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This study develops an adaptive time-stepping procedure of Newmark integration scheme
for transient elastodynamic problems, based on the semi-analytical scaled boundary finite
element method (SBFEM). In each time step, a posteriori local error estimator based
on the linear distributed acceleration is employed to estimate the error caused by the
time discretization. The total energy of the domain, consisting of the kinetic energy and
the strain energy, is calculated semi-analytically. The time increment is automatically
adjusted according to a simple criterion. Three examples with stress wave propagation
were modeled. The numerical results show that the developed method is capable of limit-
ing the local error estimator within specified targets by using an optimal time increment
in each time step.

Keywords: Scaled boundary finite element method; time adaptivity; elastodynamics;
Newmark integration method; local error estimator.

1. Introduction

In elastodynamic problems with stress wave propagation, the discretization error of
numerical methods is caused by two sources: the spatial discretization and the time

∗Corresponding author.
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discretization. The spatial discretization error can be limited by spatially adaptive
techniques, such as h-adaptive method [Zeng and Wiberg (1992a)], based on the
identification of steep stress regions. Even if an optimal mesh is identified in each
time step or a very fine mesh is used constantly, the adaptive procedure of the time
increment, termed adaptive time-stepping procedure herein, is still very important.
For example, in some practical geotechnical problems, the dynamic process may be
very rapid in some time intervals but slow in others. As a result, it is inefficient
and impractical to use a constant time increment in the whole process. In order
to improve computing efficiency, adaptive time-stepping procedures based on local
error estimations have been developed in finite element method (FEM). Zienkiewicz
and Xie [1991] proposed a local error estimator by comparing the solutions from
the Newmark integration method and exact solutions from the Taylor expansion.
Zeng et al. [1992c] obtained the same estimator in a more intuitive way and demon-
strated that the estimator converged asymptotically to the exact local error by
modeling a single degree of freedom (DOF) example. However, this estimator only
considers the errors of displacements. Li et al. [1993] took into account the errors
of both displacements and velocities and established more accurate and complete
local error estimators. However, for large-scale problems [Voleti et al. (1996)] and
high-frequency dynamic problems [Ihlenburg et al. (1997)], a large number of DOFs
are required in FEM, leading to high computational cost.

The scaled boundary finite element method (SBFEM), developed by Song and
Wolf in 1990s [Wolf and Song (1997)], is a semi-analytical method combining the
advantages of FEM and the boundary element method (BEM). It discretizes sub-
domain boundaries only and thus the modeling dimensions are reduced by one as
the BEM, but no fundamental solutions are needed. As a result, only a small num-
ber of DOFs are needed for typical elastic problems. These features often lead to
higher computational efficiency and accuracy than traditional FEM, especially for
problems with stress singularity [Yang (2006); Yang et al. (2007)]. Adaptive scaled
boundary finite element method (ASBFEM) based procedures have been devised
recently for static problems to control the spatial discretization error [Deeks and
Wolf 2002a,b], where the superconvergent patch recovery technique and the a pos-
teriori error estimator developed by Zienkiewicz and Zhu [1987] for FEM were
extended to SBFEM with h-refinement. More recently, the authors developed an
h-hierarchical ASBFEM procedure for general elastodynamic problems [Yang et al.
(2011)]. However, very small constant time increments were used to avoid the time
discretization error. These studies demonstrate that the ASBFEM is significantly
more efficient than adaptive FEM.

This study extends the local error estimator proposed by Zeng et al. [1992c] to
the SBFEM, to control the time discretization error and improve computational
accuracy and efficiency for modeling elastodynamic problems. Three examples were
modeled to demonstrate the effectiveness and efficiency of the developed time-
stepping procedure.
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2. Methodology

2.1. The scaled boundary FEM

A domain of arbitrary shape is illustrated in Fig. 1(a) as an example. The domain
is divided into three subdomains. Any scheme of subdivision, with various num-
bers, shapes, and sizes of subdomains, can be used, as long as a scaling center for
each subdomain can be found from which the subdomain boundary is fully visible.
Figure 1(b) shows the details of Subdomain 1. The subdomain is represented by
scaling a defining curve S relative to a scaling center. The defining curve is usually
taken to be the domain boundary, or part of the boundary. A normalized radial
coordinate ξ is defined, varying from zero at the scaling center and unit value on S.
A circumferential coordinate η is defined along the defining curve S. A curve similar
to S defined by ξ = 0.5 is shown in Fig. 1(b). The coordinates ξ and η form the
local coordinate system used in all subdomains.

