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The DNA encoding problem, which has been proved to be an NP hard problem, is one of the
key problems for DNA computing, and is usually solved by optimization algorithms. A new efficient
genetic algorithm based on the cultural algorithm for the design of DNA codewords is presented in
this paper. In this hybrid optimization method, to abstract and manage the information efficiently, the
conventional genetic algorithm is combined with the dual evolutionary frame of the cultural algorithm
to guide the evolution of the population space with the evolutionary information. Simulation results
show this method is convenient for users to design and select proper DNA codewords in silico.
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1. INTRODUCTION

In 1994, Adleman first demonstrated the use of DNA com-
putational solutions to combinatorial problems (Hamilton
Path Problem, HPP).1 The greatest merit of DNA comput-
ing is that makes use of the huge memory capacity of DNA
molecules and massive parallelism of chemical reactions.2

Because DNA computing relies heavily on biochemical
reactions and is restricted by technological difficulties, it
may result in undesirable computations. In this regard, the
quality of the DNA code design is playing a critical role
in the fidelity of the computation. The problem of design-
ing sets of DNA sequences, which hybridize in a prede-
fined way, is fundamental not only for DNA computing but
also for many applications in molecular biology, bioinfor-
matics and DNA nanotechnology such as strand selection,
polymerase chain reactions (PCR), DNA-chip arrays, and
self-assembly of DNA.
The codewords design problem for DNA computing con-

sists of mapping the instances of an algorithmic problem
in a systematic manner onto specific molecules so that the
underlying chemical reactions avoid all the sources of error,
and the resulting products contain, with a high degree of
reliability, enough molecules encoding the answers to the
problem’s instances to enable a successful extraction.3 The
design of codewords is a bothersome task as the encoding

∗Author to whom correspondence should be addressed.

problem is an NP hard problem,3�4 so we have to settle
for less than optimal alternative methods, thus the heuristic
approaches maybe the most natural and optimal methods
to solve the DNA codewords design problem.
In this paper, we propose a hybrid optimization method

based on a genetic algorithm (GA) and the cultural algo-
rithm (CA) for the design of DNA codewords. The paper
is organized as follows. Section 2 introduces briefly the
problem of DNA codewords design. In Section 3, after
discussing the genetic algorithm and cultural algorithm,
respectively, the hybrid genetic cultural algorithm (HGCA)
is presented. How the hybrid optimization method is
applied to DNA codewords design, as well as the sim-
ulation experiments, are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2. DNA CODEWORDS DESIGN

For error-free and efficient DNA computation, the design
of DNA codewords focuses on every DNA molecule can
be recognized exclusively.

2.1. The Problem of DNA Codewords Design

The problem of DNA codewords design for computa-
tion can be described as the following decision problem.3

DNA ENCODING(�)
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• Instance: A finite set S of n-mers over the nucleic acid
bases {A, T, G, C}, a positive integer K, and a mapping
� � �∗ → Z+

• Question: Is there a subset C ⊆ S such that
∀si� sj ∈ C���si� sj�≥ k?

The function � reflects quality criteria of a given oligonu-
cleotide, (e.g., Hamming distance, the H-distance, or
chemical-thermodynamical parameters) to contribute to the
solution.
Many studies have attempted to design DNA codewords

in vitro. Hartemink et al. implemented the exhaustive
search method to generate sequences for the programmed
mutagenesis.5 Penchovsky and Ackermann designed DNA
sequences by a random search algorithm.6 Frotus et al.
proposed the template method for DNA codewords
design.7 Marathe et al. used a dynamic programming
approach to design DNA codewords based on Hamming
distance and free energy.8 Feldkamp demonstrated a DNA
sequences compiler algorithms for the design of DNA
codewords.9

Unlike the above systems, more and more intelligent
optimization methods have been offered recently to design
DNA codewords. A DNA-based GA was proposed as an
application of an evolutionary program searching for good
DNA codewords.10 Wood and Chen proposed and imple-
mented a sequences design scheme suited to the royal road
problem using GA.11 Cui et al. used an improved particle
swarm optimization (PSO) algorithms to find good DNA
codewords.12 Wang et al. presented an improved Hopfield
neural network algorithm for DNA codewords design.13

Zhang et al. designed DNA codewords by a tabu search
algorithm.14

2.2. The Mathematical Model of DNA
Codewords Design

The encoding problem can be regarded as a constrained
multi-objective optimization problem, and can be solved
by using an objective evolutionary method.15 Before giving
the mathematical model of DNA codewords design, the
constraints considered in codewords design are discussed
as follows.

