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Abstract

In this Letter, we investigate the under-structures of theπ and B mesons in the framework of the Bethe–Salpeter equa
with the confining effective potential (infrared modified flat bottom potential). In bare quark–gluon vertex approximati
obtain the algebraic expressions for the solutions of the coupled rainbow Schwinger–Dyson equation and ladder Bethe
equation. Firstly, we neglect the rainbow Schwinger–Dyson equation, take the bare quark propagator and solve th
Salpeter equation numerically alone. Although the bare quark propagator cannot embody dynamical chiral symmetry
and has a mass pole in the time-like region, it can give reasonable results for the values of decay constantsfπ andfB compared
with the values of experimental data and other theoretical calculations, such as lattice simulations and QCD sum rules.
we explore those mesons within the framework of the coupled rainbow Schwinger–Dyson equation and ladder Bethe
equation. The Schwinger–Dyson functions for theu andd quarks are greatly renormalized at small momentum region
the curves are steep at aboutq2 = 1 GeV2 which indicates an explicitly dynamical symmetry breaking. The Euclidean
Fourier-transformed quark propagator has no mass poles in the time-like region which naturally implements confine
for theb quark, the current mass is very large, the renormalization is more tender, however, mass pole in the time-lik
is also absent. The Bethe–Salpeter wavefunctions for both theπ and B mesons have the same type (Gaussian type) mome
dependence as the corresponding wavefunctions with the bare quark propagator, however, the quantitative values a
and the values for the decay constantsfπ andfB are changed correspondingly.
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1. Introduction

Quantum chromodynamics (QCD) is the app
priate theory for describing the strong interaction
high energy region, however, the strong gauge c
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pling at low energy destroys the perturbative exp
sion method. The physicists propose many non
turbative approaches to deal with the long dista
properties of QCD, such as chiral perturbation t
ory [1], heavy quark effective theory [2], QCD su
rule [3], lattice QCD [4], perturbative QCD [5], cou
pled Schwinger–Dyson equation (SDE) and Beth
Salpeter equation (BSE) method [6], etc. All of tho
approaches have both outstanding advantages an
vious shortcomings. For example, lattice simulatio
are rigorous in view of QCD, they suffer from la
tice artifacts and uncertainties, such as Gribov cop
boundary conditions and so on, furthermore, curr
technique cannot give reliable result below 1 G
where the most interesting and novel behavior is
pected to lie. The coupled SDE and BSE have gi
a lot of successful descriptions of the long distan
properties of strong interactions and the QCD vacu
for a recent review one can see Ref. [7]. The SDE
provide a natural way to embody the dynamical sy
metry breaking and confinement which are two c
cial features of QCD, although they correspond to t
very different energy scales [8,9]. On the other ha
the BSE is a conventional approach in dealing w
the two body relativistic bound state problems [1
From the solutions of the BSE, we can obtain use
information about the under-structure of the hadr
and thus obtain powerful tests for the quark the
of the mesons. However, the main drawback can
traced back to the fact that when we solving the S
and BSE, model dependent kernels for the gluon t
point Green’s function have to be used, furthermo
the coupled SDE and BSE are a divergent serie
equations, we have to make truncations in one or
other ways. Numerical calculations indicate that
coupled rainbow SDE and ladder BSE with pheno
enological potential models can give satisfactory
sults. The usually used effective potentials are con
ing Dirac δ function potential, Gaussian distributio
potential and flat bottom potential (FBP) [11–13]. T
FBP is a sum of Yukawa potentials, which not on
satisfies gauge invariance, chiral invariance and f
relativistic covariance, but also suppresses the sin
lar point which the Yukawa potential has. It works w
in understanding the dynamical chiral symmetry br
ing, confinement and the QCD vacuum as well as
meson structures, such as electromagnetic form fa
radius, decay constant [14,15].
-

