
Mathematical and Computer Modelling 52 (2010) 1940–1946

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

A weakly universal spiking neural P system
Xiangxiang Zeng, Chun Lu, Linqiang Pan ∗
Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, PR China

a r t i c l e i n f o

Article history:
Received 23 September 2009
Received in revised form 25 December 2009
Accepted 31 January 2010

Keywords:
Membrane computing
Spiking neural P system
Universality
Register machine

a b s t r a c t

Looking for small universal computing devices is a natural and well investigated topic in
computer science. Recently, this topic was also investigated in the framework of spiking
neural P systems. One of the small universality results is that a small weakly universal
extended spiking neural P system with 12 neurons was constructed. In this paper, a new
way is introduced for simulating register machines by spiking neural P systems, where
only one neuron is used for all instructions of the register machine; in this way, we can use
less neurons to construct universal spiking neural P system. Specifically, we give a smaller
weakly universal spiking neural P system that uses extended rules and has only 9 neurons.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Spiking neural P systems (in short, SN P systems) are a class of computing devices introduced in [1], which is an attempt
to incorporate the idea of spiking neurons into the area of membrane computing. Although the research of SN P systems
was initiated recently, in the year 2006, it became a hot research area and there have been a lot of papers on this topic. We
refer to the respective chapter of [2] for general information in this area, and to the membrane computing web site from [3]
for details.
Informally, an SN P system consists of a set of neurons placed in the nodes of a directed graph, called the synapse graph.

The content of each neuron consists of a number of copies of a single object type, called the spike. The spikes evolve by
means of standard spiking rules, which are of the form E/ac → a; d, where E is a regular expression over {a} and c , d are
natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes such that ak ∈ L(E), k ≥ c , can consume
c spikes and produce one spike, after a delay of d steps. This spike is sent to all neurons connected by an outgoing synapse
from the neuron where the rule was applied. There also are forgetting rules, of the form as → λ, with themeaning that s ≥ 1
spikes are removed, provided that the neuron contains exactly s spikes. Extended rules were considered in [4]: these rules
are of the form E/ac → ap; d, with the meaning that when using the rule, c spikes are consumed and p spikes are produced.
Because p can be 0 or greater than 0, we obtain a generalization of both standard spiking and forgetting rules. The system
works in a synchronized manner, i.e., in each time unit, each neuron which can apply a rule should do it. One of the neurons
is considered to be the output neuron, and its spikes are also sent to the environment. The moments of time when a spike is
emitted by the output neuron are marked with 1, the other moments are marked with 0. This binary sequence is called the
spike train of the system — it might be infinite if the computation does not stop.
In [1], SN P systems were proved to be computationally complete. An interesting problem is that howmany neurons are

necessarily used to construct a universal SN P system. Of course, we hope that the number of neurons used in universal SN
P system is as small as possible. In this paper, we consider a small universal SN P system in the case of weak universality.
The formal definitions of weak universality and strong universality will be given in Section 2. Here, we only mention that

∗ Corresponding author. Tel.: +86 27 87556070, +86 27 87543563; fax: +86 27 87543130.
E-mail addresses: xzeng@foxmail.com (X. Zeng), luchun.et@gmail.com (C. Lu), lqpan@mail.hust.edu.cn (L. Pan).

0895-7177/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2010.04.017

http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
mailto:xzeng@foxmail.com
mailto:luchun.et@gmail.com
mailto:lqpan@mail.hust.edu.cn
http://dx.doi.org/10.1016/j.mcm.2010.04.017