2.2.1. Encoding Constraints and Analysis

In a word, a good set of DNA codewords should
ensure that the following chemical reactions are specific
hybridizations, that the controllable PCR can amplify the
resulting products, and the resulting products are reliable
and can be extracted successfully.16

In order to ensure that chemical reactions are control-
lable, some constraints such as similarity, H-measure,7 sec-
ondary structure,5�7 continuity,7�17 free energy,5�17 melting
temperature,18 GC content,19 and so on, which have been

proposed according to the definition of the encoding prob-
lem, are required. All the constraints focus on designing
better DNA codewords to reduce the possibility of unde-
sirable chemical reactions.4 In theory, the H-measure pro-
posed by Garzon can reduce the similarity between two
codewords the most. But as the number of codewords
increases, Garzon’s method requires exponentially increas-
ing time. Otherwise the value of the least distance, which
is usually affected by temperature and the reaction con-
ditions is still uncertain. As the criteria always influence
and restrict each other, it is irresponsible to use only the
distance constraint. In this paper, we mainly consider the
following constraint criteria, where the distance constraint
is considered as the objective function, and others are
regarded as the constraint conditions.

2.3. Distance Constraint

Encoding distance is a parameter to describe the similarity
between any two codewords. The greater the encoding dis-
tance, the less the similarity. Distance coding has its origin
in coding theory, a field of uses the information theory. Its
mathematical formulation is Hamming distance. We adopt
H-measure which is proposed by Garzon.20 It is defined
as the minimum Hamming distance of any two sequences
shifted k (−n < k < n) positions.

�xi�xj � �= min
−n<k<n

H�xi��
k�xj�� (1)

where H�xi��
k�xj�� denotes the Hamming distance, �k

denotes the right (left) shift in case of k > 0 (k < 0),
k denotes the number of the shift, and xj denotes
the Watson-Crick complementary pair. The corresponding
objective function will be given below.

2.4. Continuity Constraint

Secondary structures are usually formed by the interac-
tion of single stranded DNA. Secondary structure includes
internal loop, hairpin loop, and bulge loop. To predict the
secondary structure, one can simply calculate the Ham-
ming distance of given sequences by folding the sequences
to hybridize with themselves. Continuity tests the repeated
run of identical bases. If one base is repeated, an unusual
secondary structure can be formed. Thus, to avoid forming
unexpect secondary structures, for every DNA sequence,
the number of times where the repeated bases appear must
be in a given range:

∑n

j=1
�j−1�N �i�

j < d1 (2)

where N �i�
j denotes the number of repeated bases appearing

j-times continuously in the sequence xi and d1 is defined
by users.
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2.5. GC Content Constraint

GC content is the percentage of G and C in a sequence,
and tightly correlated to the melting temperature and the
reaction conditions. To effectively reduce the probability
of a non-specific hybridization occurring, GC content must
be in a given range:

�GC�xi�−50%�< d2 (3)

where GC�xi� is the GC content of the sequence xi and
d2 is defined by users.

2.6. Melting Temperature (Tm) Constraint

Tm is defined as the temperature at which 50% of the
oligonucleotides and their perfect complements in duplex
are denatured. Tm is an important factor in the efficiency
of the reaction. The accurate prediction of Tm is particu-
larly critical in the case of the PCR. Large errors in the
Tm estimation can lead to the amplification of non-specific
products or to an inappropriate hybridization performance
in general. For uniform melting temperature, the Tm must
be in a given range:

�Tm�xi�−T
′
m� ≤ d3 (4)

where T
′
m is the target melting temperature and d3 is

defined by users.
It has been demonstrated that the method and thermo-

dynamic parameters provided by SantaLucia have a good
performance in predicting the experimental Tm of short
single-stranded DNA sequences. The Tm calculation is per-
formed according to the following equation.

Tm = �H 


R ln�CT /	�
+�S
 (5)

where �S
 and �H 
 denote entropy change and enthalpy
change under a certain temperature between every base,
respectively.21

2.6.1. Objective Function

The objective function consists of two modules: the
maximizing non-cross-hybridization module and the mini-
mizing cross-hybridization module. The maximizing non-
cross-hybridization module makes the similarity of a set
of codewords as small as possible, and the latter reduces
the probability of cross-hybridization occurring.