The decay constant of the B mesonfB plays an
important role in modern physics with the assumpt
of current-meson duality. The precise knowledge
the value of thefB will provide great improvemen
in our understanding of various processes convolv
the B meson decays. At present, it is a great challe
to extract the value of the B meson decay cons
fB from experimental data. So it is interesting
combine the those successful potentials within
framework of coupled SDE and BSE to calcula
the decay constants of both theπ and B mesons
In this Letter, we use an infrared modified fla
bottom potential (IMFBP) which takes the advantag
of both the Gaussian distribution potential and
FBP to calculate both theπ and B mesons deca
constants. Certainly, our potential model can be u
to investigate the properties of other pseudosc
mesons, such asK,D,Ds , . . . . For example, we ca
obtain the decay constantsfπ = 127 MeV, fK =
156 MeV,fD = 238 MeV, andfB = 192 MeV with
the same parameters, while a detailed studies of t
mesonsK,D,Ds , . . . may be our next work, they ar
not our main concern in this Letter.

The Letter is arranged as follows: we introduce
infrared modified flat bottom potential in Section
in Sections 3 and 4, we solve the Schwinger–Dy
equation and the Bethe–Salpeter equation and ob
the decay constants for both theπ and B mesons
Section 5 is reserved for conclusion and discussio

2. Infrared modified flat bottom potential

The infrared structure of the gluon propagator h
important implication for the quark confinement. O
might expect that the behavior of the quark inter
tion in the region of small space-likep2 determines
the long range properties of theqq̄ potential and henc
implements confinement, however, the present te
niques in QCD manipulation cannot give satisfact
smallr behavior for the gluon propagator, on the oth
hand, the phenomenological confining potential m
els give a lot of successes in dealing with the low
ergy hadron physics, such as dynamical chiral sy
metry braking, pseudoscalar mesons electromagn
form factors, mass formulations,π–π scattering para
meters, etc [7,11,16]. In this Letter, we use a Gaus
distribution function to represent the infrared behav



Z.-G. Wang et al. / Physics Letters B 584 (2004) 71–80 73

gh

in

the
tum
ns
all.
an
and

es,

in-

m
n

hose
y of
t at
can
om-

hes
om-
m-

the

P,
ee-
:

on

nc-
eld
ing
uon
v-
pa-
the
on-
ng
of the gluon propagator,

(1)4πG(k2)= 3π2�
2

∆2
e−k2/∆,

which determines the quark–quark interaction throu
a strength parameter� and a ranger parameter∆.2

This form is inspired by theδ function potential (in
other words the infrared dominated potential) used
Ref. [11], which it approaches in the limit∆→ 0. For
the intermediate momentum, we take the FBP as
best approximation and neglect the large momen
contributions from the perturbative QCD calculatio
as the coupling constant at high energy is very sm
The FBP is a sum of Yukawa potentials which is
analogous to the exchange of a series of particles
ghosts with different masses (Euclidean form),

(2)G(k2)=
n∑

j=0

aj

k2 + (N + jρ)2
,

whereN stands for the minimum value of the mass
ρ is their mass difference, andaj is their relative
coupling constant.

The definition of momentum regions between
frared and intermediate momentum is aboutΛQCD =
200 MeV, which is naturally set up by the minimu
value of the massesN = 1ΛQCD, where the Gaussia

function e−k2/∆ decays to about 0.3 of its original val-
ues. Certainly, there are some overlaps between t
regions, in this way, we can guarantee the continuit
the momentum. The asymptotic freedom tell us tha
high energy the gauge coupling is very small and
be neglected safely, on the other hand, our phen
enological potential at energy aboutN + jρ, j > 3 is
already extend to the perturbative region and catc
some perturbative physical effects. Thus, our phen
enological infrared modified FBP is supposed to e
body a great deal of physical information about all
momentum regions.

Due to the particular condition we take for the FB
there is no divergence in solving the SDE. In its thr
dimensional form, the FBP takes the following form

(3)V (r)= −
n∑

j=0

aj
e−(N+jρ)r

r
.

2 Here we correct a writing error in the first version.
In order to suppress the singular point atr = 0, we
take the following conditions:

V (0)= const,

(4)
dV (0)

dr
= d2V (0)

dr2 = · · · = dnV (0)

drn
= 0.