X. Zeng et al. / Mathematical and Computer Modelling 52 (2010) 1940–1946 1941

strong universality has strict conditions regarding the encoding of input and decoding of output.Weak universality hasmore
relaxed conditions regarding the encoding of input and decoding of output.
Small strong universalitywas firstly considered in SN P systems by Andrei Păun andGheorghe Păun in [5], where strongly

universal SN P systemswere obtainedwith 84 neurons using standard rules andwith 49 neurons using extended rules. Then
an improvement was obtained in [6], the number of neurons was reduced to 68 for standard rules (or 43 for extended rules).
On the other hand, small weak universality was firstly considered by Turlough Neary in [7], where a small weakly universal
SN P system is constructed with 12 neurons using extended rules.
The proofs of the above results are based on simulating registermachines. In particular, the proof of the result in [7] starts

from a weakly universal register machine with only 2 registers. In this paper, by simulating the same register machine, a
smaller SN P system with only 9 neurons is constructed, where 3 neurons are used to take care of inputting spikes from
the environment; 2 neurons are associated with 2 registers; one neuron is used to output the result of computation, one
neuron is used for all instructions of the register machine; 2 auxiliary neurons are used between the neuron associated with
instructions and neurons associatedwith registers, whichworks as a ‘‘sieve’’ (only spikes thatwewant to pass through these
neurons can pass these neurons).
The paper is structured as follows. In the next section, we introduce some necessary prerequisites. Section 3 introduces

spiking neural P systems. In Section 4 we prove that an extended SN P system (without delay) with only 9 neurons is weakly
universal. Conclusions and remarks are given in Section 5.

2. Prerequisites

We assume the reader to be familiar with (basic elements of) language theory [8], as well as basic membrane computing
[9] (for more updated information about membrane computing, please refer to [3]), hence we directly introduce here some
notations and basic definitions.
For an alphabet V , let V ∗ denotes the set of all finite strings over V , with the empty string denoted by λ. The set of all

non-empty strings over V is denoted by V+. When V = {a} is a singleton, then we write simply a∗ and a+ instead of {a}∗,
{a}+.
A regular expression over an alphabet V is defined as follows: (i) λ and each a ∈ V is a regular expression, (ii) if E1, E2

are regular expressions over V , then (E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing else is a
regular expression over V . With each expression E we associate a language L(E), defined in the followingway: (i) L(λ) = {λ}
and L(a) = {a}, for all a ∈ V , (ii) L((E1)∪(E2)) = L(E1)∪L(E2), L((E1)(E2)) = L(E1)L(E2), and L((E1)+) = L(E+1), for all regular
expressions E1, E2 over V . Non-necessary parentheses are omitted when writing a regular expression, and also (E)+ ∪ {λ}
can be written as E∗.
A register machine is a constructM = (z,H, l1, lh, I), where z is the number of registers,H is the set of instruction labels,

l1 is the start label, lh is the halt label (assigned to instruction HALT), and I is the set of instructions; each label from H labels
only one instruction from I , thus precisely identifying it. The instructions are of the following forms:

• li : (ADD(r), lj, lk) (add 1 to register r and then go to one of the instructions with labels lj or lk, non-deterministically
chosen),
• li : (SUB(r), lj, lk) (if register r is non-empty, then subtract 1 from it and go to the instruction with label lj, otherwise go
to the instruction with label lk),
• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way: we start with all registers being empty
(i.e., storing the number zero), we apply the initial instructionwith label l1 andwe continue to apply instructions as indicated
by the labels (andmade possible by the contents of registers); if we reach the halt instruction lh, then the number n present in
specified register rs at that time is said to be generated byM . If the computation does not halt, then no number is generated.
It is known (see, e.g., [10]) that register machines generate all sets of numbers which are Turing computable.
A register machine can also compute any Turing computable function: we introduce the arguments in specified registers

r1, . . . , rk (without loss of the generality,wemay assume thatweuse the first k registers), we startwith the initial instruction
with label l1, and if the register machine stops (with the instruction with label lh), then the value of the function is placed
in another specified register rt , with all registers different from rt being empty. The partial function computed in this way is
denoted byM(n1, n2, . . . , nk). In the computing form, the registermachines can be considered deterministic, without losing
the Turing completeness; then, the ADD instructions li : (ADD(r), lj, lk) have lj = lk (and the instruction is written in the
form li : (ADD(r), lj)).
In [11], there are two different notions of universality defined as follows—strong universality and weak universality.

Definition 1. Let (φ0, φ1, φ2, . . .) be a fixed admissible enumeration of the set of unary partial recursive functions.