2.7. Maximizing Non-Cross-Hybridization

To maximize the probability of occurring non-cross-
hybridization between any two codewords, we propose the
following evaluation term.

fsim�X�= max
i�j�i<j

max
−n<k<n


n−H�xi��
k�xj��� (6)

fsim�xi� xj�= max
−n<k<n


n−H�xi��
k�xj��� (7)

where fsim�X� is the similarity measure of DNA code-
words set X and fsim�xi� xj� is the similar similarity mea-
sure of the codewords xi, xj . H�xi��

k�xj�� denotes the
number of different bases in sequences xi and xj .

2.8. Minimizing Cross-Hybridization

To minimize the probability of occurring cross-
hybridization between any two codewords, we propose the
following evaluation term.

fcross�X�= max
i�j�i<j

max
−n<k<n


n−H�xi��
k�xj��� (8)

fcross�xi� xj�= max
−n<k<n


n−H�xi��
k�xj��� (9)

where fcross�X� is the cross-hybridization probability mea-
sure of set X and fcrosss�xi� xj� is a constraint of the cross-
hybridization probability between sequences xi and xj .

We formulate the objective function as a minimiza-
tion problem, and use the weighted sum to deal with the
selected constraints.

3. GENETIC CULTURAL ALGORITHM

3.1. Genetic Algorithm

The concept of a GA was developed by Holland in 1975,22

GAs are powerful tools in solving search and optimiza-
tion problems. It originates from the idea of natural selec-
tion and natural genetic process, combines the survival of
the fittest and stochastic information change mechanism of
chromosomes in the group. Because of its robustness, GAs
have been successfully adopted in many complex opti-
mization problems and show their merits over traditional
optimization methods, especially when the system under
study has multiple local optimum solutions.23

In biology, a niche is a role an organism plays in
its environment. It encompasses all relationships that the
organism (or population) has with its environment and
with other organisms and populations in its environment.
In order to keep the population’s variety, avoid trapping
into local extremum, here we apply the biological concept
of the niche to GA.
We adopt the niche method based on a sharing function.

The main idea is to regulate the fitness in order to keep
exceptional individuals of the population increasing signi-
ficatively, because every individual’s genetic probability is
controlled by the fitness. So keep the population’s variety
and create a niche evolutionary environment.

Definition 1. The function which denotes the affinity
between two individuals in the population is called the
sharing function, written as S�dij�, where dij means some
relationship between i and j .

J. Comput. Theor. Nanosci. 7, 813–819, 2010 815
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Definition 2. The summation of the sharing function’s
value between one individual and other individuals in the
population is called the sharing degree, written as Si, is the
degree of one individual sharing in the population, that is,
Si =

∑M
j=1 S�dij� (i = 1�2� � � � �M). After computing every

individual’s sharing degree, every individual’s fitness is
regulated according to the following formula.

F
′
i �X�= Fi�X�/Si� �i = 1�2� � � � �M� (10)

3.2. Cultural Algorithm

In human society, a culture can be viewed as a vehicle
for the storage of information that is potentially accessible
to all members of the society, and that can be useful in
guiding problem-solving activities. Originated by this idea,
Reynolds developed a CA in 1994.24

The CAs operate on two spaces: a population space
and a belief space. First, they operate on the population
space where a set of individuals (called population) is
adopted. Each individual has a set of features independent

Initialize the population space and belief space

Calculate the individuals' fitness

Accept?

According to the influence, update belief space

Adopt crossover and mutation operator to update the belief space

Adopt roulette wheel to select excellent individuals

Influence?

According to the influence operation, guide the population space

Calculate the individuals' fitness

Niche GA

Crossover operation

Mutation operation

Is the termination
condition satisfied?

Terminate

N

N

N

Y

Y

Y

Fig. 1. The flow chart of the HGCA.

from each other which allows us to determine its fitness.
Through time, such individuals can be replaced by some of
its descendants, obtained after applying a set of operators
to the population. The second space is the belief space, in
which the knowledge acquired by the individuals along the
evolutionary process is stored. The information contained
in this space must be accessible to any individual, so that
it can use it to modify its behavior.25

To unify both spaces, a communication protocol is
established such that it dictates rules regarding the type
of information to be exchanged between these two spaces.
For example, to update the belief space, the individual
experiences of a select set of individuals are incorporated.
This select group of individuals is obtained with the func-
tion acceptance which is applied to the entire population.
On the other hand, the operators that modify the popu-
lation (i.e., recombination and mutation) and the selec-
tion operator are modified by the function influence. This
function acts in such a way that the individuals result-
ing from the application of the operators tend to approach
the desirable behavior while staying away from unde-
sirable behaviors. Such desirable and undesirable behav-
iors are defined in terms of the information stored in the
belief space. These two functions are used to establish the

Table I. Comparison Results of the Codewords from 27 and Generated
by HGCA.

