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A minimax estimation fusion in distributed multisensor systems is proposed, which aims to minimize the worst-case squared
estimation error when the cross-covariances between local sensors are unknown and the normalized estimation errors of local
sensors are norm bounded. The proposed estimation fusion is called as the Chebyshev fusion estimation (CFE) because its
geometrical interpretation is in coincidence with the Chebyshev center, which is a nonlinear combination of local estimates.
Theoretically, the CFE is better than any local estimator in the sense of the worst-case squared estimation error and is robust
to the choice of the supporting bound. The simulation results illustrate that the proposed CFE is a robust fusion in localization
and tracking and more accurate than the previous covariance intersection (CI) method.

1. Introduction

Multi-sensor networks have received an increasing attention
in recent years, due to their huge potential in applications,
such as communication, signal process, routing and sensor
management, and many other areas. In this paper, we focus
on a specific and simple estimation fusion model in a
distributed multi-sensor system, which is in fact a two-
level optimization in the estimation fusion. Every sensor
first optimally estimates the state of target based on its
own measurements and then transmits its estimate to the
fusion center. The problem of estimation fusion is to find
an optimal state estimator based on all the received local
estimates. Although the centralized fusion which directly
makes use of all measurements from the local sensors in
time is theoretically the best fusion strategy, sometimes
communication or reliability constraints make it impossible
to transmit all the sensor measurements to a fusion center.
In contrast, the distributed fusion which only needs to
fuse all received local estimates has the advantages of lower
communication requirements, improved robustness, and so
forth.

However, the fusion algorithms in distributed system
have to deal with troubles that do not exist in centralized

fusion. One of the difficulties is that the errors of local
estimates to be fused are generally correlated, and as a result
the distributed fusion cannot be achieved by a standard
centralized algorithm such as the Kalman filter. The reasons
of this correlation may be a common process noise in target
when the state estimates are not fused at each sampling
instant, or common prior information in the estimates from
previous communication.

Over the last two decades, much research has been
performed on distributed fusion [1–6]. Some approaches
are looking for the “optimal” linear combination of local
estimates in some criteria, such as weighted least squares
or minimum variance [1, 2]. In [7], the authors proposed
a new multi-sensor optimal information fusion criterion
which is weighted by matrices in the linear minimum
variance sense. An optimal Kalman filtering fusion with
cross-correlated sensor noises is proposed in [8], which
assumes that the correlation of sensor noises is accurately
known. A unified model for estimation fusion based on the
best linear unbiased estimation (BLUE) is proposed in [9].
However, all of the aforementioned methods rely on two
assumptions: one is that the local estimates are unbiased
and the other is that the error covariance matrix of all local
estimates is known.
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There are other approaches attempting to reconstruct
the optimal centralized estimate from the local estimates. A
random weighting estimation method for fusion of multidi-
mensional position data is proposed in [10]. The method in
[5, 6, 11] deduces to a linear combination of local estimates,
but is not particularly effective in handling the correlation
in measurement noises. In the seminal papers [4, 6, 12, 13],
the covariance intersection (CI) algorithm was proposed
to deal with this problem. It fuses without assuming any
knowledge on the correlation between the local estimation
errors. A robust estimation fusion is proposed in [14], which
assumes that the correlation between the local estimation
errors is not accurately known but belongs to an uncertain
set. However, it is also a linear combination of local estimates
as the other aforementioned methods. Theoretically, the
linear combination may not be an accurate formation of the
distributed fusion. Recently, a nonlinear estimation fusion is
proposed in [15], where it minimizes the estimation error
covariance only for the most favorable realizations of the
random matrix and models it as an optimization problem
with a chance constraint. Such optimization problem is
also nonconvex and with appropriate relaxation it can be
simplified to a convex problem. Similar with all the other
aforementioned methods, it considers the optimal fusion
in the sense of statistics, which do not necessarily lead to
a small estimation error. There may be the case that the
estimation error is very large even though the optimal criteria
considered is small. So far, the robustness of the fusion
estimation is still a challenge.