(i) A register machineM will be called strongly universal if there is a recursive function g such that for all x, y ∈ Nwe have
φx(y) = M(g(x), y).

(ii) A register machine M will be called weakly universal if there are recursive functions f , g such that for all x, y ∈ N we
have φx(y) = f (M(g(x, y))).

1942 X. Zeng et al. / Mathematical and Computer Modelling 52 (2010) 1940–1946

In this paper, we work with weak universality and we use deterministic register machines. The following theorem about
weakly universal register machines is given in Minsky’s book [10].

Theorem 1. There exist weakly universal deterministic register machines that use only two registers.

For the details of how to find such a register machine, we refer to Section 14.1 of book [10], where Minsky introduced a
procedure to construct this kind of registermachines. Herewemention that this kind of registermachines uses deterministic
ADD and SUB instructions, and has two registers (r1 and r2), with the input introduced in register r1 of the universalmachine,
and the result obtained also in register r1.
Convention:when evaluating or comparing the power of twonumber generating/accepting devices, number zero is ignored.

3. Spiking neural P systems

We briefly recall the basic notions concerning SN P systems. For more details on these systems, please refer to [1].
A spiking neural P system of degreem ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
(a) ni ≥ 0 is the initial number of spikes contained in σi;
(b) Ri is a finite set of rules of the following two forms:
(1) E/ac → ap; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0, p ≥ 1, with the restriction c ≥ p;
(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap; d of type (1) from Ri, we have as 6∈ L(E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses between neurons);
4. in, out ∈ {1, 2, . . . ,m} indicates the input and the output neurons, respectively.

If we always have p = 1 for all rules of the form E/ac → ap; d, then the rules are said to be of the standard type, else
they are called by extended rules.
The rules of type (1) are firing (we also say spiking) rules, and they are applied as follows. If the neuronσi contains k spikes,

and ak ∈ L(E), k ≥ c , then the rule E/ac → ap; d ∈ Ri can be applied. This means consuming (removing) c spikes (thus only
k− c remain in σi), the neuron is fired, and it produces p spikes after d time units (as usual in membrane computing, a global
clock is assumed, marking the time for the whole system, hence the functioning of the system is synchronized). If d = 0,
then these spikes are emitted immediately, if d = 1, then these spikes are emitted in the next step, etc. If the rule is used in
step t and d ≥ 1, then in steps t , t + 1, . . . , t + d − 1 the neuron is closed (this corresponds to the refractory period from
neurobiology), so that it cannot receive new spikes (if a neuron has a synapse to a closed neuron and tries to send several
spikes along it, then these particular spikes are lost). In the step t + d, the neuron spikes and becomes again open, so that it
can receive spikes (which can be used starting with the step t + d+ 1, when the neuron can again apply rules).
The rules of type (2) are forgetting rules; they are applied as follows: if the neuron σi contains exactly s spikes, then the

rule as → λ from Ri can be used, meaning that all s spikes are removed from σi.
If a rule E/ac → a; d has E = ac , then we will write it in the simplified form ac → a; d.
If a rule E/ac → a; d has d = 0, then we will write it in the simplified form E/ac → a.
In each time unit, if a neuron σi can use one of its rules, then a rule from Ri must be used. Since two firing rules,

E1/ac1 → ap1; d1 and E2/ac2 → ap2; d2, can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note however that, by definition, if a firing rule
is applicable, then no forgetting rule is applicable, and vice versa.
Thus, the rules are used in the sequential manner in each neuron, at most one in each step, but neurons function in

parallel with each other. It is important to notice that the applicability of a rule is established based on the total number of
spikes contained in the neuron.
The initial configuration of the system is described by the numbers n1, n2, . . . , nm, of spikes present in each neuron,

with all neurons being open. During the computation, a configuration of the system is described by both the number of
spikes present in each neuron and by the state of the neuron, more precisely, by the number of steps to count down until it
becomes open (this number is zero if the neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configurationwhere neuron
σi contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps, i = 1, 2, . . . ,m; with this notation, the initial configuration
is C0 = 〈n1/0, . . . , nm/0〉.
In next section, as usual, an SN P system is represented graphically, whichmay be easier to understand than in a symbolic

way. We give an oval with rules inside to represent a neuron, and directed graph to represent the structure of SN P system:
the neurons are placed in the nodes of a directed graph and the directed edges represent the synapses; the input neuron has
an incoming arrow and the output neuron has an outgoing arrow, suggesting their communication with the environment.

