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Abstract

Fuzzy linear regression (FLR) model can be thought of as a fuzzy variation of classical linear regression model. It has been widely
studied and applied in diverse fields. When noise exists in data, it is a very meaningful topic to reveal the dependency between the
parameter h (i.e. the threshold value used to measure degree of fit) in FLR model and the input noise. In this paper, the FLR model
is first extended to its regularized version, i.e. regularized fuzzy linear regression (RFLR) model, so as to enhance its generalization
capability; then RFLR model is explained as the corresponding equivalent maximum a posteriori (MAP) problem; finally, the general
dependency relationship that the parameter h with noisy input should follow is derived. Particular attention is paid to the regression
model using non-symmetric fuzzy triangular coefficients. It turns out that with the existence of typical Gaussian noisy input, the
parameter h is inversely proportional to the input noise. Our experimental results here also confirm this theoretical claim. Obviously,
this theoretical result will be helpful to make a good choice for the parameter h, and to apply FLR techniques effectively in practical
applications.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy linear regression (FLR) provides a means for tackling regression problems lacked of a significant amount of
data to determine regression models and with vague relationships between the dependent variable and independent
variables. Since the concept of FLR was first introduced by Tanaka et al. [15], the literature dealing with FLR has grown
rapidly. For example, a modified version of Tanaka’s fuzzy regression model was given in [8], where fuzzy regression
for fuzzy input–output data was considered. In [5], fuzzy linear programming was introduced into the modified Tanaka’s
model. The important properties of fuzzy regression have been studied in [9,10,6]. More variants of Tanaka’s model can
be seen in [2,7,11–14]. Especially in [2], the support vector technique is introduced into fuzzy regression analysis to
enhance its generalization capability. However, how to choose the parameter h (i.e. the threshold value used to measure
degree of fit) for FLR model with noisy input still keeps an open problem. In practice, the input data often contain
noise. With the existence of noisy input, one interesting and challenging issue is how to determine the parameter h in
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Fig. 1. Non-symmetric triangular fuzzy coefficients.

FLR model. A bad choice for h will heavily deteriorate the performance of FLR model. Therefore, in this paper, we
will pay attention to deriving the dependency between the threshold h and the input noise.

In recent years, how to choose the loss function and the corresponding parameters for support vector regression (SVR)
machine with noisy input has been studied well. Gao and Gunn pointed out that SVR problem could be transformed
into the equivalent maximum a posteriori (MAP) problem [1]. Based on this idea, Kwok derived the linear dependency
between � and the input noise in � -SVR [3], and Wang et al. investigated the theoretically optimal parameter choices for
Huber-SVR with the Huber loss functions and r-SVR with the norm-r loss functions [16]. In this paper, based on the same
idea, we first extend FLR model using symmetric and non-symmetric fuzzy triangular coefficients to its regularized
version, and then explain this regularized model by using MAP framework [1,3,16], and finally study the dependency
between h and the input noise. The rest of this paper is organized as follows. In Section 2, we will introduce the FLR
model and the corresponding regularized fuzzy linear regression (RFLR) model and show the equivalent relationship
between RFLR model and MAP. The analysis of the inverse linear dependency between h and the standard deviation of
Gaussian noisy input is displayed in Section 3, while in Sections 4 and 5 the experimental results and some concluding
remarks are provided, respectively.

2. FLR model and MAP

Fuzzy regression analysis using fuzzy linear models with symmetric triangular fuzzy number coefficients has been
formulated earlier. Yen et al. extended the results of an FLR model that uses symmetric triangular coefficients to one
with non-symmetric fuzzy triangular coefficients successfully [17]. The need for non-symmetric triangular coefficients
arises due to the fact that during the regression using symmetric coefficients, the obtained regression line may not be
the best-fitting line. This occurs because of the existence of large number of outliers and higher values of residuals.
There are data sets that generate scatter plots in which the data do not fall symmetrically on both sides of the regression
line.