So we can determineaj by solve the following
equations, inferred from the flat bottom conditi
Eq. (4),

n∑
j=0

aj = 0,

n∑
j=0

aj (N + jρ)= V (0),

n∑
j=0

aj (N + jρ)2 = 0,

...

(5)
n∑

j=0

aj (N + jρ)n = 0.

As in previous literature [13–15],n is set to be 9.

3. Schwinger–Dyson equation

The Schwinger–Dyson equation, in effect the fu
tional Euler–Lagrange equation of the quantum fi
theory, provides a natural framework for investigat
the nonperturbative properties of the quark and gl
Green’s functions. By studying the evolution beha
ior and analytic structure of the dressed quark pro
gator, one can obtain valuable information about
dynamical symmetry breaking phenomenon and c
finement. The SDE for the quark takes the followi
form:

S−1(p)= iγ · p +m

(6)

+ 16πi

3

∫
d4k

(2π)4
ΓµS(k)γνGµν(k − p),

where

S−1(p)= iA(p2)γ · p +B(p2)

(7)≡A(p2)
[
iγ · p+m(p2)

]
,
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(8)Gµν(k)=
(
δµν − kµkν

k2

)
G(k2),

and m stands for an explicit quark mass-breaki
term. In the rainbow approximation, we takeΓµ =
γµ. With the explicit small mass term for theu
and d quarks, we can preclude the zero solution
the B(p) and in fact there indeed exists a sm
bare current quark mass. In this Letter, we ta
Landau gauge. This dressing comprises the nota
of constituent quark by providing a massm(p2) =
B(p2)/A(p2), which is corresponding to the dynam
ical symmetry breaking. Because the form of t
gluon propagatorG(p) in the infrared region can
not be exactly inferred from theSU(3) color gauge
theory, one often uses model dependent forms as
put parameters in the previous studies of the ra
bow SDE [6,7,13–16], in this Letter we use the
frared modified FBP to substitute for the gluon prop
gator.

In this Letter, we assume that a Wick rotation
Euclidean variables is allowed, and perform a rotat
analytically continuingp andk into the Euclidean re
gion where them can be denoted byp̄ and k̄, respec-
tively. Alternatively, one can derive the SDE from t
Euclidean path-integral formulation of the theory, th
avoiding possible difficulties in performing the Wic
rotation [17]. As far as only numerical results are co
cerned, the two procedures are equal. In fact, the
lytic structure of quark propagator has interesting
formation about confinement, we will go to this top
again in the third subsection of Section 4.

The Euclidean rainbow SDE can be projected i
two coupled integral equations forA(p̄2) andB(p̄2),
the explicit expressions for those equations can
found in Ref. [14,15]. For simplicity, we ignore th
bar onp andk in the following notations.

4. Bethe–Salpeter equation

The BSE is a conventional approach in deal
with the two body relativistic bound state problem
[10]. The quark theory of the mesons indicate t
the mesons are quark and antiquark bound states.
precise knowledge about the quark structures of
mesons will result in better understanding of th
properties. In the following, we write down the BS
for the pseudoscalar mesons,

S−1+ (q + ξP )χ(q,P )S−1−
(
q − (1− ξ)P

)

(9)= 16πi

3

∫
d4k

(2π)4
Γµχ(k,P )ΓνGµν(q − k),

whereS(q) is the quark propagator function,Gµν(k)

is the gluon propagator,Pµ is the four-momentum
of the center of mass of the pseudoscalar mes
qµ is the relative four-momentum between the qu
and antiquark in the pseudoscalar mesons,Γµ is the
full vertex of quark–gluon,ξ is the center of mas
parameter which can be chosen to between 0
1, andχ(q,P ) is the Bethe–Salpeter wavefunctio
(BSW) of the bound state. In the limitΓµ = γµ, we
obtain the ladder BSE.