In this paper, we are looking forward to establishing
a robust distributed fusion strategy under some basic
assumptions. This robust fusion is aimed at minimizing the
worst-case fusion error, which is achieved through a mini-
max problem. Although it is non-convex, we can relax it to
a semidefinite program (SDP) following [16]. The resulted
SDP problem can be solved quite efficiently in polynomial
time by an interior point method; in particular, by the
homogeneous self-dual method [17] or toolbox CVX in
Matlab. Then the resulted fusion estimate is a form of a non-
linear combination of local estimates. Since the geometrical
interpretation of our fusion method is in coincidence with
the Chebyshev center, we call it the ion (CFE). The basic
assumption of this paper is that the local estimation errors
are bounded. Although it is not satisfied theoretically if the
estimation error is a Gaussian distributed variable, it can
be guaranteed in a nearly 100% probability if the bound
is large enough and in practical applications it can always
be satisfied. We call this bound the supporting bound,
which is directly related to the resulted Chebyshev fusion
estimate. So we further investigate the sensitive analysis of the
relationship between the Chebyshev fusion estimate and the
supporting bound. The result shows that the performance
of the proposed Chebyshev fusion estimation is robust to
the choice of the supporting bound. Moreover, numerical
simulations are used to corroborate the theoretical results
which demonstrate the good performance of the proposed
CFE method.

The remainder is organized as follows. We briefly
introduce the distributed estimation fusion problem in

Section 2 and propose the robust CFE method in Section 3.
The sensitive analysis about the choice of parameter R in
CFE method is provided in Section 4, and some numerical
simulations are carried out in Section 5. Section 6 gives
conclusions.

2. Distributed Estimation Fusion Problem

Consider the following l-sensor distributed dynamic system:

xt+1 = Φxt + vt, (t = 1, . . . ,T),

yi
t = Hixt + wi

t, (i = 1, . . . , l),
(1)

where xt ∈ Rn is the state vector, Φ ∈ Rn×n is the transition
matrix, yi

t ∈ Rmi and Hi ∈ Rmi×n, i = 1, . . . , l, are the
observations and measurement matrices of l local sensors
respectively, and vt ∈ Rn and wi

t ∈ Rmi are the process noise,
and the measurement noise respectively, which are norm-
bounded zero mean random processes with covariance
matrices E(vtv′t ) = V,E(wtw′

t) = W and independent across
sensors and time t.

Kalman’s filtering is the best known recursive least mean
square (LMS) algorithm to optimally estimate the unknown
state of a dynamic system for a single sensor. Thus, the
unbiased estimates x̂i

t and corresponding error covariances
Pi
t = E[(xt − x̂i

t)(xt − x̂i
t)
′
] (i = 1, . . . , l) are available by the

Kalman filter. The distributed fusion problem is to generate
an “optimal” estimate x̂t from x̂i

t for i = 1, . . . , l.
There are three possible architectures in distributed

fusion depending on the sources of x̂i
t [6]. In this paper, we

consider the “Arbitrary distributed fusion,” that is, x̂i
t (i =

1, . . . , l) are l arbitrary estimates to be fused, and no prior
information or memory is available. The main problem is
caused by correlated estimation errors, because in general

P
i j
t = E[(xt − x̂i

t)(xt − x̂
j
t )′] /= 0 for i /= j and their values may

not be known.
In order to simplify the derivations, we start by refor-

mulating the local estimate x̂i
t in terms of a mixture of

uncorrelated components eit . More specifically, let us define

eit ∈ Rn to be the normalized random vector eit = Pi
t
−1/2

(xt −
x̂i
t) such that E[eit] = 0 and E[eite

i
t
′
] = I. Moreover, because

the noises of the dynamic system are norm bounded, we
make the following assumption.

Assumption 1. There exists a ball of radius Rt that contains
the entire support of the unknown distribution of eit for all
i = 1, . . . , l. More specifically, there exists Rt ≥ 0 such that

P
((

xt − x̂i
t

)

′Pi
t
−1
(

xt − x̂i
t

)

≤ R2
t

)

= 1. (2)

We believe that Assumption 1 is reasonable, because in
practice the estimation error of the local sensor is impossible
to be infinitely large, and we can always find a bound on it.
In practical applications, even when we have no additional
information about xt and eit , we believe that an educated and
conservative guess about the magnitude of Rt is available. We
will also revisit this issue in Section 4 where we discuss the
sensitivity of the resulting fusion estimation with respect to
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the choice of Rt . In the rest part of this paper, a robust fusion
estimation strategy will be derived based on Assumption 1.