H- Conti- GC Free
Sequence measure nuity Content Tm Energy

HGCA

ACAACCGCCC 118 9 0.5 63�9811 −26�33
AATATAGGAG
GTGGTCGTAC 109 9 0.5 63�1849 −26�35
ATACAAACC
GAATCGATCA 130 0 0.5 62�4727 −26�04
CGTAGCTCTG
ACCCGACTTA 125 0 0.5 64�1369 −26�55
GGAATGTTCG
GGGTCTCGATA 111 9 0.5 61�5179 −25�31
TCTGTCTTG
CTAATTTCGT 114 18 0.5 62�9276 −26�14
ACCGTGGGTG
TGTGAGTTAG 111 18 0.5 66�1881 −27�34
CCCGGAAACA

Deaton’s Codewords [27]

CTTGTGACCG 130 16 0.6 69�0571 −28�74
CTTCTGGGGA
CATTGGCGGC 108 0 0.65 73�2553 −31�35
GCGTAGGCTT
ATAGAGTGGA 122 9 0.45 59�8408 −24�24
TAGTTCTGGG
GATGGTGCTT 112 0 0.5 62�3221 −25�63
AGAGAAGTGG
TGTATCTCGT 130 16 0.35 57�301 −23�33
TTTAACATCC
GAAAAAGGAC 105 16 0.4 58�6868 −23�89
CAAAAGAGAG
TTGTAAGCCT 117 0 0.5 64�67 −26�9
ACTGCGTGAC

816 J. Comput. Theor. Nanosci. 7, 813–819, 2010
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G

80

60

HGCA

Deaton

40

20

0

Tm

Fig. 2. Comparison results of the codewords from 27 and generated by
the HGCA.

communication between the two spaces (i.e., population
and belief).25 For more information about the interactions
between these two spaces, please see Ref. [26]

3.3. Hybrid Genetic Cultural Algorithm

For designing DNA codewords, here we use the dual struc-
ture of the CA, embed the GA into the cultural frame as

Table II. Comparison Results of the Codewords from 15 and Generated by HGCA.

Sequence H-measure Continuity GC Content Tm Free Energy

HGCA

AATGGGTAGAAGATGGCAGC 194 9 0.5 64.5766 −26�57
CACGGATTTGCGTCTGAACT 195 9 0.5 65.5602 −27�43
TGCAAGTTAAGCTCGTCTCC 199 0 0.5 64.6817 −26�87
CAATTGACCAGTCAGTGCTG 221 0 0.5 63.7282 −26�42
CGGAACAAGAGAAACCTTGC 193 9 0.5 63.9961 −26�61
CTAGCAGGGTGTAGAGCATA 215 9 0.5 62.7281 −25�71
TACTAGTGCCCACACGTCTA 195 9 0.5 64.4213 −26�52
GGCGGAGAATCGTGCATTAA 195 0 0.5 65.4457 −27�36
GTTGGCTCCATTTCTGGAAC 194 9 0.5 63.7675 −26�33
TGGCACGCCTATTTCACATG 206 9 0.5 65.6999 −27�38
CGATGTCAGAGCGATGTTGT 207 0 0.5 65.0508 −27�22
ACATCTCACCGTAACCCAGT 202 9 0.5 65.3444 −26�86
TATGTTCGCTGGATGTACCC 206 9 0.5 63.9461 −26�4
GCACTCCAAACAGCTGCATA 168 9 0.5 65.6407 −27�29

Shin’s Codewords Shin2005

GTGACTTGAGGTAGGTAGGA 213 0 0.5 62.2239 −25�36
ATCATACTCCGGAGACTACC 197 0 0.5 62.1413 −25�42
CACGTCCTACTACCTTCAAC 221 0 0.5 61.9397 −25�55
ACACGCGTGCATATAGGCAA 204 0 0.5 67.2662 −28�22
AAGTCTGCACGGATTCCTGA 205 0 0.5 65.9669 −27�24
AGGCCGAAGTTGACGTAAGA 219 0 0.5 65.9024 −27�35
CGACACTTGAAGCACACCTT 213 0 0.5 65.4594 −27�25
TGGCGCTCTACCGTTGAATT 190 0 0.5 66.8953 −27�9
CTAGAAGGATAGGCGATACG 197 0 0.5 61.0777 −25�22
CTTGGTGCGTTCTGTGTACA 191 0 0.5 65.1612 −27�14
TGCCAACGGTCTCAACATGA 209 0 0.5 66.7991 −27�72
TTATCTCCATAGCTCCAGGC 192 0 0.5 63.1165 −25�84
TGAACGAGCATCACCAACTC 202 0 0.5 64.9647 −27�01
CTAGATTAGCGGCCATAACC 188 0 0.5 62.2436 −25�7