After we perform the Wick rotation analyticall
and continueq and k into the Euclidean region
the Euclidean pseudoscalar BSWχ(q,P ) can be
expanded in Lorentz-invariant functions:

χ(q,P )= γ5
[
iF1(q, q · P)+ γ · PF2(q, q · P)

+ γ · qF3(q, q · P)
(10)+ i[γ · q, γ · P ]F4(q, q · P)].

The BSW Fi can be expressed in terms of t
SO(4) eigenfunctions, the Tchebychev polynomi
T

1/2
n (cosθ),

(11)Fi(q, q · P)=
∞∑
0

Fn
i (q,P )q

nPnT
1/2
n (cosθ),

where n = even if i = 1,2,4; n = odd if n = 3,
T

1/2
n (cosθ)= cos(ncosθ) andθ is the included angle

betweenq andP . In solving the coupled BSEs forFn
i ,

it is impossible to solve an infinite series of coupl
equations, we have to make truncations in one
the other ways in practical manipulations. Numeri
calculations indicate that taking onlyn = 0,1 terms
can give satisfactory results:

χ(q,P )= γ5
[
iF 0

1 (q,P )+ γ · PF 0
2 (q,P )

+ γ · qq · PF 1
3 (q,P )

(12)+ i[γ · q, γ · P ]F 0
4 (q,P )

]
.

For a thorough investigation of the solutions of t
above BSWs, we must take full quark propaga
and full quark–gluon vertex, again we are led
solve a divergent series of coupled SDEs and BS
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truncations in one or the other ways for the qu
propagator and quark–gluon vertex are also neces
In this Letter, we take the bare vertex for both the S
and BSE.

In solving the BSEs, it is important to translate t
wavefunctionsFn

i into the same dimension,

Fn
1 →Λ2nFn

1 , F n
2 →Λ2n+1Fn

2 ,

F n
3 →Λ2n+1Fn

3 , F n
4 →Λ2n+2Fn

4 ,

(13)q → q/Λ, P → P/Λ,

whereΛ is some quantity of the dimension of mass
Here we take a short digression to discuss

the spectrum of the BSEs. In ideal conditions
precise solution of the BSE for the bound sta
of definite quantum numbers will reproduce the f
spectrum with the fundamental parameters of QC
such asSU(3) gauge invariance, quark masses, e
For example, the solutions of the BSE for 0−+
mesons will result in a full pseudoscalar spectrum
both the fundamental states and excited states
asπ0,π(1300), . . . . However, the present condition
are far from the case, the truncated BSEs alw
result in a spectrum with more bound states (artifa
[18]. Moreover, the spectrum is not the major subj
which the present Letter concern. So in the Letter,
take the masses of the pseudoscalar mesons as
parameters and make an investigation of theπ and B
mesons BSWs for both ladder approximation and b
quark propagator approximation.

The ladder BSE can be projected into four coup
integral equations in the following form:

H(1,1)F 0
1 (q,P )+H(1,2)F 0

2 (q,P )

+H(1,3)F 1
3 (q,P )+H(1,4)F 0

4 (q,P )

=
∞∫

0

k3dk

π∫
0

sin2 θ K(1,1),

H(2,1)F 0
1 (q,P )+H(2,2)F 0

2 (q,P )

+H(2,3)F 1
3 (q,P )+H(2,4)F 0

4 (q,P )

=
∞∫

0

k3dk

π∫
0

sin2 θ
(
K(2,2)+K(2,3)

)
,

H(3,1)F 0
1 (q,P )+H(3,2)F 0

2 (q,P )

+H(3,3)F 1
3 (q,P )+H(3,4)F 0

4 (q,P )
.

t

=
∞∫

0

k3dk

π∫
0

sin2 θ
(
K(3,2)+K(3,3)

)
,

H(4,1)F 0
1 (q,P )+H(4,2)F 0

2 (q,P )

+H(4,3)F 1
3 (q,P )+H(4,4)F 0

4 (q,P )

(14)=
∞∫

0

k3dk

π∫
0

sin2 θ K(4,4),

the expressions of theH(i, j) andK(i, j) are cumber-
some and neglected here, the interested readers ca
the word-version from the author.