The basic assumption of the SBFEM is that the displacement field in a subdo-
main is

u(ξ, η) = N(η)u(ξ), (1)

where N(η) is the shape function matrix in the circumferential direction, which is
the same as used in FEM, and u(ξ) denotes the displacements along the radial lines,
which are analytical with respect to the radial coordinate ξ.

2.2. Solutions in the time domain

Starting from the virtual work principle and using the Newmark integration method,
Yang et al. [2011] have derived displacement, velocity, and acceleration fields in

(a) (b)

Fig. 1. The concept of the SBFEM: (a) subdomaining of a domain and (b) subdomain 1.
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subdomains as:

u(ξ, η) = N(η)
N∑

i=1

ciξ
λiϕi, u̇(ξ, η) = N(η)

N∑
i=1

ċiξ
λiϕi,

ü(ξ, η) = N(η)
N∑

i=1

c̈iξ
λiϕi, (2)

where N is the DOFs of the subdomain and λi and ϕi are the N number of pos-
itive eigenvalues and corresponding eigenvectors (modal displacements) of a stan-
dard eigenproblem. They can be interpreted as independent deformation modes that
closely satisfy internal equilibrium in the ξ direction. ċi and c̈i are constants depend-
ing on boundary conditions. The stress field in the subdomain is calculated by

σ(ξ, η) = DB1(η)

(
N∑

i=1

ciλiξ
λi−1ϕi

)
+ B2(η)

(
N∑

i=1

ciξ
λi−1ϕi

)
=

N∑
i=1

ciξ
λi−1ψi,

(3)

where D is the material elasticity matrix, B1 and B2 are coefficient matrices depen-
dent only on the boundary definition, and ψi is the ith stress mode.

It can be seen from Eqs. (2) and (3) that the displacement, velocity, accelera-
tion, and stress fields in a subdomain are all analytical with respect to the radial
coordinate ξ and approximate in FEM sense in the circumferential direction η.

2.3. The local error estimator

The original Newmark scheme, also called the constant-average-acceleration method,
assumes that the acceleration in each time step is a constant equal to the average
of accelerations at the two ends of the time step [Thomas and Gladwell (1988)],
i.e. (Üt + Üt+∆t)/2 in the time interval [t, t + ∆t] as illustrated in Fig. 2. This
assumption leads to a discontinuous acceleration history.

Fig. 2. Acceleration distributions.
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To improve accuracy, Zeng et al. [1992c] assumed a continuous linear distribution
of acceleration (the dash line in Fig. 2) as the recovered acceleration.

Ü∗ =
Üt+∆t − Üt

∆t
(τ − t) + Üt, (4)

where τ ∈ [t, t + ∆t]. The acceleration error at time τ is estimated by

ë(τ) ≈ 1
2
(Üt+∆t + Üt) − Ü∗ = −Üt+∆t − Üt

∆t
(τ − t) +

1
2
(Üt+∆t − Üt). (5)

Assuming the solutions at time t are exact, the velocity error at time τ is estimated
by one-time integration of Eq. (5)

ė(τ) =
∫ τ

t

ë(τ ′)dτ ′ ≈ −Üt+∆t − Üt

2∆t
(τ − t)2 +

1
2
(Üt+∆t − Üt)(τ − t). (6)

The displacement error is then calculated by

e(t + ∆t) =
∫ t+∆t

t

ė(τ)dτ ≈ 1
12

∆t2(Üt+∆t − Üt). (7)

A posteriori local error is finally obtained in the strain energy norm

‖e‖ =
√

eTKe ≈ 1
12

∆t2[(Üt+∆t − Üt)T K(Üt+∆t − Üt)]1/2, (8)

where K is the global stiffness matrix. The Newmark integration scheme with β =
0.25 is used in the above derivation. Other values of β can also be used.

