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Abstract

In this Letter, we investigate the under-structures ofsthend B mesons in the framework of the Bethe—Salpeter equation
with the confining effective potential (infrared modified flat bottom potential). In bare quark—gluon vertex approximation, we
obtain the algebraic expressions for the solutions of the coupled rainbow Schwinger-Dyson equation and ladder Bethe—Salpeter
equation. Firstly, we neglect the rainbow Schwinger—-Dyson equation, take the bare quark propagator and solve the Bethe—
Salpeter equation numerically alone. Although the bare quark propagator cannot embody dynamical chiral symmetry breaking
and has a mass pole in the time-like region, it can give reasonable results for the values of decay gg@natahfg compared
with the values of experimental data and other theoretical calculations, such as lattice simulations and QCD sum rules. Secondly,
we explore those mesons within the framework of the coupled rainbow Schwinger—-Dyson equation and ladder Bethe—Salpeter
equation. The Schwinger-Dyson functions for thendd quarks are greatly renormalized at small momentum region and
the curves are steep at abaift= 1 Ge\2 which indicates an explicitly dynamical symmetry breaking. The Euclidean time
Fourier-transformed quark propagator has no mass poles in the time-like region which naturally implements confinement. As
for the b quark, the current mass is very large, the renormalization is more tender, however, mass pole in the time-like region
is also absent. The Bethe—Salpeter wavefunctions for both #rel B mesons have the same type (Gaussian type) momentum
dependence as the corresponding wavefunctions with the bare quark propagator, however, the quantitative values are change
and the values for the decay constayfitsand fg are changed correspondingly.
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pling at low energy destroys the perturbative expan-  The decay constant of the B mesgp plays an
sion method. The physicists propose many nonper- important role in modern physics with the assumption
turbative approaches to deal with the long distance of current-meson duality. The precise knowledge of
properties of QCD, such as chiral perturbation the- the value of thefz will provide great improvement
ory [1], heavy quark effective theory [2], QCD sum in our understanding of various processes convolving
rule [3], lattice QCD [4], perturbative QCD [5], cou- the B meson decays. At present, it is a great challenge
pled Schwinger—Dyson equation (SDE) and Bethe— to extract the value of the B meson decay constant
Salpeter equation (BSE) method [6], etc. All of those fp from experimental data. So it is interesting to
approaches have both outstanding advantages and obeombine the those successful potentials within the
vious shortcomings. For example, lattice simulations framework of coupled SDE and BSE to calculate
are rigorous in view of QCD, they suffer from lat- the decay constants of both the and B mesons.
tice artifacts and uncertainties, such as Gribov copies, In this Letter, we use an infrared modified flat-
boundary conditions and so on, furthermore, current bottom potential (IMFBP) which takes the advantages
technique cannot give reliable result below 1 GeV, of both the Gaussian distribution potential and the
where the most interesting and novel behavior is ex- FBP to calculate both the and B mesons decay
pected to lie. The coupled SDE and BSE have given constants. Certainly, our potential model can be used
a lot of successful descriptions of the long distance to investigate the properties of other pseudoscalar
properties of strong interactions and the QCD vacuum, mesons, such ak, D, Dy, .... For example, we can
for a recent review one can see Ref. [7]. The SDE can obtain the decay constants, = 127 MeV, fx =
provide a natural way to embody the dynamical sym- 156 MeV, fp = 238 MeV, andfp = 192 MeV with
metry breaking and confinement which are two cru- the same parameters, while a detailed studies of those
cial features of QCD, although they correspond to two mesonsK, D, Dy, ... may be our next work, they are
very different energy scales [8,9]. On the other hand, not our main concern in this Letter.