Here we give some explanations about the exp
sions ofH(i, j). The H(i, j)’s are functions of the
quark’s Schwinger–Dyson functions (SDF)

A
(
q2 + ξ2P 2 + ξq · P )

, B
(
q2 + ξ2P 2 + ξq · P )

,

A
(
q2 + (1− ξ)2P 2 − (1− ξ)q · P )

,

B
(
q2 + (1− ξ)2P 2 − (1− ξ)q · P )

.

The relative four-momentumq is a quantity in Euclid-
ean space–time while the center of mass four-mom
tum P is a quantity in Minkowski space–time. Th
present theoretical techniques cannot solve the S
in Minkowski space–time, we have to expandA and
B in terms of Taylor series ofq · P ,

A
(
q2 + ξ2P 2 + ξq · P )
=A

(
q2 + ξ2P 2) +A

(
q2 + ξ2P 2)′ξq · P + · · · ,

...

B
(
q2 + ξ2P 2 + ξq · P )

(15)

= B
(
q2 + ξ2P 2) +B

(
q2 + ξ2P 2)′ξq · P + · · · .

The other problem is that we cannot solve the S
in the time-like region as the two-point gluon Gree
function cannot be exactly inferred from theSU(3)
color gauge theory even in the low energy spa
like region. In practical manipulations, we can e
tract the values ofA andB from the space-like re
gion smoothly to the time-like region with the polyn
mial functions. To avoid possible violation with co
finement in sense of the appearance of pole ma
q2 = −m(q2), we must be care in the choice of pol
nomial functions [11].
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Fig. 1. BSWs ofπ meson.
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Finally, we write down the normalization conditio
for the BSW,
∫

d4q

(2π)4

×
{
χ̄
∂S−1(q + ξP )

∂Pµ
χ(q,P )S−1(q − (1− ξ)P

)

+ χ̄S−1(q + ξP )χ(q,P )

(16)× ∂S−1(q − (1− ξ)P )

∂Pµ

}
= 2Pµ,

whereχ̄ = γ4χ
+γ4. We can substitute the expressio

of the BSWs and SDFs into the above equation
obtain the precise result, however, the expressions
cumbersome and neglected here.

4.1. Decay constants of pseudoscalar mesons

The decay constants of the pseudoscalar meson
defined by the following current-meson duality:

ifπPµ = 〈0|q̄γµγ5q|π(P )〉
(17)= √

Nc

∫
Tr

[
γµγ5χ(k,P )

d4k

(2π)4

]
,

here we useπ to represent the pseudoscalar meson
e

4.2. Bethe–Salpeter equation with bare quark–gluon
vertex and bare quark propagator

In this subsection, we investigate the BSWs of
π and B mesons with the quark–gluon vertex a
quark propagator are both taken to be bare,

(18)Γµ = γµ, S−1(p)= iγ · p+M,

where the effective massM is taken to be the con
stituent quark mass for theu, d andb quarks. In this
Letter, we take the effective massM as an input para
meter. Such a two-point quark Green’s function can
embody dynamical chiral symmetry breaking and
a mass pole in the time-like region. However, as a fi
step, we can study the BSWs for those pseudosc
mesons with the crude approximation. The algeb
expressions for the BSWs can be obtained easily w
a simple substitution ofA(p)→ 1 andB(p) →M in
Eq. (14). After solving the BSEs numerically by iter
tions, we plot the BSWsF 0

1 ,F
0
2 ,F

1
3 ,F

0
4 as functions

of the relative four-momentumq for theπ meson and
B meson, respectively. In this Letter, we take theπ

meson BSWs explicitly shown in Fig. 1 as an exa
ple and neglect others for simplicity. As the values
the wavefunctionsF 1

3 ,F
0
4 are tiny, we plot them per

spicuously in another figure. From those figures,
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can see that the first two wavefunctions are domin
ing, F 0

1 ,F
0
2 � F 1

3 ,F
0
4 , and all of the four wavefunc

tions are Gaussian-type and center around very s
momentum, i.e., near zero momentum which indica
that the bound states must exist at the small mom
tum region or in other words confinement occurs at
infrared region. Based on the numerical values of
BSWs of theπ and B mesons, we can obtain the c
responding decay constants.