3. The Robust Chebyshev Fusion
Estimation Strategy

3.1. The Minimax Fusion Strategy. The most widely used
fusion strategy is calculating the “best” linear combination
of local estimates to minimize some criteria in statistics, such
as minimum variance or weighted least squares. However,
there may be some nonlinear formations to fuse the local
information that performs better, which is at least as good
as the linear combination because the linear combination is
a special case of non-linear formation.

Moreover, the optimal fusion strategy in statistical mean-
ing is not necessarily to get a good estimate with respect to
the estimation error ‖(xt − x̂t)‖2. Especially for the methods
which depend on the unknown correlated estimation errors

P
i j
t , the performance of the fusion result may be considerably

poor when the estimated ̂P
i j
t are not accurate enough.

Because of these uncertainties in the distributed fusion, we
propose the following robust mini-max fusion estimation.

Based on Assumption 1, we have observed that the state

xt must lie in the ellipsoid Ei = {x : (x − x̂i
t)′Pi

t
−1

(x −
x̂i
t) ≤ R2

t }, so the intersection of the l quadratic ellipsoids
is nonempty, which is defined as

Q = {x : fi(x) = x′Aix + 2b′ix + ci ≤ 0, 1 ≤ i ≤ l
}

, (3)

where Ai = Pi
t
−1

, bi = −Pi
t
−1

x̂i
t, and ci = (x̂i

t)′Pi
t
−1

x̂i
t − R2

t .
Therefore, we have P(xt ∈ Q) = 1. In order to get a robust
fusion estimation without the information on correlated
local estimation errors, we directly treat the estimation error
and suggest minimizing the worst-case error over Q, which is
equivalent to finding the Chebyshev center of Q:

min
x̂∈Rn

max
x∈Q

∥

∥x̂− x
∥

∥
2
. (4)

The geometrical interpretation of the Chebyshev center
is the center of the minimum radius ball enclosing Q. Thus,
problem (4) can be equivalently written as

min
x̂,r

{

r :
∥

∥x̂ − x
∥

∥
2 ≤ r, ∀x ∈ Q

}

. (5)

However, computing the Chebyshev center (4) is a diffi-
cult optimization problem in general, because the inner max-
imization is nonconvex quadratic problem. Recent research
in the context of quadratic optimization [3] shows that the
Chebyshev center can be calculated efficiently when Q is the
intersection of two ellipsoids in the complex domain, despite
the nonconvexity. While in the real domain and when there
are more than two constraints, a relaxed Chebyshev center
(RCC) is proposed in [16].

3.2. The Relaxed Chebyshev Center Fusion Estimation. The
RCC of Q, which is denoted as x̂RCC, is obtained by replacing
the non-convex inner maximization in (4) by its semidefinite

relaxation and then solving the resulting convex-concave
min-max problem, and for more details, one can refer to
[16]. Therefore, an explicit representation of x̂RCC can be
achieved by the following theorem.

Theorem 2. The RCC of Q is given by

x̂RCC = −
⎛

⎝

l
∑

i=1

αiAi

⎞

⎠

−1⎛

⎝

l
∑

i=1

αibi

⎞

⎠, (6)

where {α1,α2, . . . ,αl} is an optimal solution of the following
convex optimization problem in l variables:

min
αi

⎧

⎪

⎨

⎪

⎩

⎛

⎝

l
∑

i=1

αibi

⎞

⎠

′⎛

⎝

l
∑

i=1

αiAi

⎞

⎠

−1⎛

⎝

l
∑

i=1

αibi

⎞

⎠−
l
∑

i=1

αici

⎫

⎪

⎬

⎪

⎭

(7)

s.t.
l
∑

i=1

αiA−1
i � I, αi ≥ 0, i = 1, 2, . . . , l. (8)

It is not difficult to cast the optimization problem (7) as
the following SDP:

min
αi

⎧

⎨

⎩

t −
l
∑

i=1

αici

⎫

⎬

⎭

(9)

s.t.

