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Abstract: Small signal instability may cause severe accidents for power system if it can not be dealt correctly and timely. How to
maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time
delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects
time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability
model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power
system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was
derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using
linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to
design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results

verify the correctness of the proposed model and the feasibility of the stabilization approach.
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1 Introduction

When power system is subjected to small signal
disturbances such as load fluctuation, load shedding, and
conductor galloping, power system may become unstable
and should be stabilized with appropriate control input
[1]. Small signal instability takes the following forms: 1)
steady increase in generator rotor angle due to the lack of
synchronizing torque; 2) rotor oscillations with
increasing amplitude due to the lack of sufficient
damping torque [2]. Small signal instability endangers
power system security and operation [3], and even causes
power system splitting and blackout [4]. In order to
improve power system stability performance under small
signal disturbance, many interests have been focused on
the study of power system stability criterion and
stabilization controller design approach.

Conventional small signal stability model is a set of
nonlinear differential equations and algebraic equations
for power system, which is transformed into a linear
control system using Taylor’s formula at equilibrium
point, and eigenvalues of the system state matrix are used
to analyze power system small signal stability [5—8].
Based on the linear control theory, small signal stability
criterion is given below: power system is stable when it

is subjected to small signal disturbance, if and only if
real parts of all eigenvalues for the state matrix are
negative [1].

Recently, with the successful applications of phasor
measurement unit (PMU) and wide area measurement
system (WAMS) in power system, time delay in signal
transmission process can not be neglected [9]. According
to time delay control system theory [10], the delay would
deteriorate power system damping performance, or even
cause power system instability. Time delay in wide area
control exists in the transmission of data from
measurement location to a control center and the
communication of these data to control devices [11]. It
usually varies in the range of milliseconds based on
communication media or routing algorithm [12], or even
hundreds of milliseconds under unusual circumstances
such as communication congestion [13]. It can be
regarded as stochastic process [14], or time-varying
delay [15]. In the WAMS environment, the conventional
small signal stability model dose not consider time delay
influence and can not precisely depict power system
dynamic behaviors. Therefore, a novel small signal
stability model for time delay power system should be
constructed and a new stabilization controller design
approach for preventing power system instability should
be studied further. Pade approximation method [16],
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characteristic root method [17], Lyapunov-Krasovskii
functional [18], and gain scheduling method [19] are
usually used to analyze the stability criterion of time
delay systems. Comparatively, Lyapunov-Krasovskii
functional method is better than others because it can
deal with both constant delay and time-varying delay,
and provide the system stability margin with less
conservativeness.

The contribution of the work is to propose a new
stabilization controller design methodology to improve
stability performance of time delay power system. In
order to fit practical power system operation
environment, the feedback controller itself also considers
time delay influence. The control law can be achieved by
solving LMI or NLMI according to the new small signal
stability criterion derived by Lyapunov-Krasovskii
functional method proposed in Ref. [18]. Both parameter
adjustment method by using LMI solver and iteration
searching method by solving nonlinear minimization
problem can make the controller design more simple and
feasible. Simulation results verify the correctness of the
proposed model and the feasibility of the stabilization
approach.

2 Problem description

Dynamic equations of generator with exciter and
power system stabilizer (PSS) are given below:
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where J is generator rotor angle, rad; ws is generator
synchronous angular speed, rad/s; w is generator rotor

angle speed, rad/s; M is mechanical starting time, s; P, is
mechanical active power, kW; P, is electrical active
power, kW; D is damping coefficient; £, is generator
g-axis transient voltage, kV; I, is generator g-axis circuit,
Aj; x); is generator d-axis transient reactance, ; x, is
generator g-axis synchronous reactance, Q; I; is
generator d-axis circuit, A; 7, is generator d-axis
transient short circuit time constant, s; E; is exciter
excitation voltage, kV; x, is generator d-axis synchronous
reactance, €; Uy is generator d-axis voltage, kV; Uj is
generator g-axis voltage, kV; K. is exciter gain constant;
T. is exciter time constant, s; U, is reference bus
voltage, kV; U is generator terminal voltage, kV; U, is
PSS control voltage, kV; y; and y, are PSS state
variables; T, T, and T3 are PSS time constants, s; and
K5 1s PSS gain constant.