the BSE is a conventional approach in dealing with The Letter is arranged as follows: we introduce the
the two body relativistic bound state problems [10]. infrared modified flat bottom potential in Section 2;
From the solutions of the BSE, we can obtain useful in Sections 3 and 4, we solve the Schwinger-Dyson
information about the under-structure of the hadrons equation and the Bethe—Salpeter equation and obtain
and thus obtain powerful tests for the quark theory the decay constants for both the and B mesons;

of the mesons. However, the main drawback can be Section 5 is reserved for conclusion and discussion.
traced back to the fact that when we solving the SDE

and BSE, model dependent kernels for the gluon two-

point Green’s function have to be used, furthermore, 2. Infrared modified flat bottom potential

the coupled SDE and BSE are a divergent series of

equations, we have to make truncations in one or the  The infrared structure of the gluon propagator has
other ways. Numerical calculations indicate that the importantimplication for the quark confinement. One
coupled rainbow SDE and ladder BSE with phenom- might expect that the behavior of the quark interac-
enological potential models can give satisfactory re- tion in the region of small space-like? determines
sults. The usually used effective potentials are confin- the long range properties of th@ potential and hence
ing Dirac § function potential, Gaussian distribution implements confinement, however, the present tech-
potential and flat bottom potential (FBP) [11-13]. The niques in QCD manipulation cannot give satisfactory
FBP is a sum of Yukawa potentials, which not only smallr behavior for the gluon propagator, on the other
satisfies gauge invariance, chiral invariance and fully hand, the phenomenological confining potential mod-
relativistic covariance, but also suppresses the singu-els give a lot of successes in dealing with the low en-
lar point which the Yukawa potential has. ltworks well ergy hadron physics, such as dynamical chiral sym-
in understanding the dynamical chiral symmetry brak- metry braking, pseudoscalar mesons electromagnetic
ing, confinement and the QCD vacuum as well as the form factors, mass formulations—r scattering para-
meson structures, such as electromagnetic form factor,meters, etc [7,11,16]. In this Letter, we use a Gaussian
radius, decay constant [14,15]. distribution function to represent the infrared behavior
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of the gluon propagator, In order to suppress the singular pointrat 0, we
2 take the following conditions:
2y _a 20" _k2/A
4]TG(k ) =3 Fe ) (1) V(O) — ConSt
which determines the quark—quark interaction through 4V(0) _ d?V(©) _ _ d"V(0) _ 0 @)
a strength parametes and a ranger parameter.? dr dr? drn '

This form is inspired by thé function potential (in So we can determine; by solve the following
other words the infrared dominated potential) used in equations, inferred from the flat bottom condition
Ref. [11], which it approaches in the limit — 0. For Eqg. (4),

the intermediate momentum, we take the FBP as the |

best approximation and neglect the large momentum Z“' -0

contributions from the perturbative QCD calculations e ! '

as the coupling constant at high energy is very small. '/;

The FBP is a sum of Yukawa poteptlals Wthh is an Zaj(N +jp)=V(0),

analogous to the exchange of a series of particles and =

ghosts with different masses (Euclidean form), /

n

(N + jp)? =0,
G(k?) = Z — @) ;a]( ”
R+ N+ jo)? '
whereN stands for the minimum value of the masses,
p is their mass difference, ang; is their relative Za/(N+jp)” —o. (5)
coupling constant. 0

The definition of momentum regions between in-
frared and intermediate momentum is abdigcp =
200 MeV, which is naturally set up by the minimum
value of the masse¥ = 1Aqcp, where the Gaussian

function e**/4 decays to about.8 of its original val-

ues. Certainly, there are some overlaps between those The Schwinger—Dyson equation, in effect the func-
regions, in this way, we can gugrantee the continuity of 4i;nal Euler—Lagrange equation of the quantum field
the momentum. The asymptotic freedom tell us that at heory provides a natural framework for investigating

high energy the gauge coupling is very small and can (e nonperturbative properties of the quark and gluon
be neglected safely, on the other hand, our phenom-reen's functions. By studying the evolution behav-

enological potential at energy abaMit+ jo, j > 3is ior and analytic structure of the dressed quark propa-
already extend_to the p_erturbatlve region and catchesgator, one can obtain valuable information about the
some perturbative physical effects. Thus, our phenom- dynamical symmetry breaking phenomenon and con-

enological infrared modified FBP is supposed 0 M- finament. The SDE for the quark takes the following
body a great deal of physical information about all the ¢4,y

momentum regions.
Due to the particular condition we take for the FBP, S_l(p) =iy-p+m

As in previous literature [13—154, is set to be 9.