⎛

⎜

⎜

⎜

⎝

l
∑

i=1
αiAi

l
∑

i=1
αibi

l
∑

i=1
αib′i t

⎞

⎟

⎟

⎟

⎠

� 0 (10)

l
∑

i=1

αiAi � I, αi ≥ 0, i = 1, 2, . . . , l. (11)

We see that the fusion estimate x̂RCC is completely a non-
linear combination with all the available local information,
including the estimates x̂i

t and error covariances Pi
t, and

the coefficients αi are solved by an SDP (9), which can be
calculated with high efficiency. The local estimates x̂i

t are just
the fusion estimate x̂CFE when αj = δi j , where δi j = 1 when
i = j, and δi j = 0 when i /= j. From Proposition IV.2 in [16],
x̂CFE is unique and feasible. So the worst-case estimation
error of x̂CFE is smaller than or at least as small as that of
local estimators in the relaxed sense.

Remark 3. Note that from the definition of Q given in (3)
and Theorem 2, the optimal fusion coefficients αi are actually
relative to the local estimates x̂i

t. Therefore, the optimal
fusion coefficients αi are time varying and need to be solved
at every sampling time t. Fortunately, the optimization
problem (9)–(11) is an SDP, which is a class of convex
optimization problems and can be solved in polynomial
time using efficient algorithms, such as the software package
SeDuMi or CVX toolbox in MATLAB. Therefore, this could
satisfy real-time processing when the number of sensors l is
not too large.
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Among the variables, Ai and bi, except ci, are indepen-
dent of Rt, that is, the bound of the support of eit . So in
Section 4, we focus on the choice of Rt . In what follows, we
shall drop the argument t without confusion for notational
simplicity.

4. Choosing the Support Bound R

From the expression of x̂RCC in (7), the fusion estimate is
determined by the parameters αi, which is the solution of
the SDP problem (9). Because R appears only in the optimal
object, the choice of R does not infect the feasible set of (9).
First of all, we discuss the sensitivity of the choice of R in CFE
of distributed fusion estimation.

4.1. The Sensitivity of the Choice of R. Let us write the SDP
problem (9) in the standard literature on linear semidefinite
programs by

(P) max g′y

s.t. A∗(y
)

+ S = C S � 0,
(12)

where A∗(y) := ∑l+1
i=1 yiFi, g = [c1, . . . , cl,−1]′, y =

[α1, . . . ,αl, t]′, for i = 1, . . . , l, Ei = diag(ei), ei( j) = 1 if i = j,
else ei( j) = 0, and

Fi =

⎛

⎜

⎜

⎜

⎝

Ai 0 0 0
0 Ai bi 0
0 b′i 0 0
0 0 0 Ei

⎞

⎟

⎟

⎟

⎠

(2n+l+1)×(2n+l+1)

,

Fl+1 =
⎛

⎜

⎝

0(2n×2n) 0 0
0 1 0
0 0 0

⎞

⎟

⎠

(2n+l+1)×(2n+l+1)

,

C =
(

In×n 0
0 0

)

(2n+l+1)×(2n+l+1)

.

(13)

The dual of the primal program is

(D) min C •X

s.t. A(X) = g X � 0,
(14)

where C•X := trace(C′X) and A(X) := [F1•X, . . . , Fl+1•X)].
The discussion of the sensitivity of the choice of R is based on
the following assumption.

Assumption 4. The programs (P) and (D) are strictly feasible
and there exist y, S, and X which are unique and strictly
complementary solutions of (P) and (D), that is,

A
(

X
) = g, A∗(y

)

+ S = C, X S = 0,

S � 0, X � 0, X + S 
 0.
(15)

Based on the above assumption, we consider the solu-
tions of the programs (P) and (D) when there is a pertur-
bation δg on g with the following theorem.

