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Abstract: Local protein structure prediction is one of important tasks for 
bioinformatics research. In order to further enhance the performance of local 
protein structure prediction, we propose the Multi-level Clustering Support Vector 
Machine Trees (MLSVMTs). Building on the multi-cluster tree structure, the 
MLSVMTs model uses multiple SVMs, each of which is customized to learn the 
unique sequence-to-structure relationship for one cluster. Both the combined 5 × 2 
CV F test and the independent test show that the local structure prediction accuracy 
of MLSVMTs is signifi cantly better than that of one-level K-means clustering, 
Multi-level clustering and Clustering Support Vector Machines.
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1 Introduction

Studying the protein sequence-to-structure relationship is one of the most active bioinformatics 
research areas. A better understanding about protein sequence-to-structure correspondence 
can improve effectiveness and effi ciency of local protein structure prediction (Rahman and 
Zomaya, 2005). Many biochemical tests indicate that a sequence can determine its structure 
completely because all the information that is necessary to specify protein interactions with 
other molecules is embedded into its sequence (Karp, 2002). These studies provide the 
experimental support for exploring the protein sequence-to-structure relationship using the data 
mining techniques. In the previous work, the structure-cluster based approach and the 
sequence-cluster based approach are used to explore the sequence-to-structure relationship. 
Subsequently, knowledge generated from these approaches is utilised for local protein 
structure prediction.

For the structure-cluster based approach, protein structural segments are grouped into 
different structural clusters using multiple structural alignments (Yang and Wang, 2003) and 
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unsupervised clustering algorithms (De Brevern1 et al., 2004; Etchebest et al., 2005; Benros 
et al., 2006). Each cluster is associated with a representative local structural prototype. In these 
approaches, multiple structural alignments and unsupervised clustering algorithms alone may 
not be adequate to understand the complex nonlinear sequence-to-structure relationship since 
these approaches generally do not incorporate evolutionary information from homologous 
sequences during structural alignment and clustering process. For the sequence-cluster based 
approach, sequence segments are clustered into high quality sequence clusters with the 
one-level K-means clustering algorithm (Han and Baker, 1995, 1996; Zhong et al., 2005) and 
multiple sequence alignment (Hunter and Subramaniam, 2003).

The sequence-cluster based approach and the structure-cluster based approach described 
above utilise a set of structure-based sequence profi les generated from structure clusters and 
sequence clusters to predict the backbone torsion angles and protein secondary structure for 
local protein structure (Yang and Wang, 2003; Benros et al., 2006; Bystroff and Baker, 1998). 
In 2000, Hidden Markov Model (HMM) was set up based on high quality sequence clusters in 
order to predict the backbone torsion angles for local protein structure (Bystroff et al., 2000).

This study focuses on analysing the sequence-cluster based approach. Current sequence-
cluster based approach (Han and Baker, 1995, 1996; Zhong et al., 2005; Bystroff and Baker, 
1998) depends on the one-level K-means clustering algorithm. One-level clustering may not 
refl ect optimal partitioning especially for very large and complex protein datasets. For example, 
the protein dataset in this study contains more than half million sequence segments. As a result, a 
number of clusters produced by the one-level clustering algorithm have poor structural similarity. 
A number of clusters with poor structural similarity can affect the performance of protein local 
structure prediction noticeably. Furthermore, the clustering algorithm is critical to explore how 
protein sequences correspond to local 3D protein structure in these approaches. The conventional 
clustering algorithm such as the K-means and K-nearest neighbor algorithm assumes that the 
distance between samples can be calculated with exact precision (Zhong et al., 2007). When the 
distance function for these clustering algorithms is not well defi ned, the clustering algorithm may 
not be effective to discover the complex sequence-to-structure relationship.

Support Vector Machine (SVMs) has shown superior classifi cation performance in various 
bioinformatics applications due to strong generalisation capability (Wang and Wu, 2006; Xia 
et al., 2010; Vapnik, 1998). SVM can deal with the nonlinear relationship by implicitly mapping 
input samples from the input feature space into another high dimensional feature space with 
the nonlinear kernel function. Consequently, SVM is more favorable to explore the nonlinear 
protein sequence-to-structure relationship than the conventional clustering algorithm. Since its 
training time complexity is at least quadratic to the number of samples, SVM trainings for very 
large datasets are slow process (Vapnik, 1998). The task of learning the sequence-to-structure 
correlation using an SVM becomes more challenging when each subspace of the whole protein 
sample space corresponds to different local 3D structure (Zhong et al., 2005).

Many SVM training algorithms were proposed to enhance the effi ciency of SVM 
trainings for large datasets while keeping reasonable performance. These algorithms can be 
divided into three major classes. The fi rst class of algorithms is decomposition algorithms 
(Vapnik, 1998; Platt, 1999; Joachims, 1999). Although the decomposition algorithm can 
speed up the training process, they do not scale well with the size of datasets since the kernel 
matrix may grow beyond the available memory during the optimisation process. The second 
class of algorithms to handle large datasets is selective sampling techniques, which choose a 
small number of high quality training samples intelligently from the whole dataset in order 
to improve the learning capacity of SVM (Khan et al., 2007; Li et al., 2007, 2008). The 
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selective sampling techniques may reduce the classifi cation performance of SVM when a 
single effective decision boundary is diffi cult to form for the protein datasets having multiple 
sequence-to-structure distribution patterns in different sample subspaces.