It is assumed that d(f) denotes PSS input signal
transmission delay which at least includes signal
measurement delay, signal delivery delay and PSS
control delay [11]. The delay d(¢) is time-varying and
complies with the rules of 0<d(f)<zand d(t) < u where 7
denotes delay upper bound or delay margin, and u
denotes delay variation ratio. Based on Egs. (1)—(8) and
power system network equations, a novel power system
small signal stability model considering delay influence
can be constructed.

To clearly demonstrate basic principle and simplify
analysis process, synchronous-machine infinite-bus
power system is chosen to derive small signal stability
model. It is assumed that power system state x is denoted
by x =[Ad Aw AE;[ AE; Ay, Ay,] and control input u is
denoted by wu=[AP,]. U is infinite-bus voltage
magnitude, kV; and x. is transmission line reactance
between generator and infinite bus, Q. After linearizing
Egs. (1)—(8) at the equilibrium point xy=[dy wy E 5,10 Ep
Y10 V20], small signal stability model with time-varying
delay is given below:

X(t) = Ax(t) + A, x(t — d(t)) + Bu(t — d(¢)) 9)

where state matrix 4 is given by
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Compared with the conventional small signal
stability model, the proposed model has following
features: 1) The time delay item Ax(t—d(f)) is added,
which means that eigenvalue analysis method based on
the linear control theory can not be used to analyze the
stability of the newly constructed time delay power
system; 2) The feedback controller wu(r—d(¢)) also
considers time delay influence and can fit for wide area
control needs.

3 Stabilization approach

In order to maintain power system stable when it is
subjected to small signal disturbance, the following
controller can be used to stabilize Eq. (9) with appropriate
control input.
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By Schur complement, the LMI 77<0 is equivalent
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If 130 and 73<0 hold, then ¥ (z,x,) <~y |x(0)||" for
a sufficiently small p>0. Therefore, small signal stability
criterion for power system with time-varying delay is
given below.

Theorem 1: Given scalars >0 and g, power system
is stable if there exist matrices M; =M IT >0,
My,=M, >0 and M,=M] >0, X>0, and any
appropriately dimensioned matrices NV, and ¥V, such that
15>0 and 73<0 hold.

Next, we will analyze control law when
u(t—d(t)) = Kx(t —d(¢)). Replacing A, with A,+BK,
defining

=M, 0, =M"M,M;" I, =M’

0, =M'NM;",0,=M;'N,M;",0, = KM,"

@ = diag{M;' M;'}Xdiag{M;' M} (29)
and pre- and post-multiplying left and right sides of
Eq. (27) by diag{M{1 Mfl Mfl} and pre- and post-

multiplying left and right sides of Eq. (28) by
diag{M, ! M, ! My 'Y respectively yield
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Theorem 2: For given scalars >0 and g, if there
exist matrices II; :IIIT >0, I, :HzT 20, II,=

djl 1 djl 2
T
djl 2 ¢22

dimensioned matrices @),

i 3T >0, &= { } >0, and any appropriately

0, and @; such that
Egs. (30) and (31) hold, then power system can be
stabilized and the state feedback control law is given by
u(t) = O, ' x(t - d(t)).

Remark 1: Since eigenvalue analysis method is not
applicable for Eq. (9), a new small signal stability
criterion and controller design approach for time delay
power system, which overcomes the disadvantages of
eigenvalue analysis method, is discussed. Note that if
=0, the model can be transformed into small signal
stability model without time delay, and can still be
analyzed by eigenvalue analysis method. Hence, it is
clear that the proposed model and stability criterion
extends application field of eigenvalue analysis method.

Remark 2: The controller gain, K, in the proposed
controller design method can be solved by two ways: 1)
parameter adjustment by using LMI solver while setting
II, = ¢1l|; 2) iteration searching by solving nonlinear
minimization problem. Both methods can only find
sub-optimum value of K.

4 Numerical example

To validate the correctness of the proposed model
and the feasibility of the stabilization approach,
simulation tests are carried out on synchronous-machine
infinite-bus power system [2]. In the test, the controller
gain K with respect to delay variation rate u is also
investigated. Parameter adjustment method is adopted to
obtain K by using Matlab LMI Toolbox. In order to
demonstrate power system stability performance after
small signal disturbance, the simulation model for small
signal stability analysis is also constructed by using
Matlab Simulink Toolbox.