(19)fπ = 134 MeV, fB = 164 MeV,

which are compatible with the experimental, latti
and QCD sum rule results,fπ = 130 MeV (Exp)
and fB ≈ 150–210 MeV (Latt, sumrule) [20–22
In calculation, the input parameters areN = 1.0Λ,
V (0) = −10.0Λ, ρ = 5.0Λ, Mu = Md = 530 MeV,
Mb = 5200 MeV,Λ = 200 MeV,� = 1.3 GeV and
∆= 0.03 GeV2.

4.3. Coupled rainbow Schwinger–Dyson equation
and ladder Bethe–Salpeter equation

In this subsection, we explore the coupled eq
tions of the rainbow SDE and ladder BSE with t
bare quark–gluon vertex for both theπ and B mesons
The algebraic expressions for those solutions are
tained already in Section 3 and forepart of Section
here we will not repeat the tedious routine. In so
ing those equations numerically, the simultaneous
erations converge quickly to an unique value indep
dent of the choice of initial wavefunctions. The fin
results for the SDFs and BSWs are plotted as fu
tions of the square momentumq2.

The quark–gluon vertex can be dressed through
solutions of the Ward–Takahashi identity or Slavno
Taylor identity and taken to be the Ball–Chiu vert
and Curtis–Pennington vertex [23,24]. Although it
possible to solve the SDE with the dressed vertex,
analytical results indicate that the expressions for
BSEs with the dressed vertex are cumbersome and
suitable for numerical iterations.3

In order to demonstrate the confinement of qua
we have to study the SDF of the quark and pro
that there no poles on the real timelikep2 axial. So
it is necessary to perform an analytic continuation

3 This observation is based on the authors’ work in USTC.
t

Fig. 2.− log |S∗(T )|.

the dressed quark propagator from Euclidean sp
into Minkowski spacep4 → ip0. However, we have
no knowledge of the singularity structure of qua
propagator in the whole complex plane. One can t
an alternative safe procedure and stay completel
Euclidean space avoiding analytic continuations of
dressed propagators [25]. It is sufficient to take
Fourier transform with respect to the Euclidean ti
T for the scalar partSs ,

S∗
s (T )=

+∞∫
−∞

dq4

2π
eiq4T Ss

(20)=
+∞∫

−∞

dq4

2π
eiq4T

B(q2)

q2A2(q2)+B2(p2)
.

If S(p) had a pole atp2 = −m2, the Fourier trans
formedS∗

s (T ) would fall off ase−mT for largeT or
logS∗

s = −mT .
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Fig. 3. SDFs ofu andd quark.

In our calculation, for largeT , the values ofS∗
s

is negative, except occasionally a very small fract
positive values. We can expressS∗

s as|S∗
s |einπ , n is an

odd integer. logS∗
s = log|S∗

s | + inπ . If we neglect the
imaginary part, we find that when the Euclidean tim
T is large, there indeed exists a crudely approxima
(almost flat) linear function with about zero slo
for all the u, d (the curve for thed quark has the
same behavior as theu quark in the limit of Isospin
symmetry is exact) andb quarks with respect toT ,
which is shown in Fig. 2. Here the word ‘crudel
should be understand in the linearly fitted sense
be exact, there is no linear function. However, su
fitted linear functions are hard to acquire physi
explanation and the negative values forS∗

s indicate an
explicit violation of the axiom of reflection positivit
[26], in other words, the quarks are not physi
observable, i.e., confinement.