The third class of algorithms is the multiple SVM systems such as Bayesian Committee 
Machine (BCM) (Tresp, 2000), SVM ensembles (Valentini, 2005), Clustering Support 
Vector Machines (CSVMs) (Zhong et al., 2007) and Super Granule Support Vector Machines 
(GSVMs) (Chen and Johnson, 2009). The success of CSVMs and Super GSVMs depends 
on the greedy cluster assignment algorithm and one-level clustering. The greedy cluster 
assignment algorithm used by CSVMs and Super GSVMs assumes that the cluster distance 
function takes precedence over SVM’s decision function (Zhong et al., 2007; Chen and 
Johnson, 2009). This assumption may not be correct. Furthermore, CSVMs and Super 
GSVMs are constructed based on the one-level clustering algorithm, which may not explore 
the sequence-to-structure relationship effectively.

To overcome weakness of one-level clustering and enhance SVM training for very large 
datasets, we proposed MLSVMTs for huge datasets. The construction of MLSVMTs is 
divided into four phases. 

1 In the fi rst phase, an improved K-means clustering algorithm is used to cluster the 
dataset into the one-level partition. 

2 In the second phase, the hierarchical clustering algorithm is applied to each one-level 
cluster having low structural similarity in parallel. The root clusters of resulting cluster 
trees in the fi rst step are merged until the structural similarity of the combined clusters 
falls below the given structural similarity threshold. At the end of the second phase, the 
cluster subtrees are generated. 

3 In the third phase, a SVM is trained for each cluster in the cluster subtrees. Each SVM 
focuses on its cluster at a particular level of the tree so that a specifi c classifi er is trained 
utilizing a particular high dimensional hyperspace. 

4 In the fi nal phase, the SVMs from different levels of the tree, operating in different 
hyperspaces, cooperatively decide the cluster assignment of a given sequence segment 
based on the combined distance score and the SVM decision score. 

The representative 3D local structure of the assigned cluster is given to the sequence segment. 
To the best of our knowledge, no researchers have predicted protein secondary structure, the 
backbone torsion angles and distance matrix for local protein structure simultaneously.

The multi-level clustering algorithm can explore subclusters of one-level clusters having 
poor structural similarity. This strategy can potentially discover some high quality sublcusters 
from these one-level clusters. Increasing number of clusters with high structural similarity 
can potentially improve the accuracy of local structure prediction. Building on the multi-
level cluster trees, the SVM can fi lter out the noisy information from each cluster in the 
multi-level tree after learning the specifi c sequence-to-structure relationship for each cluster. 
Consequently, MLSVMTs can handle the complex protein sequence-to-structure relationship 
more effectively than the sequence-cluster based approach and the structural-cluster based 
approach described previously for local structure prediction. Unlike previous approaches for 
local protein structure prediction, MLSVMTs proposed in this work are utilized to predict 
protein secondary structure, the backbone torsion angles and distance matrix for local protein 
structure simultaneously, which is critical for deriving the global 3D protein structure.
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In order to evaluate the effectiveness of MLSVMTs for local protein structure prediction, 
the performance of MLSVMTs is compared to three computational models:

• the improved K-meaning clustering algorithm

• the multi-level clustering algorithm

• Clustering Support Vector Machines (CSVMs).

The local structure prediction performance is measured by Accuracy One and Accuracy 
Two, which are defi ned in this work. Both the combined 5 × 2 Cross Validation (CV) F test 
(Alpaydin, 1999) and the independent test are conducted for rigorous performance evaluation.

Our paper is organised as follows. In the Section 2, four phases of MLSVMTs are 
discussed in details. In the Section 3, the training set, the testing set, accuracy defi nition and 
parallel algorithm are explained. In the Section 4, the experimental results and analysis are 
given. Finally, the conclusion and the future works are presented.

2 Multi-Level Clustering Support Vector Machine Trees (MLSVMTs)

Construction of the MLSVMTs model is divided into four phases. The detailed algorithm 
for constructing the MLSVMTs model is shown in Figure 1. The running example for 
MLSVMTs is shown in Figure 2.

2.1  Partitioning the whole dataset into multiple clusters using improved K-means 
clustering algorithm

Since the K-means clustering is computationally effi cient for large data sets with both numeric 
and categorical attributes (Gupta et al., 1999), K-means clustering is selected to partition the 
whole dataset into multiple data subsets. Sequence segments of nine successive residues 
generated from protein sequences using the sliding window techniques are partitioned into 
different clusters with the improved K-means algorithm (Zhong et al., 2005). In order to 
compare performance of the improved K-means clustering reported by the previous work 
and multi-level clustering, the number of clusters, K, is selected as 800 in this work. During 
the clustering process, each sequence segment represented by the 20 × 9 HSSP frequency 
profi les matrix (Sander and Schneider, 1991) is assigned to the cluster with the lowest 
distance score between the sequence segment and the cluster. The distance score between a 
given sequence segment and a specifi ed cluster is defi ned as (Zhong et al., 2005):

,
1 1

( ) ( , ) ( , )
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x k
i j

Dist k x F i j F i j
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= −∑∑  (1) 

where L is the window size and N is 20. Fx (i, j) is the value of frequency profi les at row i and 
column j for the sequence segment x. Fk (i, j) is the value of the matrix at row i and column j 
for the centroid of the cluster K. The centroid of the given cluster is the average of all HSSP 
frequency profi les of sequence segments belonging to this cluster (Zhong et al., 2005). The 
distance score between the sequence segment o and the sequence segment p is defi ned as:
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where Fo (i, j) is the value of frequency profi les at row i and column j for the sequence 
segment o and Fp (i, j) is the value of frequency profi les at row i and column j for the 
sequence segment p. 