Theorem 5. If the programs (P) and (D) satisfy Assumption 4
and the data g is changed by sufficiently small perturbation
δg, then the optimal solutions of the perturbed semidefinite
programs are differentiable functions of perturbation δg.
Moreover, the derivatives ẏ := Dy(δg), Ṡ := DS(δg) and
Ẋ := DX(δg) at y, S, X satisfy

A∗(ẏ
)

+ Ṡ = 0,

A
(

Ẋ
) = δg,

ẊS + XṠ = 0.

(16)

Remark 6. The perturbation δg does not infect the feasible
set of (P), and so does Slater’s condition of (P). By continuity,
Slater’s condition of (D) is also satisfied for all sufficiently
small perturbation δg. The result in this theorem is based on
the fact that Assumption 4 is still satisfied when perturbed g
by δg.

Remark 7. The result in this theorem is a special case in
Theorem 1 in [18], which gives a comprehensive sensitivity
result on the perturbation of all data of programs (P) and
(D). Thus, our theorem could be a direct corollary from it.

Remark 8. Although the derivatives ẏ, Ṡ, and Ẋ are char-
acterized by a system of linear equations (16), it is an
overdetermined system of l + 1 + (2n + l + 1)(3n + 3l/2 + 2)
linear equations for the l+1+(2n+l+1)(2n+l+2) unknowns.

Theorem 9. The derivatives ẏ, Ṡ, and Ẋ in (16) can be given
as the unique solution of the following nonsingular system of
l + 1 + (2n + l + 1)(2n + l + 2) linear equations for the l + 1 +
(2n + l + 1)(2n + l + 2) unknowns.

Proof. By the conditions in Assumption 4, X S = 0 =
S X, and thus the matrices X � 0 and S � 0 commute.
This guarantees that there exists a unitary matrix U that
simultaneously diagonalizes S and X. Therefore, by Corollary
1 in [18], the derivatives ẏ, Ṡ, and Ẋ can be solved from the
following system:

A∗(ẏ
)

+ Ṡ = 0,

A
(

Ẋ
) = δg,

Πup

(

U′
(

ẊS + XṠ
)

U
)

= 0,

(17)

where Πup(X) denotes the upper triangular of X.

So far, we have theoretically analyzed the sensitivity
of a perturbation δg for SDP (P). The derivatives of the
optimal solution to the perturbation could be calculated by a
nonsingular system of linear equations. Because the variable
R only exists in the object parameter g, the change of R
leads to a perturbation δg on the direction [1, . . . , 1, 0]′. If
the value of ẏ is sufficiently small, the performance of the
proposed CFE is robust due to the choice of R.

4.2. The Geometrical Interpretation of R. From the expression
in (3), we see that R in fact determines the size of the l
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Figure 1: The illustration of the insensitivity on the choice of R.

ellipsoids. We illustrate in Figure 1, that the RCC of two
interacting ellipsoids is still the same when changing the sizes
simultaneously.

A geometrical interpretation about this phenomenon is
that the RCC reflects the center point of the intersection of
some ellipsoids in some sense. When simultaneously enlarges
or reduces the sizes of these ellipsoids, the resulted RCC still
represents the center location in the same sense, so it is not
strange that the RCC is insensitive to the choice of R. In
fact, as in the simulations in Section 5, we illustrate that the
influence of the value of R on the fusion estimation is trivial.

However, we should certify that when changing the
value of R, these ellipsoids own a common interaction area.
Therefore, we suggest making a conservative choice of R. In
practice, we can estimate it from the experienced learning or
prior information.

Also from Figure 1, we see that the RCC of two ellipsoids
may be either the linear combination of the centers of the
ellipsoids or not. So the CFE varies a larger space comparing
with the other linear fusion methods.

5. Simulation Experiments in
Localization and Tracking

In this section, some simulation experiments are designed
to show the performance of the proposed CFE method in
localization and tracking and compare it with the result of
the previous CI method. In addition, we have designed a
numerical simulation to test the sensitiveness of the choice
of the value R as well.