X. Zeng et al. / Mathematical and Computer Modelling 52 (2010) 1940–1946 1943

T+2 T+2

T+3 T+3

T+4 T+4

T T T T T T

2

8 4 8 4

2 2

2

2

input
4 4

1

2

2

2
2

2
4 4

4

41

1

m

5 5

6 6

7 7

1

Fig. 1. SN P systemΠ .

4. A small weakly universal SN P system

In this section, we give our small weakly universal SN P system (where extended rules, producing more than one spikes
at a time, are used) by simulating a weakly universal register machineM that has only two registers.
LetM = (2,H, l1, lm, I) be a weakly universal register machine, where I = {l1, l2, . . . , lm}, r1 is the input register and the

output register, l1 is the initial instruction and lm is the halt instruction, respectively. In what follows, we construct a specific
SN P systemΠ to simulateM .
An SN P system Π is given in Fig. 1, where neurons σin, σa1 , σa2 are used to load spikes to neurons σstate, σr1 ; neuron

σstate is associated with all instructions of M; neurons σr1 and σr2 are associated with registers r1 and r2; neurons σb1 and
σb2 work like a ‘‘sieve’’ (in the sense that only spikes that we want to move from neuron σstate to neuron associated with
register r can pass neurons σb1 and σb2 , and reach neuron associatedwith register r); neuron σout is used to output the result
of computation.
In system Π , each neuron is assigned with a set of rules, see Table 1, where T = 4(m + 1) + 3, P(i) = 4(i + 1),

i = 1, 2, . . . ,m. In neuron σstate, there are m + 1 groups of rules Rinput , R1, R2, . . ., Rm, where: the set of rules Rinput takes
care of loading spikes into σr1 ; for each ADD instruction li : (ADD(r), lj), the set of rules Ri = {a

P(i)(aT)+/aP(i)+T−P(j) →
aadd(r)} is associated, where add(1) = 4, add(2) = 6; for each SUB instruction li : (SUB(r), lj, lk), the set of rules
Ri = {aP(i)(aT)+/aT+3 → asub(r), aP(i)−1(aT)+/aP(i)−1+T−P(j) → a, aP(i)−2(aT)+/aP(i)−2+T−P(k) → a} is associated, where
sub(1) = 2, sub(2) = 5; for instruction lm : HALT, Rm = {aP(m)(aT)+/aP(m) → a7}. If the number of spikes in neuron σstate is
of the form P(i) + sT for some s ≥ 1 (that is, if the number of spikes is n, then n ≡ P(i) (modT); the value of multiplicity
of T does not matter with the restriction that it should be greater than 0), then system Π starts to simulate instruction li
(in particular, having the number of spikes of the form P(1) + sT = 4(1 + 1) + sT = 8 + sT in σstate, system Π starts to
simulate the initial instruction l1 ofM; with P(m)+ sT = 4(m+ 1)+ sT spikes, starts to output the result of computation).
That is why we use the label state for this neuron, and the function of this neuron is somewhat similar with ‘‘control unit’’
in Turing machine.
Initially, all neurons have no spike, with exception that each of neurons σa1 , σa2 contains T + 2 spikes. During the

computation of M , if the register r hold the number n ≥ 0, then the associated neuron σr will contains 4n spikes. In what
follows, we check the simulation of register machineM by systemΠ .
Reading from environment and inputting to neuron σr1 . The input toΠ is read into the system via the input neuron σin
as shown in Fig. 1. If the input toM is x then the binary sequence z = 10x−11 is read in by the input neuron σin. This means
that the input neuron ofΠ receives a spike in each step corresponding to a digit 1 from the string z and no spike otherwise.
The input part works as follows. After receiving the first spike, neuron σin fires immediately. At step 3, neurons σa1 and