Figure 1 Four phases of MLSVMTs model

2.2 Generation of multiple cluster subtrees
Since many one-level K-means clusters have low structural similarity, the multiple cluster 
subtree generation algorithm is proposed to explore high quality subclusters from these 
one-level clusters having low structural similarity. 

In the fi rst step of the multiple cluster subtree generation algorithm, the agglomerative 
hierarchical algorithm is applied to each of one-level clusters having low structural 
similarity using the distance score as defi ned in the equation (2). The cluster merging 
process repeats until the structural similarity of the merged cluster falls below the giving 
threshold. Essentially, a forest of cluster trees is generated after the fi rst step. In the second 
step, the agglomerative hierarchical clustering algorithm is applied to the root clusters 
of each tree structure. The merging process repeats until the structural similarity of the 
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merged cluster falls below the given threshold. In the end, multiple cluster subtrees are 
generated.

If secondary structural similarity is below 60% or Average_dmRMSD is above 2.5 Å or 
Average_taRMSD is above 35 degrees for a given cluster, the structural similarity of this 
cluster falls below the threshold in the pseudo code. The threshold is based on our analysis 
of experimental results. Our analysis shows that the structures of sequence segments in 
one cluster are generally highly deviated from its representative structure if the structural 
similarity of the cluster falls below a given threshold. In other words, the structures of 
sequence segments belonging to one cluster are not compact. Clusters whose structural 
similarity is above this threshold belong to the average cluster group defi ned in this work. 

Figure 2 Running examples for the MLSVMTs model (see online versions for colours)
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Clusters at different levels of the tree are capable of capturing local protein sequence-
to-structure distribution at different levels. As demonstrated in the experimental results, 
the multi-level clustering algorithm is more capable of capturing the complex sequence-to-
structure patterns in large protein datasets than the one-level clustering approach since the 
multi-level clustering algorithm may discover many high quality subclusters from one-level 
clusters having low structural similarity.

After the multi-level cluster trees are generated, the representative 3D structure of each 
cluster is calculated. The representative 3D structure for each cluster includes the average 
secondary structure, Average Distance Matrix (ADM) and representative torsion angles 
including ϕ and ψ  defi ned in (Karp, 2002).

Average Distance Matrix (ADM) is defi ned as:

1

NADM k
i j i jK

Nα α→ →=
= ∑  (3)

where k
i jα →  is the distance between α-carbon atom i and α-carbon atom j in the sequence segment 

k of the length L and N is the number of sequence segments of a given cluster. ADM basically 
calculates the average for the distance matrices of all the sequence segments in one cluster.

φi is the representative φ in the ith position of sequence segments for sequence clusters. 
All the φ values in the position i of sequence segments in a sequence cluster are put into a 
set. The representative φi is defi ned as the φ  value that is taken from this set and has the 
minimum sum of modular distances to the other members of this set. In a sense, φi is the 
closest neighbor to the other members of this set. ψi is similarly defi ned.

2.3 Training svm for each cluster in the cluster subtrees
Multi-level partitioning can discover some subclusters with high structural similarity from 
one-level clusters. However, multi-level clustering can still introduce noisy and irrelevant 
information into each cluster, which may reduce the performance of local protein structure 
prediction. In order to identify noisy sequence-to-structure information, SVM is trained to 
evaluate the strength of the sequence-to-structure correspondence for each sequence segment 
belonging to the same cluster. After learning the relationship between the frequency profi le 
distribution and local representative 3D structure for each cluster, SVM can fi lter out potentially 
unreliable structure prediction and select potentially reliable structure prediction for each cluster.

In each cluster, positive sequence segments are defi ned as those samples whose 
structure deviation from the representative structure is below a given threshold and 
negative sequence segments are defi ned as those samples whose structure deviation from 
the representative structure of this cluster is above a given threshold. Frequency profi les of 
positive sequence segments may be closely mapped to the representative 3D structure of the 
specifi ed cluster. Labelling sequence segments for each cluster as positive or negative can 
provide important training patterns for SVM to learn the underlying sequence-to-structure 
relationship for each cluster. After SVM model construction, the SVM decision function 
can produce the decision score, which indicates the distance between the testing sequence 
segment and the optimal hyper-plane.

Since distribution patterns for frequency profi les in each cluster are quite different, SVM 
training is customised for clusters belonging to different cluster groups. The defi nition for 
different cluster groups is introduced in the datasets and experimental setup section. The 
SVMs trained for clusters belonging to the average cluster group are customised to recognise 
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sequence segments whose structure can be reliably predicted. The SVMs for clusters 
belonging to the good cluster group are trained to fi lter out sequence segments whose 3D 
structure cannot be reliably predicted.