3. Schwinger—Dyson equation

there is no divergence in solving the SDE. In its three- 167i 4%k
dimensional form, the FBP takes the following form: T3 f Wpus(k)yvcuv(k —Dp)s
n —(N+jp)r (6)
e
Vi) =-— Zajf~ ()  where
/=0 -1 a2 2
ST (p) =iA(pT)y - p+ B(p*)
- AN 2
2 Here we correct a writing error in the first version. =A(p )[W pm(p )]’ )
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G (k) = <3W - %)G(kz), (8) for the pseudoscalar mesons,
S~ g +EP)x(q. P)S~Y(qg — (1 —&)P
and m stands for an explicit quark mass-breaking * 167 2 ( )
1

term. In the rainbow approximation, we takg, = ~
. With the explicit small mass term for the 3 J @o?
andd quarks, we can preclude the zero solution for whereS(q) is the quark propagator functios,, (k)
the B(p) and in fact there indeed exists a small is the gluon propagator?, is the four-momentum
bare current quark mass. In this Letter, we take of the center of mass of the pseudoscalar mesons,
Landau gauge. This dressing comprises the notationg, is the relative four-momentum between the quark
of constituent quark by providing a mass(p?) = and antiquark in the pseudoscalar mesdns,s the
B(p?)/A(p?), which is corresponding to the dynam- full vertex of quark—gluong is the center of mass
ical symmetry breaking. Because the form of the parameter which can be chosen to between 0 and
gluon propagatoiG(p) in the infrared region can- 1, and x(g, P) is the Bethe—Salpeter wavefunction
not be exactly inferred from th&8U(3) color gauge (BSW) of the bound state. In the limif, = y,,, we
theory, one often uses model dependent forms as in- obtain the ladder BSE.
put parameters in the previous studies of the rain-  After we perform the Wick rotation analytically
bow SDE [6,7,13-16], in this Letter we use the in- and continueq and k into the Euclidean region,
frared modified FBP to substitute for the gluon propa- the Euclidean pseudoscalar BSWg, P) can be
gator. expanded in Lorentz-invariant functions:

In this Letter, we assume that a Wick rotation to
Euclidean variables is allowed, and perform a rotation X (. P) = ys[i F1(q.q - P) +v - PF2(q.q - P)
analytically continuingy andk into the Euclidean re- +v-qF3(qg.q-P)

ion where them can be denoted pyandk, respec- .

t%vely. Alternatively, one can derivebfﬁe SDE frgm the tily ¢,y PIFa(g g - P)] (10)
Euclidean path-integral formulation of the theory, thus The BSW F; can be expressed in terms of the
avoiding possible difficulties in performing the Wick SO(4) eigenfunctions, the Tchebychev polynomials
rotation [17]. As far as only numerical results are con- Tnl/ 2(0039),
cerned, the two procedures are equal. In fact, the ana- ~
lytic structure of quark propagator has mtere;tmg N~ £(g.q-P)= ZFi” (¢, P)q" P" Tnl/Z(COSG), (11)
formation about confinement, we will go to this topic 5
again in the third subsection of Section 4.

The Euclidean rainbow SDE can be projected into
two coupled integral equations far(52) and B(j5?),
the explicit expressions for those equations can be
found in Ref. [14,15]. For simplicity, we ignore the
bar onp andk in the following notations.