2.1. FLR model

To introduce the nomenclature, the FLR technique [17] is summarized in the following.
Consider the function

Y = f (x, A) = A0 + A1x1 + A2x2 + · · · + Anxn, (1)

where x = (1, x1, x2, . . . , xn)
T is a vector of non-fuzzy inputs, and A = (A0, A1, . . . , An) is a vector of fuzzy model

parameters. Parameters Ai (0� i�n) are non-symmetric triangular fuzzy coefficients, and they can be described by
the triplets {si, wi, ri}, where wi is the point at which �Ai

(ai) = 1, si is the left-side spread from the peak point wi ,
and ri represents the right-side spread as shown in Fig. 1.

Another representation is also possible, if we normalize the spreads. We can use either spread as the base to normalize
the other one. Let us choose si as the base, then ri can be expressed as ri = kisi , where ki are the skew factors and
are positive real numbers. The selection of the values for ki will be based on the knowledge of the problem and data
characteristics. Then Ai can be described by the triplets {si, wi, kisi}. If the values for ki (0� i�n) are all selected to
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be 1, then Ai (0� i�n) become symmetric triangular fuzzy coefficients. In the rest of this paper, more attention will
be paid to the FLR model using non-symmetric triangular fuzzy coefficients.

The membership functions for each Ai have the form

�Ai
(ai) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ai − wi

ri
, wi �ai �wi + ri,

1 − wi − ai

si
, wi − si �ai �wi,

0 otherwise.

In vector notation, the fuzzy parameters A can be written as A = (s, w, r) where s = (s0, s1, . . . , sn)
T, w =

(w0, w1, . . . , wn)
T, and r = (r0, r1, . . . , rn)

T. We assume x is non-negative throughout this paper. Following the
principle of extension, the fuzzy membership function for the output can be obtained by

�Y (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − y − wTx
rT|x| , wTx�y�wTx + rT|x|,

1 − wTx − y

sT|x| , wTx − sT|x|�y�wTx,

0 otherwise,

where |x| = (1, |x1|, |x2|, . . . , |xn|)T, wTx is the point at which �Y (y) = 1, the right-side spread ofY is rT|x|(rT|x|�0)

and the left-side spread is sT|x|(sT|x|�0) (refer to [17]).
Assume we have a data set with n-dimensional non-fuzzy input x and one-dimensional non-fuzzy output variable y:

D = {(x1, y1), (x2, y2), . . . , (xN, yN)}, xi ∈ Rn+1, yi ∈ R, i = 1, 2, . . . , N. (2)

The following FLR model can be established:

Y ∗
i = A∗T

xi ,

where xi = (1, xi1, xi2, . . . , xin)
T, A∗ = (A∗

0, A
∗
1, A

∗
2, . . . , A

∗
n)

T, i = 1, 2, . . . , N , and Y ∗
i is the fuzzy estimate of Yi .

The objective is to minimize the fuzziness of the fuzzy linear model and the following linear programming problem
can be formulated:

�(s, r, w, �) = min
∑

i

sT|xi | +
∑

i

rT|xi | + C
∑

i

(�−
i + �+

i ),

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi − wTxi

rT|xi | �(1 − h) + �−
i ,

wTxi − yi

sT|xi | �(1 − h) + �+
i ,

�−
i , �+

i �0,

i = 1, 2, . . . , N,

(3)

where C is a predefined constant. �−
i and �+

i denote the latent variables of the upper/lower bounds of output, respectively.
h(h ∈ [0, 1)) is the threshold of fitness, rT|xi | is the right-side spread of Y ∗

i , and sT|xi | is the left-side spread.
In order to enhance the generalization capability of FLR model and to be easy to analyze, just like SVR techniques

in [16,4,2], a regularized term 1
2 wTw can be introduced into Eq. (3), i.e.

�(s, r, w, �) = min
∑

i

sT|xi | +
∑

i

rT|xi | + 1

2
wTw + C

∑
i

(�−
i + �+

i ). (4)

Eq. (4) formulates the regularized version of FLR model, called RFLR model here. In the rest of this paper, how to
choose the parameter h for RFLR model with noisy input will be studied. Obviously, the conclusion will also be very
helpful for the practical applications of FLR model.
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2.2. The regression model and MAP

In this subsection, in terms of the evidence theory [1,3], we will demonstrate that the RFLR model is equivalent to
MAP estimation based on maximum likelihood estimation.