The SVM decision function for the cluster K to classify the sequence segment x is 
formulated as: 

_ _
1

( ) ( , )
sv

svm k i i svm k i
i

f x y K x x bα
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑

 
(4)

where sv is the number of support vectors and KSVM_k(x,xi) is the kernel function from svm_k 
trained for cluster K. In this work, the decision score refl ects how closely the sequence 
segment corresponds to the representative 3D structure of this cluster.

2.4 Cluster assignment algorithm
After SVM for each cluster in the cluster subtrees is trained, the cluster assignment algorithm 
is used to select the most suitable cluster for local structure prediction.

First, the classifi cation value, fsvm_k(x), of a SVM, svm_k, is normalised using the z-score 
for fair comparison of classifi cation values from different SVMs. This normalisation step is 
necessary because decision boundaries of SVMs for different clusters in the tree structure 
are obtained in different high-dimensional sample spaces for tackling the classifi cation 
problem in different sample subspaces. The decision value of svm_k for a sequence segment 
x is defi ned as the z-score of svm_k’s classifi cation value for a given sequence segment x:

_ _
_

_

( ( ) )
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Decision value x

σ
−

=
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where meansvm_k is the mean classifi cation values for svm_k in cluster k and σSVM_k is 
the standard deviation of classifi cation values for svm_k in the cluster k. The higher the 
magnitude of the decision value of a svm_k, |Decsion_valuesvm_k(x)|, the higher the SVM’s 
confi dence level for classifying a sequence segment x will be.

The confi dence of the SVM decision value can be strongly affected by the distance 
between the sequence segment and the cluster associated with this SVM. Hence, the SVM 
decision value is weighted by the distance score between the sequence segment and the given 
cluster, as defi ned in equation (1). In the equation (6), the distance between the sequence 
segment x and cluster k is smoothed by the logistic function:

( , )

1_ ( , )
1 dist k xsmooth dist k x

e−=
+   

(6) 

where k  is the cluster k and x is the given sequence segment. As a result, the weighted decision 
value for svm_k for a sequence segment x is defi ned as:

_( _ , ) _ ( ) _ ( , )svm ksvm k x Decision value x smooth dist k xψ = ×   (7)

The cluster assignment algorithm includes three steps. In the fi rst step, the representative 
cluster having the highest weighted decision value is selected for each subtree. In the second 
step, the cluster with the highest weighted decision value among all subtree representative 
clusters is chosen. Finally, the 3D representative structure of the selected cluster is assigned 
to the sequence segment.
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3 Datasets and experimental setup

In this section, datasets for the combined 5 × 2 CV F test and the independent test are 
described fi rst. Then, details of cluster structural similarity, performance evaluation metrics 
and the parallel algorithm are explained. 

3.1 Dataset for combined 5 × 2 Cross Validation F test
The dataset for the combined 5 × 2 CV F test has 2,952 protein sequences obtained 
from the Protein Sequence-Culling Server (PISCES) (Wang and Dunbrack, 2003). This 
protein dataset has 656,528 sequence segments. In this protein dataset, the percentage 
identity cutoff is 25%, the resolution cutoff is 1.8 and the R-factor cutoff is 0.25. No 
sequences of this dataset share more than 25% sequence identities. The structures of 
protein sequences in the training set and the testing set are available from Protein Data 
Bank (PDB) (Berman et al., 2000).

3.2 Dataset for independent test
To evaluate the performance of the new model more rigorously, the dataset for the combined 
5 × 2 CV F test is used as the training set. 300 protein sequences from the recent release of 
PISCES are included into the independent test set. Any two sequences in the test set share 
less than 25% similarity.

3.3 Cluster structural similarity calculation
Secondary structure similarity, Average Distance Matrix Root Mean Square Deviation 
(average_dmRMSD) and Average Torsion angle RMSD (average_taRMSD) are three 
important metrics to evaluate structural similarity for each cluster.

3.3.1 Secondary structural similarity for a given cluster
Secondary Structural similarity for a given cluster is defi ned as (Zhong et al., 2005):

, , ,
1

max( , , )
_ _

ws

i H i E i C
i

P P P
Seconary Structural Similarity

ws
==
∑

  
(8)

where ws is the window size. P(i,H) is the frequency of occurrence of helices among the 
sequence segments for the cluster in position i. P(i,E) and P(i,C) are similarly defi ned. The 
representative secondary structure in the given position is defi ned as the secondary structure 
having the maximum frequency. The results of the average maximum frequency from all 
positions indicate the secondary structural similarity for a given cluster.

3.3.2 Average Distance Matrix Root Mean Square Deviation for a given cluster
Distance Matrix Root Mean Square Deviation between a sequence segment s1 and the 
representative structure of giving cluster is defi ned as:

( , 1)dmRMSD C s =
( )21

1 1

L L
s ADM
i j i j

i j i

M

α α→ →
= = +

−∑ ∑
  

(9) 
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M = )(
2

L L L× −
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where ADM
i jα →  is the distance between α-carbon atom i and α-carbon atom j in the ADM for a 

cluster C. M is the number of distances in the distance matrix. Average Distance Matrix Root 
Mean Square Deviation (average_dmRMSD) is defi ned as:

1
( , )
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i
dmRMSD C i

average dmRMSD
N

==
∑

  
(11)

where dmRMSD(C,i) is Distance Matrix Root Mean Square Deviation between sequence 
segment i and the representative structure of a giving cluster C. N is the number of sequence 
segments in the given cluster.