F/LX(kv P)Flew(q —k), (9)

wheren = even ifi =1,2,4;, n =odd if n = 3,
T,,l/z(cose) = cogn cosP) andd is the included angle
betweeny andP. In solving the coupled BSEs fdi",

it is impossible to solve an infinite series of coupled
equations, we have to make truncations in one or
the other ways in practical manipulations. Numerical
calculations indicate that taking only= 0, 1 terms
can give satisfactory results:

x(q, P)=ys[i F{(q, P)+y - PF(q, P)
_t:]'hti BtSE |§ Z cor:vtgn_ti(t)_natl) app:jroat\cP in dt()alaling +y.qq- pF?}(q, P)

Wi e two body relativistic bound state problems _— _ 0

[10]. The quark theory of the mesons indicate that +ily-a.y - PIE{(q, P)]' (12)
the mesons are quark and antiquark bound states. The~or a thorough investigation of the solutions of the

precise knowledge about the quark structures of the above BSWs, we must take full quark propagator
mesons will result in better understanding of their and full quark—gluon vertex, again we are led to

properties. In the following, we write down the BSE solve a divergent series of coupled SDEs and BSEs,

4. Bethe-Salpeter equation
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truncations in one or the other ways for the quark - 3 r 2

propagator and quark—gluon vertex are also necessary. = |k dk/S' o (K(?” 2+ KG, 3))’
In this Letter, we take the bare vertex for both the SDE 0 0

and BSE. H4 )Fq. P)+ H(4,2)F)(q. P)

In solving the BSEs, it is important to translate the

1 0
wavefunctionsF”" into the same dimension, + H(4,3)F3(q, P) + H(4,4)F4(q, P)

o T
Fi — A*™MLFL Fp— AP2F) 0 0
q—>q/A,  P—P/A, (13) the expressions of the (i, j) andK (i, j) are cumber-

whereA is some quantity of the dimension of mass. ~ SOMe and neglected here, the interested readers can get

Here we take a short digression to discussing the word-version from the author.
the spectrum of the BSEs. In ideal conditions, a _ Here we give some explanations about the expres-
precise solution of the BSE for the bound states SIONS Of H(i. /). The H(i. j)'s are functions of the
of definite quantum numbers will reproduce the full quark's Schwinger-Dyson functions (SDF)
spectrum with the fundamental parameters of QCD, 2 9.9 5 .29
such asSU(3) gauge invariance, quark masses, etc. A(¢°+E°P°+&q-P), B(¢°+E°P +&q-P),
For exam;l)lle, thle SO|1EJt:|OnS 0; theIBSE forJOf A(q2+(1_g)2p2_(1_g)q.p),
mesons will result in a full pseudoscalar spectrum for 5 S
both the fundamental states and excited states suchB(q +(1=§"P = (1-8)q-P).

asn®, 7(1300, .... However, the present conditions  The relative four-momentugis a quantity in Euclid-
are far from the case, the truncated BSEs always ean space-time while the center of mass four-momen-
result in a spectrum with more bound states (artifact) tum p is a quantity in Minkowski space-time. The
[18]. Moreover, the spectrum is not the major subject present theoretical techniques cannot solve the SDE

which the present Letter concern. So in the Letter, we iy Minkowski space—-time, we have to expaadand
take the masses of the pseudoscalar mesons as inpug in terms of Taylor series af - P,

parameters and make an investigation of thand B
mesons BSWs for both ladder approximation and bare A (g2 + £2P% + £¢ - P)
quark propagator approximation. 2, e2p2 2 o o

The ladder BSE can be projected into four coupled = A(a"+E°P) + A(a"+E°P)Eq - P+,
integral equations in the following form:

H(L,1)FXq, P)+H(1,2)Fq, P)
+ H(L,3)Fi(q, P)+ H(L HFJ(q, P)

o0 b3
=/k3dk/sin29 K(1,1),
0 0

H(2,1)Fq, P) + H(2,2FY(q, P)
+ H(2,3)Fi(q. P)+ H(22,4HFJ(q. P)

=/k3dkfsin29(K(2, 2)+ K (2,3),
0 0

H3,1)Fq, P)+ H(3,2)F(q, P)
+ HB3,3)Fi(q, P)+ HB,HFJ(q, P)

B(¢*+&°P*+&q- P)
= B(q®+£2P?) + B(¢®+ %P Eq-P+---.