From Fig. 3, we can see that for theu andd quarks,
the SDFs are greatly renormalized at small momen
region and the curves are steep at aboutq2 = 1 GeV2
Fig. 4. SDFs ofb quark.

which indicates an explicit dynamical chiral symm
try breaking, while at largeq2, they take asymptoti
behavior. As for theb quark, shown in Fig. 4, the cu
rent mass is very large, the renormalization is m
tender, however, mass pole in the time-like region
also absent, which can be seen from Fig. 2. At z
momentum,mu(0) = 688 MeV, md(0) = 688 MeV
andmb(0) = 4960 MeV, which are compatible wit
the constituent quark masses. In fact, the connec
of m(p) to constituent masses is somewhat less di
for the light quarks and is precise only for the hea
quarks. For heavy quarks,mconstituent(p) = m (p =
2mconstituent(p)), for light quarks, it only makes
crude estimation [19]. From the plotted BSWs (n
glected here for simplicity), we can see that the BS
for both theπ and B mesons have the same type m
mentum dependence as the corresponding wavef
tions with the bare quark propagators, however,
quantitative values are changed. The Gaussian typ
wavefunctions which center around small moment
indicate that the bound states exist only in the infra
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region, in other words confinement. Finally we o
tain the values for the decay constants of theπ and
B mesons,

(21)fπ = 127 MeV, fB = 192 MeV,

which are compatible with the experimental, latti
and QCD sum rule results,fπ = 130 MeV (Exp)
and fB ≈ 150–210 MeV (Latt, sumrule) [20–22
In calculation, the input parameters areN = 1.0Λ,
V (0)= −11.0Λ,ρ = 5.0Λ,mu =md = 6 MeV,mb =
4700 MeV,Λ = 200 MeV,� = 1.6 GeV and∆ =
0.04 GeV2.

From the variations of the values for the dec
constants of both theπ and B mesons, we can estima
that the full vertex approximation will not chang
those values greatly.

5. Conclusion and discussion

In this Letter, we investigate the under-structures
theπ and B mesons in the framework of the Beth
Salpeter equation with the confining effective pote
tial (infrared modified flat bottom potential). In ba
quark–gluon vertex approximation, we obtain the
gebraic expressions for the solutions of the coup
rainbow SDE and ladder BSE for those mesons.
the first step, we neglect the rainbow SDE, take
bare quark propagator and solve the BSE numeric
alone. Although the bare quark propagator cannot
body dynamical chiral symmetry breaking and ha
mass pole in the time-like region, it can give re
sonable results for the values of the decay const
fπ , fB compared with the values of the experime
tal data and other theoretical calculations, such as
tice simulations and QCD sum rules. In calculatio
we obtain the BSWs for theπ and B mesons, which
center in the small momentum region, are comp
ble with confinement. Secondly, we explore the c
pled equations of the rainbow SDE and ladder B
with the bare quark–gluon vertex for those meso
The quark–gluon vertex can be dressed through
solutions of the Ward–Takahashi identity or Slavno
Taylor identity and taken to be the Ball–Chiu vert
and Curtis–Pennington vertex, however, a consiste
numerical manipulation is unpractical. After we sol
the coupled rainbow SDE and ladder BSE numerica
we obtain both the SDFs and BSWs for both theπ
and B mesons. The SDFs for theu andd quarks are
greatly renormalized at small momentum region a
the curves are steep at aboutq2 = 1 GeV2 which indi-
cates an explicitly dynamical chiral symmetry brea
ing. After we take Euclidean time Fourier transfo
mation about the quark propagator, we can find
there is no mass pole in the time-like region and
tain satisfactory result about confinement. As for
b quark, the current mass is very large, the ren
malization is more tender, however, mass pole in
time-like region is also absent. The BSWs for bo
the π and B mesons have the same type momen
dependence as the corresponding wavefunctions
the bare quark propagators, however, the quantita
values are changed and the corresponding value
the decay constantsfπ andfB are changed, but no
greatly. We can estimate that the full vertex appro
mation will not change those values greatly. Once
SDFs and BSWs for both theπ and B mesons ar
known, we can use them to investigate a lot of i
portant quantities in the B meson decays, such asB–
π , B–K, B–ρ former factors, Isgur–Wise function
strong coupling constants, etc.
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