In most cases, it is difficult to specify an absolute error tolerance of ‖e‖ and an
error estimator relative to the total energy of the domain is usually used. The total
energy of a domain can be calculated semi-analytically as [Yang et al. (2011)]:

‖u‖ =


NS∑

s=1

N∑
i=1

N∑
j=1

(
ρċiċj

λi + λj + 2

∫
Ss

(u̇i(η))T u̇i(η)|J |dη

+
cicj

λi + λj

∫
Ss

σi(η)T D−1σj(η)|J |dη

))1/2

(9)

where NS is the number of subdomains and ρ is the material density. |J | is the
determinant of Jacobian matrix, u̇i(η) the ith mode of velocity, and σi(η) the ith
mode of stress on the subdomain boundary Ss, respectively.

The relative local error estimator is defined as:

ω =
‖e‖
‖u‖ × 100%. (10)
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Pre-processing

Specify a1, a2,    , ∆tint

bt=0, ∆told =∆tint

t=bt+∆told

Dynamic analysis 

Calculate 

ωαω

ω

ω

ωα 21 ≤≤ bt=t

bt>T

Calculate ∆tnew

End

Yes

Yes

No

No

∆told =∆tnew

Fig. 3. The flowchart of the adaptive time-stepping procedure.

3. The Time Adaptive Procedure

The aim of the time adaptive procedure is to adjust the time increment, so that the
local error estimator is controlled within a target range for each time step [Zeng
et al. (1992c)]

α1ω̄ ≤ ω ≤ α2ω̄, (11)

where ω̄ is the target error estimator, 0 ≤ α1 ≤ 1 and α2 ≥ 1 are two limiting
parameters.

If the inequality (11) is not satisfied, the time increment is adjusted according to

∆tnew =
( ω̄

ω

)1/3

∆told, (12)

where ∆tnew is the new time increment after adjustment and ∆told is the optimal
time increment identified in the previous time step.

Figure 3 illustrates a simple flowchart of the adaptive time-stepping procedure.

4. Numerical Examples

Three examples were modeled to validate the developed method. The following
parameters are used for all the examples: ω̄ = 1%, α1 = 0.9, α2 = 1.1, and ∆tint =
0.01 s.

4.1. Example 1: An L-shaped domain under blast

The first example is an L-shaped domain subjected to a triangular blast-like loading
(Fig. 4). Dynamic responses in a time period of (0.0, 8.0 s) were calculated.
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P0

t

P0

0 1 2

A (0, 0) D (50, 0)

C (50, 25)

B (0, 95)

50 50

50

50

E=1.0×105

ν=0.3
ρ=25
thickness=1
Plane stress

Fig. 4. Example 1: an L-shaped domain and its mesh (DOFs = 106).
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Fig. 5. Histories of horizontal displacement of points A and B.

Figures 5 and 6 show the displacement and stress responses at points A, B, C,
and D. It can be seen that the results of the time adaptive method agree very well
with the nonadaptive SBFEM, which used a uniform time increment ∆t = 0.1 s.
The results from FEM using 4,554 DOFs [Zeng and Wiberg (1992a)] are also plotted
for comparison.

Figure 7(a) shows the histories of the local error estimator using the SBFEM
with and without time adaptivity. For nonadaptive SBFEM, the error estimator
fluctuates around 3% for uniform ∆t = 0.2 s. For ∆t = 0.1 s, the estimator is less
than 1% in most time steps, but it is high at the initial stage. The present method
is able to control the error estimator closely around 1% during the whole process.
Figure 7(b) shows the time increment history used in the adaptive SBFEM. It is
clear that the time increment is adapted according to Eq. (12). In particular, very
short time increments are used at the beginning to reduce error.