Now, the focus is on obtaining a weight vector w in the generalized linear regression model such as

yi = wTxi + ni, i = 1, 2, . . . , N

for all the data in the data set (2), where all the data xi follow distribution p(·) and all ni are i.i.d noise following some
distribution �(·). Thus, the corresponding density function on y can be denoted as p(y|x) = �(y − w̃Tx), where w̃ is a
weight vector and w̃Tx represents the mathematical expectation. The degree of such an approximation can be measured
by a loss function L(sTx, rTx, wTx, y), i.e.

L(sTx, rTx, wTx, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
y − wTx

rT|x| �1 − h,

y − wTx
rT|x| − 1 + h,

y − wTx
rT|x| > 1 − h,

0,
wTx − y

sT|x| �1 − h,

wTx − y

sT|x| − 1 + h,
wTx − y

sT|x| > 1 − h.

Assume the loss function L(sTx, rTx, wTx, y) leads to the following Gaussian probability density function on y:

p(yi |xi , s, r, w, �, h) = 1

c(�, h)
exp[−�L(sTxi , rTxi , wTxi , yi)],

where c(�, h) = ∫ ∫
D

exp[−�L(sTx, rTx, wTx, y)] dx dy. Just as the mathematical analysis in [1,3] does, we adopt
the Gaussian prior in the following analytical framework. With the Gaussian prior on s, r, and w,

p(s|�, xi ) = 1

M(�)
exp(−�sT|xi |),

where

M(�) =
∫

exp(−�sT|xi |) ds,

p(r|	, xi ) = 1

N(	)
exp(−	rT|xi |),

where

N(	) =
∫

exp(−	rT|xi |) dr,

p(w|
) = 1

F(
)
exp

(
− 


2
wTw

)
,

where

F(
) =
∫

exp
(
− 


2
wTw

)
dw,

and by applying the Bayes rule:

p(s, r, w|D, �, h) ∝ p(D|s, r, w, �, h)p(s|�)p(r|	)p(w|
),
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i.e.

p(s, r, w|D, �, h) ∝ p(D|s, r, w, �, h)

[
N∏

i=1

p(s|�, xi )p(xi )

][
N∏

i=1

p(r|	, xi )p(xi )

]
p(w|
),

we have

ln p(s, r, w|D, �, h)

= −�
N∑

i=1

sT|xi | − 	
N∑

i=1

rT|xi | − 


2
wTw − �

N∑
i=1

L(sTxi , rTxi , wTxi , yi) − N ln C(�, h) + const. (5)

With setting 
 = �, 	 = �, and C = �/�, optimizing (4) can be interpreted as finding for the MAP estimate of s, r
and w at given values of �, h. That is to say, the RFLR model in (4) is equivalent to MAP estimation.

Generally speaking, it is not easy for us to get the MAP estimate ŝ, r̂ and ŵ by directly solving (5), since it depends
on the particular training set. In order to make the analysis easier and clearer, (1/N)

∑N
i=1 L(sTxi , rTxi , wTxi , yi) in

Eq. (5) is replaced by its expectation

E(L(sTx, rTx, wTx, y)) =
∫ ∫

D

L(sTx, rTx, wTx, y)p(y|x)p(x) dx dy

=
∫

D

[∫ wTx−(1−h)sT|x|

−∞

(
wTx − y

sT|x| − 1 + h

)
p(y|x) dy

+
∫ +∞

wTx+(1−h)rT|x|

(
y − wTx

rT|x| − 1 + h

)
p(y|x) dy

]
p(x) dx, (6)

and (1/N)
∑N

i=1 sT|xi |, (1/N)
∑N

i=1 rT|xi | by their expectations

E(sT|x|) =
∫

D

sT|x|p(x) dx,

E(rT|x|) =
∫

D

rT|x|p(x) dx.