σa2 become active, sending two spikes to each other and spiking again in the next step; at the same time, 4 spikes from them
arrive in neuron σstate. This process lasts until step x+ 2.
From step 3 to step x+ 2, neuron σstate receives four spikes at every step, sending 4 spikes to neurons σb1 and σb2 by the

rule a4 → a4. With 4 spikes inside, neuron σb1 spikes, sending 4 spikes to neuron σr1 , which corresponds to increase the
number stored in register r1 by one; With 4 spikes inside, neuron σb2 forgets. Thus, at every step, the content of neuron σr1
increases by 4. This process lasts for x steps, and in this way neuron σr1 is loaded with 4x spikes.
At step x + 1, another spike from environment arrives in the system, neuron σin spikes again at the next step. After

receiving the spike, neurons σa1 and σa2 have T + 4 spikes inside, each of them sends four spikes to neuron σstate by the rule

1944 X. Zeng et al. / Mathematical and Computer Modelling 52 (2010) 1940–1946

Table 1
The rules associated with neurons in systemΠ .

Neurons Associated rules

σin a→ a
σa1 , σa2 aT+3/a2 → a2 , aT+4/a8 → a4 , aT → aT

σb1 a→ λ, a2 → a, a4 → a4 , a5 → λ, a6 → λ, a7 → a2

σb2 a→ λ, a2 → λ, a4 → λ, a5 → a, a6 → a4 , a7 → λ

σr1 a→ a, a2 → a, a(a4)+/a5 → a2 , a2(a4)+/a4 → a4

σr2 a→ a, a(a4)+/a5 → a2

σout a→ a, a3 → λ, a5 → a
σstate Rstate = Rinput ∪ R0 ∪ R1 ∪ · · · ∪ Rm , where:

Rinput = {a4 → a4};
Ri = {aP(i)(aT)+/aP(i)+T−P(j) → aadd(r)}, if li : (ADD(r), lj) ∈ I;
Ri = {aP(i)(aT)+/aT+3 → asub(r), aP(i)−1(aT)+/aP(i)−1+T−P(j) → a,
aP(i)−2(aT)+/aP(i)−2+T−P(k) → a}, if li : (SUB(r), lj, lk) ∈ I;

Rm = {aP(m)(aT)+/aP(m) → a7}, for instruction lm : HALT

2

2
2

1

1

4

4

4

4
44

2

2

4 4 4

4

7

5 52

2

6

2

2

4

7

5
6

i
P(i) P(i)+T– P(j)T + add (r)

input 1 i–1 i+1 m

+

+

2 +

+

Fig. 2. Simulating li : (ADD(r), lj).

aT+4/a8 → a4. From step x+ 3 on, with T spikes inside, neurons σa1 and σa2 send T spikes to each other at every step and
spike again in the next step, rule aT → aT is continuously applied.
With 8 + sT = P(0) + sT (for some s ≥ 1) spikes in neuron σstate at step x + 3, the system is triggered to simulate the

initial instruction l1 ofM . In general, the simulation of an ADD or SUB instruction with label li starts by introducing P(i)+ sT
(for some s ≥ 1) spikes in neuron σstate.
Simulating an ADD instruction. The part of system for simulating a deterministic ADD instruction: li : (ADD(r), lj) is
depicted in Fig. 2. Recall that the number of spikes add(r) in the rule aP(i)(aT)+/aP(i)+T−P(j) → aadd(r) is used for indicating
the ADD operation to register r , which is defined as add(1) = 4, add(2) = 6.
Assume that we are at a step when we have to simulate an ADD instruction li : (ADD(1), lj), with the number of spikes of

the form P(i)+ sT (for some s ≥ 1) in neuron σstate. The rule aP(i)(aT)+/aP(i)+T−P(j) → aadd(1) is applied by neuron σstate and
emits add(1) = 4 spikes, at the next step, neuron σa1 sends 4 spikes to neuron σr1 , which corresponds to adding register r1
ofM with 1. In neuron σa2 , these 4 spikes will be forgotten by rule a

4
→ λ.