3.3.3 Average torsion angle Root Mean Square Deviation for a given cluster
Torsion angle RMSD between a sequence segment s1 and the representative structure of a 
giving cluster C is defi ned as:

( , 1)taRMSD C s =
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1
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ϕ ϕ ψ ψ
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− + −∑
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where φkj  is φ in the position k of the representative angle for a cluster C and ψkj is 
ψ in the position k of the representative angle for a cluster C. φ and ψ are defi ned in 
(Karp, 2002). Average Torsion Angle Root Mean Square Deviation (average_taRMSD) 
is defi ned as:
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( , )
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taRMSD C i

average taRMSD
N

==
∑

  
(13)

where taRMSD(C,i) is torsion angle Root Mean Square Deviation between sequence segment 
i and the representative structure of a giving cluster C. N is the number of sequence segments 
in the given cluster.

3.3.4  Classifi cation of clusters into different groups based on 
structural similarity

Table 1 shows the criteria to classify clusters into different groups based on structural 
similarity in the training set. The clusters produced by the clustering algorithm are divided 
into three groups based on structural similarity in the training set. The excellent cluster 
group includes all clusters having secondary structure similarity greater than 80%, average_
dmRMSD less than 1 Å and average_taRMSD less than 25 degrees. The average cluster 
group and the good cluster group are similarly defi ned. As a result, all the clusters in the 
good cluster group have high structural similarity. All the clusters in the average cluster 
group have average structural similarity.
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Table 1 Standard to classify clusters into different groups

Secondary structure
similarity Average_dmrmsd Average_tarmsd

Average Cluster Group between 60% and 
70%

between 1.6 Å and 
2.5 Å

Between 31 degree and 
35 degrees

Good Cluster Group between 70% and 
80%

between 1 Å and 
1.5 Å

between 25 and 30 
degrees

Excellent Cluster Group greater than 80% less than 1 Å less than 25 degrees

3.4 Performance evaluation metrics for local 3D structural prediction
Secondary structure accuracy called Q3, Distance Matrix Root Mean Square Deviation 
(dmRMSD) and Torsion angle RMSD (taRMSD) are three important metrics to evaluate 
accuracy for protein structure prediction.

Q3 representing the three-state overall percentage of correctly predicted residues is one 
of the popular performance evaluation measures in protein secondary structure prediction. 
Q3 is defi ned as (Hu et al., 2004):
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dmRMSD is defi ned as (Kolodny and Linial, 2004; Zagrovic and Pande, 2004):
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where argt et
i jα →  is the distance between α-carbon atom i and α-carbon atom j in the target 

distance matrix of a sequence segment. predicted
i jα →  is the distance between α-carbon atom i and 

α-carbon atom j in the predicted distance matrix of a sequence segment. M is the number of 
distances in the distance matrix. taRMSD is defi ned as:
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where φkj is φ in the position k of the target angle for a cluster and ψkj is ψ in the position k of 
the target angle for a cluster. φ and ψ are defi ned in (Karp, 2002).

Only combined information of secondary structure, torsion angle and distance matrix 
can represent 3D protein structure precisely. In order to compare the 3D local structure 
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prediction performance of several computational models rigorously, two sets of accuracy 
criteria including Accuracy One and Accuracy Two are defi ned in this work in order to 
evaluate secondary structure accuracy, dmRMSD and taRMSD simultaneously. Table 2 
provides the threshold for evaluating Accuracy One and Accuracy Two for local structure 
prediction. Accuracy Two is the percentage of sequence segments with secondary structure 
accuracy greater than 70%, dmRMSD less than 1.5 Å and taRMSD less than 30 degree 
in the test set for a given cluster. Accuracy Two indicates the percentage of sequence 
segments whose 3D structure can be predicted reliably. Accuracy One is similarly defi ned. 
Accuracy One indicates the percentage of sequence segments with acceptable 3D structure 
prediction.

Table 2 Threshold for evaluating 3d local structure prediction accuracy one and accuracy two

Secondary structure accuracy dmRMSD taRMSD

Accuracy One > 60% < 2.5 Å < 35 degrees
Accuracy Two > 70% < 1.5 Å < 30 degrees

3.5 Parallel algorithm for multi-level clustering, CSVMs and MLSVMTs

Model construction is time consuming especially for a very large protein dataset 
containing 656,528 sequence segments. However, the multi-level clustering algorithm is 
inherently parallelisable since the agglomerative hierarchical clustering applied to each 
cluster can be performed in parallel. SVMs modeled for each cluster in the multi-level 
cluster tree can be constructed in parallel as well. Consequently, the parallel algorithm 
is applied to multi-level clustering, CSVMs and MLSVMTs. In this work, sixty four 
desktop computers using a Core 2 Duo 2.4 GHz Processor are used for the parallel 
experiment.