5.1. Simulation of Dynamic System. We consider the follow-
ing dynamic system:

xt+1 = Φxt + vt, (t = 1, . . . ,T)

y(i)
t = H(i)xt + w(i)

t (i = 1, 2).
(18)
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Figure 2: The average estimation error with respect to t for the
local sensors, CFE, and CI method for Rv = [0.05 0; 0 0.05],
R(i)

w = [1 0; 0 2], where the CFE is calculated for R = 1, 2, 10
separately.

Case 1. Consider

Φ =

⎛

⎜

⎜

⎜

⎝

cos
(

2π
300

)

sin
(

2π
300

)

− sin
(

2π
300

)

cos
(

2π
300

)

⎞

⎟

⎟

⎟

⎠

, Hi =

⎛

⎜

⎜

⎜

⎝

√
2

2

√
2

2

−
√

2
2

√
2

2

⎞

⎟

⎟

⎟

⎠

,

(19)

and the noises vt and w(i)
t are normally distributed with zero

means and covariances Rv = [0.05 0; 0 0.05] and R(i)
w =

[1 0; 0 2], respectively. x̂i
t (i = 1, 2) are 2 local estimators

of xt with covariance Pi
t, respectively, which are calculated by

a standard Kalman filter. The two sensors transmit their local
estimates and covariance matrices to the fusion center, so it
has the information of x̂i

t and Pi
t.

We use the CFE and CI methods to fuse the two local
estimates tracking the target for t = 1, . . . , 600, where the
CFE is calculated by solving the SDP problem (9) with
the software package SeDuMi. The CI fusion is calculated
following the method in [6]. The tracking performances are
evaluated by the average estimation error, which is defined as

ARE(xt) =

L
∑

l=1

∥

∥

∥xl
t − xt

∥

∥

∥

L
,

(20)

where xl
t denotes the estimation fusion of the state xt at

ensemble l and L = 1000 is the number of ensemble runs.
The tracking performances of the local sensors, CFE, and CI
method are illustrated in Figure 2, which shows the results of
the average estimation error with respect to sampling time t
for the local sensors, CFE, and CI method, respectively, where
the CFE is calculated for R = 1, 2, 10 separately.

From Figure 2, we see that the average estimation error
of CFE is consistently smaller than the local sensors as well
as the CI method for all the choice of R = 1, 2, 10, which
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Figure 3: The average estimation error with respect to t for the local
sensors, CFE, and CI method for Rv = [0.5 0; 0 0.5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.
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Figure 4: The average estimation error with respect to t for the
local sensors, CFE, and CI method for Rv = [5 0; 0 5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.

verified that the proposed CFE method is more accurate
compared with the CI method. Also, the average estimation
errors are almost the same with respect to different values of
R, which experimentally illustrate that CFE is insensitive to
the value of R.

The next simulation is carried out for the same dynamic

system as above, but the covariances of the noises vt and w(i)
t

are Rv = [0.5 0; 0 0.5] and R(i)
w = [3 0; 0 4], respectively.

The resulted tracks and average estimation errors are shown
in Figure 3. We can achieve the same results from this
simulation that the CFE method is more accurate than CI
method and the performances of CFE for different values of
R are very close to each other.

Figure 4 is the tracks and average estimation errors when

Rv = [5 0; 0 5] and R(i)
w = [3 0; 0 4]. The maximal

estimation error through the process in the three simulations
are listed in Table 1.

Case 2. Consider

H1 =

⎛

⎜

⎜

⎝

√
2

2

√
2

2

−
√

2
2

√
2

2

⎞

⎟

⎟

⎠

, H2 =
(

1 −0.25
0.25 1

)

. (21)
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Figure 5: The average estimation error with respect to t for the local
sensors, CFE, and CI method for Rv = [0.05 0; 0 0.05] and R(i)

w =
[1 0; 0 2], where the CFE is calculated for R = 1, 2, 10 separately.
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Figure 6: The average estimation error with respect to t for the local
sensors, CFE, and CI method for Rv = [0.5 0; 0 0.5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.

In this case, also three simulations are carried out for differ-
ent values of the covariances of the noises vt, and R(i)

w respec-
tively, and the other conditions are the same as in Case 1.