It is assumed that the delay measured by practical
power system is as large as 0.1 s. In order to maintain
power system stability under small signal disturbance, it
is required that the delay margin for the power system
with the stabilization controller should satisfy the
following rule: 7 >0.1 s. Therefore, the objective of the
stabilization controller design is to find an appropriate
controller gain K which can ensure power system
stability under small signal disturbance even if the input
signal is delayed for 0.1 s.

By using Theorem 2, delay margin 7and controller
gain K are listed in Table 1. During the computation, ¢ is
a factor that can be adjusted. By setting different &, the
relatively larger 7 can be obtained and its corresponding
controller gain K can also be calculated by K = @,11;".
It is general that delay margin 7 decreases when delay
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variation rate u increases [10, 18]. However, from Table
1, it is clear that delay variation rate u has little influence
on delay margin 7 if the controller gain K is adjusted
properly, which means that u does not affect power
system stability under small signal disturbance only if an
appropriate controller is designed. Note that because /5
is limited to the form of &f7,, the gain K obtained is only
the sub-optimum value.

Table 1 Delay margin and controller gain

u_ T £ :
o o102 00T 0Tsa ool 471] 17
025 a0 QOpel T2 A0 g] 12
05 0100 [DO0FS Taalan o 0018 g] 10
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In the process of computation, Egs. (30) and (31)
are correspondingly modified below:
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Matrices to be determined in the design of the
controller K whenz=0.1 and £=0.5 are given below:

II, =
0.0663 -0.0001 -0.1071 -0.0780 -0.0016 0.0007
-0.0001 0.0000 0.0001 -0.0009 0.0000 0.0000
-0.1071 0.0001 0.1987 0.1159 0.0031 -0.0013 3
-0.0780 —0.0009 0.1159 1.3030 0.0020 -0.0024 *
-0.0016 0.0000 0.0031 0.0020 0.0001 —0.0000
0.0007 0.0000 -0.0013 -0.0024 -0.0000 0.0000

o, =

[-0.2380 -0.0082 0.6482 -2.7939 0.0068 0.005 4]

The curves for rotor angle deviation and rotor
angular speed deviation when 7=0.1 s and £=0.5 are
shown in Fig. 1 and Fig. 2, respectively. “delay=0.1s”
represents that input signal of the stabilization controller
is delayed for 0.1 s. It is found that deviations of rotor
angle and rotor angular speed can return to be zero

within several seconds by the designed time delay
controller with the given gain K=[0.008 4 —2.412 §
0.018 3 —0.003 9 —0.261 7 0.370 3] even if the input
signal is delayed for 0.1 s. That coincidences with 7=
0.1 s when £=0.5 and K=[0.008 4 —2.412 8 0.018 3
—0.003 9 —0.261 7 0.370 3] in Table 1. It is clear that
delay margin is enlarged up to 0.1 s when the
stabilization controller is added to the power system. In
another word, power system can return to be stable when
it is subjected to small signal disturbance even if the
input signal is delayed for 0.1 s by using the stabilization
controller properly designed in Table 1.

0.4

— Delay=0.1s

Deviation of rotor angle/rad

Fig. 1 Deviation of rotor angle (7=0.1 s and £=0.5)
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Fig. 2 Deviation of rotor angular speed (7=0.1 s and z=0.5)

The curve for control input u(¢) with respect to time
when 7=0.1 and £=0.5 is shown in Fig. 3. It is noted that
the control input u(f) is zero between 0 to 0.1 s after
disturbance because the system state signals required for
stabilization control have not transmitted to the
controller. It is also found that the amplitude of control
input is relatively larger at early stabilization process,
while at later
dramatically up to zero. That means that when the power
system gradually returns to its original stable status,
control input decreases correspondingly to zero.

stabilization process, it decreases
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Fig. 3 Control input (7=0.1 s and £~0.5)

5 Conclusions

1) A modified power system small signal stability
model considering signal transmission delay is
constructed. The new model overcomes the disadvantage
that the conventional small signal stability model can not
deal with delay influence.

2) A power system delay-dependent stability
criterion, which is based on Lyapunov-Krasovskii
functional and has less conservativeness, is proposed.
The novel stability criterion takes the place of the
conventional eigenvalue analysis method and can be
used to analyze small signal stability of time delay power
system.

3) A stabilization controller considering delay
influence is proposed to ensure power system stability
under disturbances. The new controller can be easily
realized because its design approach is in the form of
LMIs. Simulation tests show that it is effective in power
system stability control. The application of the proposed
stabilization controller in large-scale pratical power
system is needed to be studied further.
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