Thus, Eq. (5) becomes

M(s, r, w, �, h) = ln p(s, r, w|D, �, h)

= −�N ∗ E(sT|x|) − 	N ∗ E(rT|x|) − 


2
wTw

−�N ∗ E(L(sTx, rTx, wTx, y)) − N ln C(�, h) + const. (7)

In order to maximize (7), its derivatives with respect to s, r, w, �, h must be zero. That is to say,

�M(s, r, w, �, h)

�s

∣∣∣∣
s=ŝ

= −�N ∗ E(|x|) − �N ∗ �E(L(ŝTx, rTx, wTx, y))/�s = 0, (8)

�M(s, r, w, �, h)

�r

∣∣∣∣
r=r̂

= −	N ∗ E(|x|) − �N ∗ �E(L(sTx, r̂Tx, wTx, y))/�r = 0, (9)

�M(s, r, w, �, h)

�w

∣∣∣∣
w=ŵ

= −
ŵ − �N ∗ �E(L(sTx, rTx, ŵTx, y))/�w = 0, (10)
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�M(s, r, w, �, h)

��
=
[

�M(s, r, w, �, h)

�s

∣∣∣∣
s=ŝ

]
�ŝ
��

+
[

�M(s, r, w, �, h)

�r

∣∣∣∣
r=r̂

]
�r̂
��

+
[

�M(s, r, w, �, h)

�w

∣∣∣∣
w=ŵ

]
�ŵ
��

− N ∗ E(L(ŝTx, r̂Tx, ŵTx, y)) − N
�C(�, h)/��

C(�, h)
= 0,

i.e.

E(L(ŝTx, r̂Tx, ŵTx, y)) = −�C(�, h)/��

C(�, h)
, (11)

�M(s, r, w, �, h)

�h
=
[

�M(s, r, w, �, h)

�s

∣∣∣∣
s=ŝ

]
�ŝ
�h

+
[

�M(s, r, w, �, h)

�r

∣∣∣∣
r=r̂

]
�r̂
�h

+
[

�M(s, r, w, �, h)

�w

∣∣∣∣
w=ŵ

]
�ŵ
�h

− N
�C(�, h)/�h

C(�, h)

−�N ∗
∫

D

[∫ ŵTx−(1−h)ŝT|x|

−∞
p(y|x) dy +

∫ +∞

ŵTx+(1−h)r̂T|x|
p(y|x) dy

]
p(x) dx = 0,

i.e. ∫
D

[∫ ŵTx−(1−h)ŝT|x|

−∞
p(y|x) dy +

∫ +∞

ŵTx+(1−h)r̂T|x|
p(y|x) dy

]
p(x) dx = −�C(�, h)/�h

�C(�, h)
. (12)

When s = ŝ, r = r̂, and w = ŵ, maximizing (7) actually becomes the following optimization problem:

arg min
�,	,�,h

�E(ŝT|x|) + 	E(r̂T|x|) + �E(L(ŝTx, r̂Tx, ŵTx, y)) + ln C(�, h). (13)

3. The dependency relationship between h and the Gaussian noisy input

Please note C(�, h) in Eq. (13). According to its corresponding MAP, we have

C(�, h) =
∫ ∫

D

exp[−�L(sTx, rTx, wTx, y)] dx dy

= 2

(∫ 1−h

0
exp(0) dt +

∫ +∞

1−h

exp(−�(t − 1 + h)) dt

)

= 2(1 + (1 − h)�)

�
. (14)

By substituting (14) into (11), we obtain

E(L(ŝTx, r̂Tx, ŵTx, y)) = 1

�(1 + (1 − h)�)
, (15)

and by substituting (14) into (12), we obtain∫
D

[∫ ŵTx−(1−h)ŝT|x|

−∞
p(y|x) dy +

∫ +∞

ŵTx+(1−h)r̂T|x|
p(y|x) dy

]
p(x) dx = 1

1 + (1 − h)�
. (16)

White noise often happens in real situations. Quite often, the i.i.d Gaussian distribution with zero mean and variance
� is utilized in most robustness analyses. This assumption is also taken here.