(15)
The other problem is that we cannot solve the SDE
in the time-like region as the two-point gluon Green'’s
function cannot be exactly inferred from ttgJ(3)
color gauge theory even in the low energy space-
like region. In practical manipulations, we can ex-
tract the values ofdA and B from the space-like re-
gion smoothly to the time-like region with the polyno-
mial functions. To avoid possible violation with con-
finement in sense of the appearance of pole masses
g% = —m(q?), we must be care in the choice of poly-
nomial functions [11].
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BSWs of r meson

Ak ]

0 25 50 , o, 75 100
q/A

Fig. 1. BSWs ofr meson.

Finally, we write down the normalization condition 4.2. Bethe—Salpeter equation with bare quark—gluon

for the BSW, vertex and bare quark propagator
4
d_q4 In this subsection, we investigate the BSWs of the
(2m) 7 and B mesons with the quark—gluon vertex and
_3SYg+£P) _ uark propagator are both taken to be bare,
X{xa+x(q,P)S Yg—@—gp)  AHanpopad
' ' P P Iu=vyu, SHp)y=iy-p+M, (18)
+ XSil(q +EPx. P) where the effective mas# is taken to be the con-
" 05 (q—-(1-85P) } _op (16) stituent quark mass for the d andb quarks. In this
P, a Letter, we take the effective mass as an input para-

where = yax*ya. We can substitute the expressions meter. Such atwo-pointquark Green'’s func_tion cannot
of the BSWs and SDFs into the above equation and embody dynamical chiral symmetry breaking and has

obtain the precise result, however, the expressions are® Mass pole in the time-like region. However, as a first
cumbersome and neglected here. step, we can study the BSWs for those pseudoscalar

mesons with the crude approximation. The algebraic
expressions for the BSWSs can be obtained easily with
a simple substitution ofA(p) — 1 andB(p) — M in

The decay constants of the pseudoscalar mesons are; g (14). After solving theOBS(I)Es ”“moe rically by. ltera-
. . : ions, we plot the BSWs2, F9, F1, FQ as functions
defined by the following current-meson duality: ’ . t20 "3 4
of the relative four-momentum for thex meson and

4.1. Decay constants of pseudoscalar mesons

i fx Py = (01qyuysq|m (P)) B meson, respecti\_/e_ly. In this Letter, we take the
%k meson BSWs explicitly shown in Fig. 1 as an exam-
=+ N; f Tr[yﬂyy((k, P)W], a7 ple and neglect others for simplicity. As the values of
JT

the Wavefunctionngl, Ff are tiny, we plot them per-
here we user to represent the pseudoscalar mesons. spicuously in another figure. From those figures, we
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can see that the first two wavefunctions are dominat-
ing, FL, F9 > F1, F?, and all of the four wavefunc- 7F .
tions are Gaussian-type and center around very small
momentum, i.e., near zero momentum which indicates
that the bound states must exist at the small momen-
tum region or in other words confinement occurs at the
infrared region. Based on the numerical values of the
BSWs of ther and B mesons, we can obtain the cor-
responding decay constants.

fr=134MeV,  fz =164 MeV, (19)

which are compatible with the experimental, lattice
and QCD sum rule resultsf; = 130 MeV (Exp)
and fp ~ 150-210 MeV (Latt, sumrule) [20-22].
In calculation, the input parameters ake= 1.04,

-logIS'(T)I

V() = —10.04, p =5.0A4, M, = M; = 530 MeV, k
M, = 5200 MeV, A = 200 MeV, = = 1.3 GeV and I u quar
A =0.03 Ge\~. N B R b quark |
4.3. Coupled rainbow Schwinger—Dyson equation
and ladder Bethe-Sal peter equation
1 " 1 L 1 L 1 "
In this subsection, we explore the coupled equa- 8.0 35 T40 45 50
P P q 10*GeV"

tions of the rainbow SDE and ladder BSE with the

bare quark—gluon vertex for both theand B mesons. Fig. 2. — log|S*(T)|.