The tracks in this case are the same with Case 1. The
average estimation errors through the process are illustrated
in Figures 5–7. The improved performances of CFE are
evidently better than CI when fusing the two local estimates,
especially when the covariances of the noises are larger as in
Figures 6 and 7. In fact, the performance of CI method in
these two simulations are almost the same with local sensor 2,
which is more accurate than local sensor 1. This comparison
shows that CFE is a more stable method for distributed
fusion because it always has a significant improvement when
fusing the local estimates, while the CI method may just lead
to the a local sensor estimate.

The maximal estimation error through the process in the
three simulations are listed in Table 2.
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Table 1: Comparison of the maximal estimation error through the process in the three simulations.

Simulation
Maximal squared estimation error

Sensor 1 Sensor 2 CFE R = 1 CFE R = 2 CFE R = 10 CI

1 3.3750 2.9707 2.7223 2.7601 2.7280 3.2137

2 14.0788 16.3843 9.0723 9.0220 9.1505 10.1641

3 43.6527 30.6748 20.7948 20.8013 21.3269 28.3822

Table 2: Comparison of the maximal estimation error through the process in the three simulations.

Simulation
Maximal squared estimation error

Sensor 1 Sensor 2 CFE R = 1 CFE R = 2 CFE R = 10 CI

1 3.2650 2.9283 2.1412 2.1670 2.1692 2.4373

2 15.3545 13.6833 11.8701 11.9099 11.9364 15.3535

3 38.7475 31.1737 27.2534 27.2287 27.3080 30.7442
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Figure 7: The average estimation error with respect to t for the
local sensors, CFE, and CI method for Rv = [5 0; 0 5] and R(i)

w =
[3 0; 0 4], where the CFE is calculated for R = 1, 2, 10 separately.

From Tables 1 and 2, we can see that the maximal esti-
mation errors of CFE are much smaller than that of CI and
the local sensors, which verified that the proposed CFE is
a robust fusion estimation. Meanwhile, the performance of
CFE is insensitive to the choice of R.

5.2. Sensitivity of the Value of R. In this simulation, we focus
on the performance of CFE with respect to different values
of R. This experiment explores the average estimation error
by Monte-Carlos simulation. Suppose that the true initial
state x0 and the local covariances of estimation error at
this moment are known, that is, x0 = [52.3246 2.2814],
Pi

0 = [0.2419 − 0.0456; −0.0456 0.2501] (i = 1, 2). The
dynamic system is the same as that of Case 1 in last the

subsection and Rv = [1 0; 0 1] and R(i)
w = [1 0; 0 2]. We

only consider the one step estimation fusion and use the CFE
to fuse the one step estimates x̂1

1 and x̂2
1 when the value of R

varies from 1 to 100.
The fused estimation error with respect to R for 100 runs

illustrated in Figure 8, where the blue line is the estimation
error of the first 10 runs and the red line is the average
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Figure 8: The estimation fusion error with respect to the value of R
for 100 runs, where the blue line is the estimation error of the first
10 runs and the red line is the average estimation error for the 100
runs.

estimation error for the 100 runs with respect to R. From
Figure 8, we see that the estimation error is nearly unchanged
even when the value of R varies from 1 to 100, which verifies
that the proposed CFE is not only a robust fusion but also a
stable method for the choice of R.

6. Conclusions

In this paper, we propose a method using a mini-max
strategy to get a robust fusion estimation in distributed
multi-sensor systems for localization and tracking. This
method is under the basic assumption that the normalized
estimation error of local sensors are norm bounded, thus
we can characterize the feasible set of the true state by the
intersection of some ellipsoids. Then we proposed the mini-
max fusion estimation in order to minimize the worst-case
squared error. However, the resulted optimization problem is
in fact looking for the Chebyshev center of the interaction of
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the ellipsoids, which is non-convex in nature. We relax it and
get an approximate Chebyshev center by solving a relaxed
SDP problem. The resulted estimation fusion is not a linear
combination of local estimates. Judging from the simulation
results, the proposed CFE method is a robust estimation
fusion and more accurate compared with the CI method.
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