Let

p(y|x) = 1√
2��

exp

[
− (y − w̃Tx)2

2�2

]
,
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and let t = (y − w̃Tx)/
√

2�, y − w̃Tx ≈ ŵTx − w̃Tx = 
(x), � = 1 − h, A(x) = ŝT|x|,

E =
∫

D

A(x)p(x) dx, B(x) = r̂T|x|, G =
∫

D

B(x)p(x) dx, b1(x) = 1√
2

(
� · A(x)

�
− 
(x)

�

)
,

b2(x) = 1√
2

(
� · B(x)

�
+ 
(x)

�

)
, f (x) = 2√

�

∫ +∞

x
exp(−t2) dt .

Please note that∫
D

p(x) dx = 1,

∫
D


(x)p(x) dx = 0,

∫
D


2(x)p(x) dx = �2,

∫
D


3(x)p(x) dx ≈ 2�3,

exp

[
−
2(x)

2�2

]
≈ 1 − 
2(x)

2�2 .

It can be shown that Eq. (16) reduces to

1

1 + ��
=
∫

D

[∫ ŵTx−�·A(x)

−∞
p(y|x) dy +

∫ +∞

ŵTx+�·B(x)

p(y|x) dy

]
p(x) dx

=
∫

D

1√
�

[∫ (
(x)−�·A(x))/
√

2�

−∞
exp(−t2) dt +

∫ +∞

(
(x)+�·B(x))/
√

2�
exp(−t2) dt

]
p(x) dx

=
∫

D

f (b1) + f (b2)

2
p(x) dx. (17)

From Eqs. (6) and (15), we have

1

�(1 + ��)
=
∫

D

[∫ ŵTx−�·A(x)

−∞

(
ŵTx − y

A(x)
− �

)
p(y|x) dy +

∫ +∞

ŵTx+�·B(x)

(
y − ŵTx

B(x)
− �

)
p(y|x) dy

]
p(x) dx

=
∫

D

[
1

A(x)

∫ ŵTx−�·A(x)

−∞
(ŵTx − y)p(y|x) dy + 1

B(x)

∫ +∞

ŵTx+�·B(x)

(y − ŵTx)p(y|x) dy

−�
∫ ŵTx−�·A(x)

−∞
p(y|x) dy − �

∫ +∞

ŵTx+�·B(x)

p(y|x) dy

]
p(x) dx

=
∫

D

[
1

A(x)

∫ ŵTx−�·A(x)

−∞
(ŵTx − y)p(y|x) dy + 1

B(x)

∫ +∞

ŵTx+�·B(x)

(y − ŵTx)p(y|x) dy

− �

2
f (b1) − �

2
f (b2)

]
p(x) dx

=
∫

D

[
1√

� · A(x)

∫ +∞

(�·A(x)−
(x))/
√

2�
(
√

2�t + 
(x)) exp(−t2) dt
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+ 1√
� · B(x)

∫ +∞

(�·B(x)+
(x))/
√

2�
(
√

2�t − 
(x)) exp(−t2) dt − �

2
f (b1) − �

2
f (b2)

]
p(x) dx

=
∫

D

[
−

√
2�

2
√

� · A(x)

∫ +∞

(�·A(x)−
(x))/
√

2�
exp(−t2)d(−t2)

−
√

2�

2
√

� · B(x)

∫ +∞

(�·B(x)+
(x))/
√

2�
exp(−t2)d(−t2)

+ 
(x)√
� · A(x)

∫ +∞

(�·A(x)−
(x))/
√

2�
exp(−t2) dt − 
(x)√

� · B(x)

∫ +∞

(�·B(x)+
(x))/
√

2�
exp(−t2) dt

− �

2
f (b1) − �

2
f (b2)

]
p(x) dx

=
∫

D

[
1

A(x)

(
−�b1√

2
f (b1) + �√

2�
exp(−b2

1)

)

+ 1

B(x)