The algebraic expressions for those solutions are ob-

tained already in Section 3 and forepart of Section 4,

here we will not repeat the tedious routine. In solv- the dressed quark propagator from Euclidean space

ing those equations numerically, the simultaneous it- into Minkowski spaceps — ipo. However, we have

erations converge quickly to an unique value indepen- no knowledge of the singularity structure of quark

dent of the choice of initial wavefunctions. The final propagator in the whole complex plane. One can take

results for the SDFs and BSWs are plotted as func- an alternative safe procedure and stay completely in

tions of the square momentui. Euclidean space avoiding analytic continuations of the
The quark—gluon vertex can be dressed through the dressed propagators [25]. It is sufficient to take the

solutions of the Ward—Takahashi identity or Slavnov— Fourier transform with respect to the Euclidean time

Taylor identity and taken to be the Ball-Chiu vertex T for the scalar pars;,

and Curtis—Pennington vertex [23,24]. Although it is

possible to solve the SDE with the dressed vertex, our +oo
analytical results indicate that the expressions for the S¥(T) = / 44 jigaT g,
BSEs with the dressed vertex are cumbersome and not %
suitable for numerical iteratiors. oo

In order to demonstrate the confinement of quark, _ dqa i B(g®) 20
we have to study the SDF of the quark and prove / on ¢ q2A2(q2) + B2(p?)’ (20)
that there no poles on the real timelilé axial. So —o0

it is necessary to perform an analytic continuation of .
ytop y If S(p) had a pole afp? = —m?, the Fourier trans-

formed S*(7T) would fall off ase="7 for large T or
3 This observation is based on the authors’ work in USTC. log S} = —mT.
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T T T T ' ' ' I
8 | e [
25 ]
7t 7
: 20 7
<< -+ JRE— 2y- T
g ° A(@);
2 x
- B(a)/A; s
- 5K | m(q2)/A N g' 2
= f 15 - A(d); .
3 = J [ po— B(q°)/A;
S 4L 4 N4 2
° I m(a’)/A
L n
%) 10 7
5L 4
0 ‘"-.‘.::.~,=_ 0 ' : " . '
Sy ) 0 100 2,,2200 300
/A
0 100 QYA 200 300 q
. Fig. 4. SDFs ob quark.
Fig. 3. SDFs of: andd quark.
In our calculation, for largel’, the values ofS; which indicates an explicit dynamical chiral symme-

is negative, except occasionally a very small fraction try breaking, while at largg?, they take asymptotic
positive values. We can expre§sas|S¥|e™™, n is an behavior. As for thé quark, shown in Fig. 4, the cur-
odd integer. logy =log|S;| + inx. If we neglect the rent mass is very large, the renormalization is more
imaginary part, we find that when the Euclidean time tender, however, mass pole in the time-like region is
T is large, there indeed exists a crudely approximated also absent, which can be seen from Fig. 2. At zero
(almost flat) linear function with about zero slope momentum,mn,(0) = 688 MeV, m;(0) = 688 MeV
for all the u, d (the curve for thed quark has the  andm,(0) = 4960 MeV, which are compatible with
same behavior as the quark in the limit of Isospin the constituent quark masses. In fact, the connection
symmetry is exact) and quarks with respect t@, of m(p) to constituent masses is somewhat less direct
which is shown in Fig. 2. Here the word ‘crudely’ for the light quarks and is precise only for the heavy
should be understand in the linearly fitted sense, to quarks. For heavy quark®;iconstituertp) = m (p =
be exact, there is no linear function. However, such 2mconstituentp)), for light quarks, it only makes a
fitted linear functions are hard to acquire physical crude estimation [19]. From the plotted BSWs (ne-
explanation and the negative values §grindicate an glected here for simplicity), we can see that the BSWs
explicit violation of the axiom of reflection positivity ~ for both ther and B mesons have the same type mo-
[26], in other words, the quarks are not physical mentum dependence as the corresponding wavefunc-
observable, i.e., confinement. tions with the bare quark propagators, however, the
From Fig. 3, we can see that for thendd quarks, guantitative values are changed. The Gaussian type BS
the SDFs are greatly renormalized at small momentum wavefunctions which center around small momentum
region and the curves are steep at abgut 1 Ge\? indicate that the bound states exist only in the infrared
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region, in other words confinement. Finally we ob-
tain the values for the decay constants of thend
B mesons,