1240007-7

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 2

01
2.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 C
O

L
L

E
G

E
 O

F 
SC

IE
N

C
E

 o
n 

11
/1

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 20, 2012 16:5 WSPC/0219-8762 196-IJCM 1240007

Z. H. Zhang, Z. J. Yang & G. Liu

-15

-10

-5

0

5

10

0 2 4 6 8

H
or

iz
on

ta
l s

tr
es

s

Time

FEM (Zeng et al, 1992a) 

SBFEM, t=0.1s 

Time adaptivity

-15

-10

-5

0

5

10

15

0 2 4 6 8

H
or

iz
on

ta
l s

tr
es

s

Time

FEM (Zeng et al, 1992a)
SBFEM, t=0.1s
Time adaptivity

(a) Point C (b) Point D

Fig. 6. Histories of horizontal stress of points C and D.

0

2

4

6

8

10

0 2 4 6 8

L
oc

al
 e

rr
or

 e
st

im
at

er
 ω

 (
%

)

Time

Time adaptivity, target=1%, NT=66

SBFEM,   t=0.2s, NT=40

SBFEM,   t=0.1s, NT=80

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8

T
im

e 
in

cr
em

en
t

Time

(a) (b)

Fig. 7. Histories of the local error estimator and the time increment used for Example 1: (a) the
local error estimator and (b) the time increment.
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Fig. 8. Example 2: a simply supported beam and the mesh (DOFs = 120).
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Fig. 10. Histories of horizontal stress of point B.

4.2. Example 2: A simply supported beam under impact

A simply supported beam subjected to a uniformly distributed loading in the form
of Heaviside function on the beam top face. The dimensions, material properties,
and mesh are shown in Fig. 8. The dynamic responses in a time period of (0, 1.2 s)
were calculated.

Figure 9 shows the vertical displacement histories at point A, calculated by
the present method, nonadaptive SBFEM, and FEM using 2909 DOFs [Zeng et al.
(1992b)], respectively. Almost the same results were predicted from the nonadap-
tive SBFEM and the present method and they are also close to those of FEM.
Figure 10 compares favorably the horizontal normal stresses at point B from the
three methods.

Figure 11(a) shows the histories of the local error estimator in present method
and nonadaptive SBFEM with constant time increments ∆t = 0.01 s and ∆t =
0.02 s, respectively. It can be seen that the local error estimator from nonadaptive
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Fig. 11. Histories of the local error estimator and the time increment used for Example 2: (a) the
local error estimator and (b) the time increment.
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E=1.0×105, ν=0.3, ρ=25 

thickness=1.0, Plane stress

t 

1

0 

P (t)  

A (100, 100)

Fig. 12. Example 3: a deep cantilever and the mesh (DOFs = 130).

SBFEM reaches 18% with ∆t = 0.02 s and 13% with ∆t = 0.01 s at the beginning
and the end of analysis, respectively, although it is low in the middle stage. In
contrast, the present method successfully limited the error close to the target ω̄ =
1% in all the time steps by varying the time increments between 0.002 s and 0.033 s,
as shown in Fig. 11(b).

4.3. Example 3: A deep cantilever under impact

A deep cantilever subjected to a uniformly distributed loading in the form of Heav-
iside function on the top face (Fig. 12). The dynamic responses in (0, 30 s) were
calculated.
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Figures 13 and 14 compare the histories of vertical displacement at point A
and the horizontal stress at point B respectively, calculated by the present method,
nonadaptive SBFEM, and FEM using 3,460 DOFs [Zeng and Wiberg (1992a)]. The
results are in good agreement with each other. Figure 15(a) shows the histories of
the local error estimator from the present method and nonadaptive SBFEM with
time increments ∆t = 0.1 s and ∆t = 0.2 s, respectively. Again, the present method
successfully limited the error around the target although it used more time steps
than the nonadaptive SBFEM. Figure 15(b) shows the history of the time increment
used in the present method.

5. Conclusions

An adaptive time-stepping procedure based on the SBFEM has been developed
for elastodynamic problems. The total energy of the domain is calculated semi-
analytically. A local error estimator based on the assumption of linearly distributed
acceleration is established to evaluate the time discretization error. The time incre-
ment is automatically identified to satisfy the pre-specified target error estimator.
Numerical examples demonstrate that the developed method is able to accurately
calculate dynamic responses and limit the time discretization error within accept-
able levels, using a small number of DOFs.