4 Experimental results and analysis

In this section, the percentage of sequence segments belonging to high quality clusters for 
the one-level clustering algorithm and the multi-level clustering algorithm is compared. 
Experimental results for the combined 5 × 2 CV F test and the independent test are used 
to compare the performance of four computational models. The running time for four 
computational models is also reported. Finally, sample cluster subtrees and their biological 
signifi cance are discussed.

4.1  Structural similarity comparison between multi-level clustering 
algorithm and one-level clustering algorithm

Figure 3 compares the average percentage of sequence segments belonging to different cluster 
groups between the one-level improved K-means algorithm and the multi-level clustering 
algorithm. The label ‘KM clustering’ denotes the one-level improved K-means clustering 
algorithm. The label ‘ML Clustering’ denotes the multi-level clustering algorithm proposed 
in this work.
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Figure 3 Comparison of the percentage of sequence segments belonging to clusters with high 
structural similarity (see online version for colours)

The multi-level clustering algorithm increases the average percentage of sequence 
segments belonging to the average cluster group by almost 8% and improves the average 
percentage of sequence segments belonging to the good cluster group by 4%. The increased 
average percentage of sequence segments belonging to high quality clusters suggest that 
the multi-level clustering algorithm can fi nd some higher quality subclusters from clusters 
generated from the one-level improved K-means clustering algorithm. The solid results 
from the multi-level clustering algorithm make strong foundation for better local protein 
structure prediction.

4.2 Experimental results for the combined 5 × 2 Cross-Validation F test

4.2.1 SVM classifi cation performance for different cluster groups
Figure 4 shows average accuracy, the Area Under the Receiver Operating Characteristic 
Curve (AUC) (Baldi et al., 2000) and Matthews Correlation Coefficient (MCC) (Baldi 
et al., 2000) of SVMs for different clustering groups in the 5 × 2 CV F test. Besides 
accuracy, AUC and MCC is also the important indicator for the generalisation power 
of SVMs especially for the imbalanced dataset. Figure 4 indicates that SVMs modeled 
for different cluster groups display strong capability to discriminate between positive 
samples and negative samples. Satisfactory performance of SVMs for the average cluster 
group reveals that SVMs for the average cluster group are able to select frequency 
profiles of sequence segments whose structure can be reliably predicted. Strong 
performance of SVMs for the good cluster group demonstrates that these SVMs obtain 
the capability to filter out frequency profiles of sequence segments whose structure 
cannot be reliably predicted. Experimental analysis indicates that distribution patterns 
of frequency profiles for the average cluster group are more diverse while distribution 
patterns of frequency profiles for the good cluster group tend to be more compact. 
As a result, learning tasks of SVMs in different cluster groups are different and the 
customised SVMs can learn the unique sequence-to-structure relationships for different 
cluster groups more specifically.
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Figure 4 SVMs classifi cation performance for different cluster groups in the 5 × 2 CV F test 
(see online version for colours)

4.2.2  3D local structure prediction results for sequence segments in the 
5 × 2 CV F test

At fi rst, experimental results for comparing 3D local structure prediction accuracy of the 
four models are discussed. In Figure 5, average 3D local structure prediction Accuracy One 
for four models using the 5 × 2 CV F test is compared. The label ‘KM clustering’ denotes 
the improved K-means clustering algorithm. The label ‘ML Clustering’ denotes the multi-
level clustering algorithm proposed in this work. The label ‘CSVMs’ denotes the Clustering 
Support Vector Machines. The label ‘MLSVMTs’ denotes Multi-level Clustering Support 
Vector Machines trees. Compared with the improved K-means clustering algorithm, the 
multi-level clustering algorithm improves Accuracy One by 3, 4 and 4 percentage points for 
the average cluster group, the good cluster group and the excellent cluster group respectively. 
This demonstrates that subclusters with high structural similarity play an important role 
in improving the local structural accuracy of the one-level improved K-means clustering 
algorithm. Compared with the multi-level clustering algorithm, the MLSVMTs improve 
Accuracy One by 6, 3 and 4 percentage points for the average cluster group, the good cluster 
group and the excellent cluster group respectively.

In Figure 6, average 3D local structure prediction Accuracy Two for four models using the 
5 × 2 CV F test is compared. Compared with the improved K-means clustering algorithm, the 
multi-level clustering algorithm improves Accuracy Two by 2, 5 and 3 percentage points for 
the average cluster group, the good cluster group and the excellent cluster group respectively. 
Compared with the multi-level clustering algorithm, MLSVMTs improve Accuracy Two by 
6, 2 and 3 percentage points for the average cluster group, the good cluster group and the 
excellent cluster group respectively.

The combined 5 × 2 CV F test is conducted to verify that the 3D local structure prediction 
performance improvement of MLSVMTs over other three computational models is 
statistically signifi cant. The p-value produced by the combined 5 × 2 CV F test indicates 
the signifi cant level at which the null hypothesis that algorithms have the same error rate 
can be rejected. A lower p-value implies that a more statistically signifi cant improvement of 
MLSVMTs over the other three computational models. In this work, the signifi cant level for 
p-value is set to 1%, which is more rigorous than the 5% commonly chosen by statistician. 
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The Table 3 shows ‘p value by F test’ when the four computational models are compared in 
terms of 3D local structure prediction Accuracy One during the combined 5 × 2 CV F test. 
The Table 4 shows ‘p value by F test’ when the four computational models are compared 
in terms of 3D local structure prediction Accuracy Two during the combined 5 × 2 CV 
F test. Experimental results from Table 3 and Table 4 show that both 3D local structure 
prediction Accuracy One and Accuracy Two improvement of MLSVMTs over the other 
three computational models are statistically signifi cant.