fr=127MeV,  fz=192MeV, (21)

which are compatible with the experimental, lattice
and QCD sum rule resultsf; = 130 MeV (Exp)
and fp ~ 150-210 MeV (Latt, sumrule) [20-22].
In calculation, the input parameters ake= 1.04,
V(0)=—-110A,p=5.0A,m, =myg =6 MeV,mp =
4700 MeV, A = 200 MeV, w = 1.6 GeV andA =
0.04 Ge\~.

From the variations of the values for the decay
constants of both the and B mesons, we can estimate
that the full vertex approximation will not change
those values greatly.

5. Conclusion and discussion

In this Letter, we investigate the under-structures of
ther and B mesons in the framework of the Bethe—
Salpeter equation with the confining effective poten-
tial (infrared modified flat bottom potential). In bare
quark—gluon vertex approximation, we obtain the al-
gebraic expressions for the solutions of the coupled
rainbow SDE and ladder BSE for those mesons. At
the first step, we neglect the rainbow SDE, take the
bare quark propagator and solve the BSE numerically
alone. Although the bare quark propagator cannot em-
body dynamical chiral symmetry breaking and has a
mass pole in the time-like region, it can give rea-

sonable results for the values of the decay constants

f=, fp compared with the values of the experimen-
tal data and other theoretical calculations, such as lat-
tice simulations and QCD sum rules. In calculation,
we obtain the BSWs for the and B mesons, which
center in the small momentum region, are compati-
ble with confinement. Secondly, we explore the cou-
pled equations of the rainbow SDE and ladder BSE
with the bare quark—gluon vertex for those mesons.
The quark—gluon vertex can be dressed through the
solutions of the Ward—Takahashi identity or Slavnov—
Taylor identity and taken to be the Ball-Chiu vertex
and Curtis—Pennington vertex, however, a consistently
numerical manipulation is unpractical. After we solve
the coupled rainbow SDE and ladder BSE numerically,
we obtain both the SDFs and BSWs for both the

79

and B mesons. The SDFs for theandd quarks are
greatly renormalized at small momentum region and
the curves are steep at abgdt= 1 Ge\? which indi-
cates an explicitly dynamical chiral symmetry break-
ing. After we take Euclidean time Fourier transfor-
mation about the quark propagator, we can find that
there is no mass pole in the time-like region and ob-
tain satisfactory result about confinement. As for the
b quark, the current mass is very large, the renor-
malization is more tender, however, mass pole in the
time-like region is also absent. The BSWs for both
the 7 and B mesons have the same type momentum
dependence as the corresponding wavefunctions with
the bare quark propagators, however, the quantitative
values are changed and the corresponding values for
the decay constantg, and fp are changed, but not
greatly. We can estimate that the full vertex approxi-
mation will not change those values greatly. Once the
SDFs and BSWs for both the and B mesons are
known, we can use them to investigate a lot of im-
portant quantities in the B meson decays, sucl®-as

7, B-K, B—p former factors, Isgur—Wise functions,
strong coupling constants, etc.
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