an evolutionary process of the population space, establish
the main population space and belief space based on GA,
and develop the HGCA. Figure 1 shows the flow chart of
the HGCA and the details are presented as below:

3.3.1. Evolution of the Population Space

(1) Initialize the population space. Generate the initial
population in the whole search space randomly.
(2) Calculate and arrange the individuals’ fitness.
(3) Select the individuals whose fitness is great, and trans-
fer them to the belief space.
(4) According to the influence of the belief space, calcu-
late all the individuals’ fitness again.
(5) Genetic operation: according to the niche genetic algo-
rithm, adopt the crossover operator and mutation operator.
(6) If the termination condition is not satisfied,
return to 2).

3.3.2. Evolution of the Belief Space

(1) Initialize the belief space.
(2) According to the accept function, accept the excellent
individuals from the population space.
(3) Adopt the crossover operator and mutation operator
to update the belief space, so the belief space can keep

J. Comput. Theor. Nanosci. 7, 813–819, 2010 817
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excellent individuals.
(4) Adopt a roulette wheel to select excellent individuals.
Judge whether the influence function’s condition is satis-
fied. If it is satisfied, then according to the influence oper-
ation guide the population space, otherwise return to 3,
update the belief space again.

4. SIMULATION EXPERIMENT

In this section, the HGCA algorithm is implemented to
show the performance of our system by comparing our
algorithm with other DNA codewords design systems.
With respect the model of codewords design proposed
above, the HGCA algorithm was implemented on a PC
using the C++ programming language. The population
size, maximum generation number and the length of DNA
codewords were selected 20, 500 and 20, respectively. The
probability of crossover and mutation rate were set to 0.6
and 0.05, respectively.
We compared the codewords generated randomly by

HGCA algorithm with.15�27 In Ref. 27�, Deaton et al. used
7 codewords with length 20 (as shown in Table I) gener-
ated by a GA to solve the HPP problem. We generated
randomly the same number of codewords with the same
length using the HGCA algorithm, and evaluated these two
sets of DNA codewords using the evaluation terms pro-
posed in Ref. 16� The comparison results are shown in
Table I and Figure 2.
From Table I and Figure 2, we can see that our code-

words are much better than the codewords from,27 because
the Tm of our sequences is comparatively identical. Our
sequences show much lower free energy. This means
the sequences generated by the HGCA have much more
advantages in keeping a uniform melting temperature and
lower probability of non-specific hybridizations occurring.

G

HGCA

Shin

0

10

100

200

150

Tm

Fig. 3. Comparison results of the codewords from 15 and generated by
the HGCA.

It further indicates a much higher probability of hybridiza-
tion with the correct complementary sequences.
Shin et al. formulated the DNA codewords design as a

multi-objective optimization problem and solved it using
a constrained multi-objective evolutionary algorithm in
Ref. [15]. Here we abstracted 14 codewords with length
20 from,15 and compared them with the codewords gener-
ated by the HGCA algorithm. The comparison results are
shown in Table II and Figure 3. We can see that in regard
to Tm and free energy, our sequences are much better than
the sequences from.15

As a result, we can see that the codewords gener-
ated by the HGCA algorithm are effective. The HGCA
algorithm is better than the algorithms15�27 in keeping a
uniform melting temperature and preventing non-specific
hybridizations.

5. CONCLUSIONS

In this paper, we have proposed a hybrid optimization
method based on GAs and the CA for designing suitable
DNA codewords satisfying the definition of the encod-
ing problem in DNA computing. The HGCA embeds a
GA into the cultural frame and sets up the main popula-
tion space and belief space based on the GA. This man-
ages the information efficiently, guides the evolution of the
population space with the evolutionary information, and
improves the search efficiency. The HGCA provides a way
of solving the DNA encoding problem. The DNA code-
words designed by the HGCA have been compared with
those designed by other existing sequence design systems.
The results show the feasibility and validity of this method.
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