Figure 5 Average 3D local structure prediction Accuracy One of four computational models for 
Combined 5 × 2 CV F test (see online version for colours)

Figure 6  Average 3D local structure prediction Accuracy Two of four computational models for 
Combined 5 × 2 CV F test (see online version for colours)

Table 3 ‘P value by F test’ in terms of 3D local structure prediction Accuracy One of four 
models

Model Average cluster group Good cluster group Excellent cluster group

KM Clustering <0.1% <0.1% <0.1%
ML Clustering <0.1% <0.1% 0.5%
CSVMS <0.1% 0.7% 0.9%
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4.3 Experimental results for independent test

4.3.1 SVM classifi cation performance of different cluster groups
Figure 7 shows average accuracy, AUC and MCC of SVMs for different cluster groups in the 
independent test. Figure 7 demonstrates that SVMs trained for different cluster groups have 
achieved strong classifi cation performance to recognise the positive sequence segments and 
negative sequence segments. 

Figure 7 SVMs classifi cation performance for different cluster groups in the independent test 
(see online version for colours)

4.3.2 3D local structure prediction results for independent test
To evaluate the effectiveness of the new computational model rigorously, the dataset for 
5 × 2 CV F test is used as the training set and 300 newly released protein sequences are used 
as the independent testing set. Figure 8 compares 3D local structure predictions Accuracy 
One of four models on the independent testing set. Compared with the improved K-means 
clustering algorithm, the multi-level clustering algorithm improves the Accuracy One by 
3, 3 and 4 percentage points for the average cluster group, the good cluster group and the 
excellent cluster group respectively. Compared with the multi-level clustering algorithm, 
MLSVMTs improve Accuracy One by 7, 4 and 3 percentage points for the average cluster 
group, the good cluster group and the excellent cluster group respectively. Figure 9 compares 
3D local structure prediction Accuracy Two of four models on the independent testing set. 
Similar performance improvement for MLSVMTs is observed compared with other models. 

Table 4 ‘P value by F test’ in terms of 3D local structure prediction accuracy two of four 
models

Model Average cluster group Good cluster group Excellent cluster group

KM clustering <0.1% <0.1% <0.1%
ML clustering <0.1% 0.9% 0.7%
CSVMs 0.2% 0.9% 0.8%
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Figure 8 3D local structure prediction Acuracy One of four models for independent test 
(see online version for colours)

Figure 9 3D local structure prediction Acuracy Two of four models for independent test 
(see online version for colours)

4.4 Comparing running time for four computational models
The improved K-means clustering algorithm is the most effi cient in terms of the running time 
compared with other three computational models used in this work. Since SVM training and 
multi-level clustering are the slow computational process for very large datasets, multi-level 
clustering, CSVMs and MLSVMTs are parallelised to speed up the training process. Figure 
10 indicates the average program execution time (in hours) when different numbers of 
threads are used for 5 × 2 CV F Test. The experimental results demonstrate that the running 
time for the multi-level clustering is 60 hours and the running time for MLSVMTs is 79 
hours when the 64 threads are used. The experimental results also show that the running 
time for the multi-level clustering algorithm, CSVMs and MLSVMTs has been reduced 
substantially when multiple threads are used. Figure 11 compares the average running time of 
four computational models for 5 × 2 CV F Test. The running time for multi-level clustering, 
CSVMs and MLSVMTs is based on results obtained from 64 threads computation. The 
experimental results show that the running time of MLSVMTs only doubles that of the 
improved K-means clustering while the signifi cant performance gains have been achieved.
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Figure 10 Average running time of four computational models for 5 × 2 CV F Test (see online 
version for colours)

Figure 11 Average running time of four computational models for 5 × 2 CV F Test (see online 
version for colours)

4.5 Sample cluster subtrees and their biological signifi cance
In this section, three sample cluster subtrees are shown to illustrate the advantage of the 
multi-level clustering algorithm compared to the one-level clustering algorithm. For 
comparison purpose, the root clusters of three subtrees are generated using the one-level 
improved K-means clustering algorithm. The subclusters are produced by the multi-level 
clustering algorithm. 

Figure 12 indicates the coil substree. In Figure 12, the cluster 1 is labeled as C1. In the coil 
subtree, the structural similarity of subcluster 2 and subcluster 3 generated by the multi-level 
clustering has improved signifi cantly as compared to the root cluster 1. Figure 13 shows the 
coil-sheet subtree and Figure 14 shows the helices subtree. Results show that multi-level 
clustering can discover some subclusters having much higher structural similarity compared 
to the root cluster.

Results obtained from related biochemical studies show that clusters discovered by the 
multi-level clustering algorithm may be involved in critical intramolecular and intermolecular 
interactions, which determine the structure and activities of protein. Furthermore, analysing 
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sequence profi les of these clusters can provide important insights into structural conservative 
substitutions of 20 amino acids during the evolutionary process. In order to analyse the 
sequence profi les and biological properties of these clusters systematically, the following 
format is used to represent biological and structural characteristic of each cluster.

