triplets. It may be good
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to combine IRBL and IRRBL with shift-and-invert. As is well known, however, each
step may be very costly and even unacceptable since one has to solve a large linear
system each step. Another possibly promising approach to settling the issue is to
develop harmonic versions of IRBL and IRRBL, avoiding explicit shift-and-invert, as
was done in [17, 24].
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