(
−�b2√

2
f (b2) + �√

2�
exp(−b2

2)

)]
p(x) dx. (18)

In the following, we will use the second-order Taylor series expansions for f (x) and exp(−x2), i.e.

f (x + u) = f (x) − 2√
�

e−x2
u + 2√

�
xe−x2

u2 + o(u3), (19)

exp(−(x + u)2) = exp(−x2)(1 − 2xu + (2x2 − 1)u2) + o(u3), (20)

i.e.

f

(
� · A(x)√

2�
− 
(x)√

2�

)
≈ f

(
� · A(x)√

2�

)
+ 2√

�
exp

(
− �2 · A2(x)

2�2

)

(x)√

2�

+ 2√
�

� · A(x)√
2�

exp

(
− �2 · A2(x)

2�2

)

2(x)

2�2 ,

f

(
� · B(x)√

2�
+ 
(x)√

2�

)
≈ f

(
� · B(x)√

2�

)
− 2√

�
exp

(
− �2 · B2(x)

2�2

)

(x)√

2�

+ 2√
�

� · B(x)√
2�

exp

(
− �2 · B2(x)

2�2

)

2(x)

2�2 ,

exp

(
−
(

� · A(x)√
2�

− 
(x)√
2�

)2
)

≈ exp

(
− �2 · A2(x)

2�2

)(
1 + � · A(x) · 
(x)

�2 +
(

�2 · A2(x)

�2 − 1

)

2(x)

2�2

)
,

exp

(
−
(

� · B(x)√
2�

+ 
(x)√
2�

)2
)

≈ exp

(
− �2 · B2(x)

2�2

)(
1 − � · B(x) · 
(x)

�2 +
(

�2 · B2(x)

�2 − 1

)

2(x)

2�2

)
.

Using Eqs. (19) and (20), after a little tedious computation, Eqs. (17) and (18) become

1

1 + ��
=
∫

D

f (b1) + f (b2)

2
p(x) dx

≈
∫

D

[
1

2
f

(
� · A(x)√

2�

)
+ 1√

�
exp

(
− �2 · A2(x)

2�2

)

(x)√

2�
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+ 1√
�

· � · A(x)√
2�

exp

(
− �2 · A2(x)

2�2

)

2(x)

2�2

+1

2
f

(
� · B(x)√

2�

)
− 1√

�
exp

(
− �2 · B2(x)

2�2

)

(x)√

2�

+ 1√
�

· � · B(x)√
2�

exp

(
− �2 · B2(x)

2�2

)

2(x)

2�2

]
p(x) dx

= 1

2
f

(
�E√
2�

)
+ �E

2
√

2��
exp

(
− �2E2

2�2

)
+ 1

2
f

(
�G√
2�

)
+ �G

2
√

2��
exp

(
− �2G2

2�2

)
, (21)

1

�(1 + ��)

=
∫

D

[
1

A(x)

(
−�b1√

2
f (b1) + �√

2�
exp(−b2

1)

)
+ 1

B(x)

(
−�b2√

2
f (b2) + �√

2�
exp(−b2

2)

)]
p(x) dx

=
∫

D

[

(x)

2A(x)
f (b1) − 
(x)

2B(x)
f (b2) − �

2
f (b1) − �

2
f (b2)

+ �√
2�A(x)

exp(−b2
1) + �√

2�B(x)
exp(−b2

2)

]
p(x) dx

≈
∫

D

[
−�

(
f (b1) + f (b2)

2

)
+ 
(x)

2A(x)
f (b1) − 
(x)

2B(x)
f (b2)

+ �√
2�A(x)

exp

(
− �2 · A2(x)

2�2

)(
1 + � · A(x) · 
(x)

�2 +
(

�2 · A2(x)

�2 − 1

)

2(x)

2�2

)

+ �√
2�B(x)

exp

(
− �2 · B2(x)

2�2

)(
1 − � · B(x) · 
(x)

�2 +
(

�2 · B2(x)

�2 − 1

)

2(x)

2�2

)]
p(x) dx. (22)