Acknowledgments

This research is supported by EPSRC UK (Project No. EP/F00656X/1). Z. H.
Zhang’s one-year study in the University of Liverpool is funded by China Scholarship
Council.

References

Deeks, A. J. and Wolf, J. P. [2002b] An h-hierarchical adaptive procedure for the scaled
boundary finite-element method, Int. J. Numer. Methods Eng. 54(4), 585–605.

Deeks, A. J. and Wolf, J. P. [2002a] Stress recovery and error estimation for the scaled
boundary finite-element method, Int. J. Numer. Methods Eng. 54(4), 557–583.

Ihlenburg, F., Babuska, I. and Sauter, S. [1997] Reliability of finite element methods for
the numerical computation of waves, Adv. Eng. Software 28, 417–424.

Li, X. D., Zeng, L. F. and Wiberg, N.-E. [1993] A simple local error estimator and an
adaptive time-stepping procedure for direct integration method in dynamic analysis,
Commun. Numer. Methods Eng. 9, 273–292.

Song, C. and Wolf, J. P. [1997] The scaled boundary finite-element method — alias con-
sistent infinitesimal finite-element cell method for elastodynamics, Comput. Methods
Appl. Mech. Eng. 147(3–4), 329–355.

Thomas, R. M. and Gladwell, I. [1988] Variable-order variable-step algorithms for second-
order systems. Part 1: the methods, Int. J. Numer. Methods Eng. 26(1), 39–53.

Voleti, S. R., Chandra, N. and Miller, J. R. [1996] Global-local analysis of large-scale
composite structures using finite element methods, Comput. Struct. 58(3), 453–464.

Yang, Z. J. [2006] Fully automatic modelling of mixed-mode crack propagation using scaled
boundary finite element method, Eng. Fract. Mech. 73(12), 1711–1731.

1240007-12

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 2

01
2.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 C
O

L
L

E
G

E
 O

F 
SC

IE
N

C
E

 o
n 

11
/1

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 20, 2012 16:5 WSPC/0219-8762 196-IJCM 1240007

An Adaptive Time-Stepping Procedure Based on SBFEM

Yang, Z. J., Deeks, A. J. and Hao, H. [2007] Transient dynamic fracture analysis using
scaled boundary finite element method: a frequency-domain approach, Eng. Fract.
Mech. 74(5), 669–687.

Yang, Z. J., Zhang, Z. H., Liu, G. H. and Ooi, E. T. [2011] An h-hierarchical adaptive scaled
boundary finite element method for elastodynamics, Comput. Struct. 89, 1417–1429.

Zeng, L. F. and Wiberg, N.-E. [1992a] Spatial mesh adaptive in semidiscrete finite element
analysis of linear elastodynamic problems, Comput. Mech. 9(5), 315–332.

Zeng, L. F., Wiberg, N.-E. and Bernsp̊ang, L. [1992b] An adaptive finite element procedure
for 2D dynamic transient analysis using direct integration, Int. J. Numer. Methods Eng.
34(3), 997–1014.

Zeng, L. F., Wiberg, N.-E., Li, X. D. and Xie, Y. M. [1992c] A posteriori local error
estimation and adaptive time-stepping for Newmark integration in dynamic analysis,
Earthquake Eng. Struct. Dyn. 21, 555–571.

Zienkiewicz, O. C. and Xie, Y. M. [1991] A simple error estimator and adaptive time
stepping procedure for dynamic analysis, Earthquake Eng. Struct. Dyn. 20, 871–887.

Zienkiewicz, O. C. and Zhu, J. Z. [1987] A simple error estimator and adaptive procedure
for practical engineering analysis, Int. J. Numer. Methods Eng. 24(2), 337–357.

1240007-13

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 2

01
2.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Z

H
E

JI
A

N
G

 U
N

IV
E

R
SI

T
Y

 C
O

L
L

E
G

E
 O

F 
SC

IE
N

C
E

 o
n 

11
/1

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.