Figure 12 Subtree 1

Figure 13 Subtree 2

Figure 14 Subtree 3

The number of sequence segments, the secondary structural similarity, average_
dmRMSD and average_taRMSD for a given cluster are indicated above the columns of the 
frequency profi le.

• The fi rst column of each frequency profi le shows the position of amino acid profi les in 
each cluster with nine consecutive positions.
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• The second column of each frequency profi le shows the types of amino acids in the 
given position. The amino acid appearing with the frequency greater than 0.1 are 
indicated by the upper case. The amino acid with the upper case emphasises its high 
occurrence rate in that position. The amino acids appearing with the frequency between 
0.08 and 0.1 are indicated by the lower case.

• The third column shows the variability. Variability indicates the number of amino acids  
occurring with the frequency greater than 0.05.

• The fourth column indicates the hydrophobicity index. The hydrophobicity index is the 
sum of the frequencies of occurrence of alanine, valine, isoleucine, leucine, methionine, 
 proline, phenylalanine and tryptophan.

• The fi fth column indicates the representative secondary structure in that position. In this  
work, H represents helices; E represents sheets and C represents coils.

AveΦ and Aveφ are used to represent torsion angles of each cluster. The ADM as defi ned in 
the equation (3) is used to represent the distance matrix of each cluster. 3D visualisation of 
several representative clusters is also shown. average_dmRMSD and average_taRMSD can 
indicate the reliability of these representations. Smaller average_dmRMSD and average_
taRMSD indicate that average torsion angles and the distance matrices are closer to real 
structures of sequence segments for a sequence cluster.

In this paper, three sample groups of clusters are discussed. The fi rst group of clusters 
in the subtree 1 is associated with the coil. The second group of clusters in the subtree 2 
is associated with the coil-sheet. The third group of clusters in the subtree 3 is associated 
with helices. Since the pattern of hydrophobicity in the sequence profi le of the clusters 
plays important roles in infl uencing the structure and activities of proteins, we make extra 
efforts to analyse the hydrophobic and hydrophilic patterns from these clusters.

Cluster 1 shows the coil with conserved Serine and Threonine and cluster 2 shows 
the coil with conserved Glycine and Serine. Clusters associated with coils display low 
hydrophobicity. Coils positioned on the surfaces of proteins often take part in chemical 
interactions between proteins and other molecules (Berg et al., 2002; Hutchinson and 
Thornton, 1994; Byrd et al., 1994). Consequently, the hyrdophobicity of coils exposing to 
the surfaces of proteins are low.

Cluster 5 and cluster 6 show the coil-sheet with clear hydrophobicity transition. Many 
clusters related to sheets display high levels of hydrophobicity since hydrophobic amino 
acids are statistically favored for the sheet structure (Hutchinson and Thornton, 1994; Lifson 
and Sander, 1979). Experimental results show that a simple hydrophobic hexapeptide is used 
to understand the principles of sheet formation in membranes (Wimley et al., 1998). Other 
research found out that many amino acids of the adjacent side chains on one side of the sheet 
are hydrophobic and many amino acids on the alternate side of the sheet are hydrophilic. 
These arrangements are useful if the sheet is to form the boundary between watery and 
greasy environments (Zhang et al., 1993).

Cluster 8 and cluster 10 show pronounced amphipathicity since amphipathic helices are 
one of common structural features found in many proteins and biologically active peptide 
(Segrest et al., 1990; Pérez-Payá et al., 1995). Amphipathic helices have been found to play 
important roles in protein folding, protein-membrane interaction and other important protein 
and peptide biological activity (Pérez-Payá et al., 1995). Studying biological activities of 
amphipathic helices discovered in this study can help understand the folding, self-association 
and stability of protein.
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4 Conclusion

In this work, MLSVMTs are proposed to predict the secondary structure, backbone torsion angle 
and backbone distance matrix for local protein structure at the same time. Our local protein 
structure prediction results can potentially provide more valuable information to derive the 
global 3D protein structure. Since MLSVMTs take advantages of multiple SVMs in different 
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levels, MLSVMTs are more effective in capturing complex sequence-to-structure distribution 
patterns for large protein datasets than the conventional clustering algorithm. Experimental results 
demonstrate that protein structure prediction performance of MLSVMTs is much superior to that 
of the one-level K-means clustering algorithm, the multi-level clustering algorithm and CSVMs. 
Furthermore, MLSVMTs are parallelised to speed up the training process. The experimental 
analysis indicates that the running time of MLSVMTs is reduced substantially when the parallel 
algorithm is applied. In this work, the multi-level clustering algorithm reveals larger number of 
hydrophobicity patterns for helices, sheets and coils than the previous studies. These detailed 
hydrophobicity patterns are supported by related biochemical studies in the literature. The 
sequence clusters discovered in this work may provide some additional important information 
about structurally conservative substitutions during the evolutionary process. For the future work, 
the advanced algorithm need be developed to derive the complete global 3D structure based on 
local protein structure prediction results obtained from this work.
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