Using Eqs. (15), (17), and (19), this simplifies to

E(L(ŝTx, r̂Tx, ŵTx, y)) = 1

�(1 + ��)

= − �

1 + ��
+
∫

D

[
�√
2�

exp

(
− �2 · A2(x)

2�2

)

3(x)

2�3

− �√
2�

exp

(
− �2 · B2(x)

2�2

)

3(x)

2�3

+ 1√
2� · A(x)

exp

(
− �2 · A2(x)

2�2

)(
� +

(
�2 · A2(x)

�2 + 1

)

2(x)

2�

)

+ 1√
2� · B(x)

exp

(
− �2 · B2(x)

2�2

)(
� +

(
�2 · B2(x)

�2 + 1

)

2(x)

2�

)]
p(x) dx
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= − �

1 + ��
+ �√

2�
exp

(
− �2E2

2�2

)
+ 1√

2�E
exp

(
− �2E2

2�2

)(
� +

(
�2E2

�2 + 1

)
�

2

)

− �√
2�

exp

(
− �2G2

2�2

)
+ 1√

2�G
exp

(
− �2G2

2�2

)(
� +

(
�2G2

�2 + 1

)
�

2

)
. (23)

From Eq. (23), we obtain

1

�
= �√

2�E
exp

(
− �2E2

2�2

)(
3

2
+ �E

�
+ �2E2

2�2

)
+ �√

2�G
exp

(
− �2G2

2�2

)(
3

2
− �G

�
+ �2G2

2�2

)
. (24)

By substituting (21) into (23) and simplifying, we have

E(L(ŝTx, r̂Tx, ŵTx, y))

= − �

2
f

(
�E√
2�

)
+ 1√

2�
exp

(
− �2E2

2�2

)(
3�

2E
+ �

)
− �

2
f

(
�G√
2�

)

+ 1√
2�

exp

(
− �2G2

2�2

)(
3�

2G
− �

)
. (25)

We have defined A(x) = ŝT|x|, E = ∫
D

A(x)p(x) dx, B(x) = r̂T|x|, G = ∫
D

B(x)p(x) dx, 	 = �, and C = �/�, so
we can obtain

�E(ŝT|x|) = �EC−1) (26)

	E(r̂T|x|) = �GC−1. (27)

After substituting (14), (21), (24), (25)–(27) into (13), minimizing (13) becomes minimizing the following g(�/�):

g
( �

�

)
=
(

1√
2�E

exp

(
− �2E2

2�2

)(
3

2
+ �E

�
+ �2E2

2�2

)
+ 1√

2�G
exp

(
− �2G2

2�2

)(
3

2
− �G

�
+ �2G2

2�2

))−1

×
(

− �

2�
f

(
�E√
2�

)
+ 1√

2�
exp

(
− �2E2

2�2

)(
3

2E
+ �

�

)
− �

2�
f

(
�G√
2�

)

+ 1√
2�

exp

(
− �2G2

2�2

)(
3

2G
− �

�

)
+ E

�C
+ G

�C

)

− ln

(
1

2
f

(
�E√
2�

)
+ �E

2
√

2��
exp

(
− �2E2

2�2

)
+ 1

2
f

(
�G√
2�

)
+ �G

2
√

2��
exp

(
− �2G2

2�2

))

+ ln

(
�√
2�E

exp

(
− �2E2

2�2

)(
3

2
+ �E

�
+ �2E2

2�2

)

+ �√
2�G

exp

(
− �2G2

2�2

)(
3

2
− �G

�
+ �2G2

2�2

))
+ const. (28)

Obviously, when (�/�) takes some fixed value, (28) will achieve its minimum, which indicates that there is a
linear dependency between � and the standard variance � of the Gaussian input noise. Thus, there is an inverse linear
dependency between the parameter h in FLR model and � because of � = 1 − h.

4. Experimental studies

In this section, two experiments to validate the inverse linear dependency relationship between h and � will be
arranged as follows:

Experiment 1: The input–output data from Yen et al. [17] are used here and shown in Table 1.
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Table 1
Input–output data [17]

i 1 2 3 4 5

xi1 0.84 0.65 0.76 0.7 0.43
xi2 0.86 0.52 0.57 0.3 0.6
yi 3.54 4.05 4.51 2.63 1.9

Fig. 2. The relationship between h and � when k = 5%.

First, for the data set, its RFLR model can be easily constructed, and by using the same method from [17], the
following values for h and ki are selected:

h = 0.5, k0 = 1.4, k1 = 1.6, k2 = 1.9.

Now, the corresponding regression values (li , ci , ri), i = 1, 2, . . . , 5, can be obtained, where ci denotes the center and
li , ri denote the left-side and right-side spreads, respectively. Next, in order to investigate the dependency relationship
between h and the noisy input, let y′

i = yi + k · n, i = 1, 2, . . . , 5, where k is a noise–signal ratio and n ∼ N(0, �)

represents the Gaussian noise. Then the corresponding sampling data set (xi, y
′
i ), i = 1, 2, . . . , 5, can be generated.

Similarly, its corresponding regression values (l′i , c′
i , r

′
i ), i = 1, 2, . . . , 5, can be obtained by using the same RFLR

model. In order to make the experimental results fair, � is taken from [0.1, 2.0] with the step length 0.1, and the Gaussian
noise distribution is used to generate 20 groups of the corresponding sampling data sets for each given �. For each given

�, h is taken as the average result of all 20 h values which can minimize
∑10

i=1

√
(li − l′i )2 + (ci − c′

i )
2 + (ri − r ′

i )
2,

respectively, for each group of the sampling data sets.
Figs. 2–4 depict the dependency relationships between h and � for all 20 � values with different k (see + in the

figures), where the curves are used to roughly indicate the change tendencies between h and �, respectively.
Experiment 2: The value for h is selected to be 0.5, the values for ki (i = 0, 1, 2) are selected to be 1 (corresponding

to symmetric fuzzy triangular coefficients) and the same method in Experiment 1 is used. Figs. 5–7 demonstrate the
corresponding results.

It can be easily seen from Figs. 2–7 that when noise is small, i.e. k and � is comparatively small, there is an obvious
inverse linear dependency relationship between h and �. However, when k and/or � are comparatively large, i.e. the
data sets are seriously distorted, the inverse linear relationship between h and � does not exist anymore. In other words,
RFLR model may become ineffective for seriously distorted data sets. Of course, in Experiments 1 and 2, the value for
h has been selected to be 0.5. If we select several different values for h and run the same program, the similar results
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Fig. 3. The relationship between h and � when k = 10%.

Fig. 4. The relationship between h and � when k = 15%.

Fig. 5. The relationship between h and � when k = 5%.
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Fig. 6. The relationship between h and � when k = 10%.

Fig. 7. The relationship between h and � when k = 15%.

can be obtained (in order to save the paper’s space, these results are not shown here). In summary, the experimental
results here validate the above-obtained conclusion on RFLR model.

5. Conclusions and future work

FLR model plays a pivotal role in fuzzy modeling. In this paper, attention is focused on the FLR model using non-
symmetric fuzzy triangular coefficients. Based on the idea of SVR, the general dependency relationship between the
parameter h and the input noise is studied. The FLR model is first extended to its regularized version and interpreted as
the corresponding equivalent MAP problem. Accordingly, an approximately inverse proportional dependency between
h and the standard deviation of Gaussian noisy input is analytically laid bare. The optimal choice of the parameter h
is actually dependent on the variance of the input noise. Obviously, although our conclusion is based on RFLR model
using non-symmetric triangular coefficients, the theoretical result here is very helpful for the practical applications of
both FLR model and RFLR model using symmetric and non-symmetric fuzzy triangular coefficients.

Although Gaussian noise is typically adopted in most robustness analyses, there remain other types of noise such
as Student-t-distribution noise and uniform noise in real data sets. The problem of choosing the optimal parameters in
FLR model with such noisy input is interesting and is a topic for further study.
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