After consuming P(i)+ T − P(j) spikes by the rule aP(i)(aT)+/aP(i)+T−P(j) → aadd(1), the number of spikes in neuron σstate
is of the form P(j)+ sT (for some s ≥ 1), hence we pass to the next instruction lj.
Similarly, the simulation of ADD instruction li : (ADD(2), lj) acting on register 2 can be checked, which we omit here.
The simulation of the ADD instruction is correct: we have increased the number of spikes in neuron σr1 or σr2 by four,

and we have passed to the simulation of one of the instructions lj and lk non-deterministically.
Simulating a SUB instruction. The part of system for simulating a SUB instruction li : (SUB(r), lj, lk) is shown in Fig. 3, where
sub(r) in the rule aP(i)(aT)+/aT+3 → asub(r) is used for indicating the SUB operation to register r , sub(1) = 2, sub(2) = 5.
Let us assume r = 1 and neuron σstate emits sub(1) = 2 spikes at time t (for SUB instruction acting on register 2, the

simulation can be checked similarly). At time t+1, neuron σb2 forgets these two spikes, only neuron σb1 fires and sends one
spike to neuron σr1 . For neuron σr1 , there are the following two cases.

(1) The number of spikes in neuron σr1 at time t is 4nwith n > 0. Then at step t + 2, the rule a(a
4)+/a5 → a2 consumes 4

spikes, sending 2 spikes to neuron σstate. After receiving these 2 spikes, the number of spikes in neuron σstate is of the form
P(i)−1+ sT (for some s ≥ 1), so the rule aP(i)−1(aT)+/aP(i)+T−1−P(j) → a can be applied. Consuming P(i)+T −1−P(j)
at time t + 3 by the rule aP(i)−1(aT)+/aP(i)+T−1−P(j) → a, there are P(j) + sT spikes leaving in neuron σstate, which
means that the next execution instruction will be lj. Note that the one spike emitted by neuron σstate will immediately
be forgotten by neurons σa1 and σa2 at the next step because of the rule a→ λ in them.

X. Zeng et al. / Mathematical and Computer Modelling 52 (2010) 1940–1946 1945

4

4

4 4

4
4 4 4

2

2

2

2
1

2

2

+

+

+ 5 5

6

7

4

4 5 2

2

2

1

2

5

6

7

input m

P(i)–2+T– P(k)

P(i)–1+T– P(j)P(i)–1

P(i)

i

P(i)–2

i–1 i+1

T T+3

T

T

+

sub (r)

1

2

+

+

+

Fig. 3. Simulating li : (SUB(r), lj, lk).

Fig. 4. Outputting the result and halting.

(2) The number of spikes in neuron σr1 at time t is 0. Then the rule a→ a consumes the single spike present in the neuron
and sends 1 spike to neuron σstate at time t + 2. In this case, neuron σstate contains P(i)− 2+ sT spikes at time t + 3, the
rule aP(i)−2(aT)+/aP(i)+T−2−P(k) → awill consume P(i)+ T − 2− P(k) spikes, leaving P(k)+ sT spikes in neuron σstate,
so systemΠ starts to simulate the instruction lk.

The simulation of the SUB instruction is correct: starting from the simulation of instruction li, we passed to simulate the
instruction lj if the register was non-empty and decreased by one, and to simulate instruction lk if the register is empty.

Remark. In the set of rules Ri associatedwith a SUB instruction li, the regular expressions have numbers P(i), P(i)−1, P(i)−
2, P(i) − 3. Because P(i) = 4(i + 1) for each instruction li, which implies that {P(i1), P(i1) − 1, P(i1) − 2, P(i1) − 3} ∩
{P(i2), P(i2)− 1, P(i2)− 2, P(i2)− 3} = ∅, for i1 6= i2, the simulation of SUB instructions do not interfere with each other.
On the other hand, in the set of rules Ri associated with an ADD instruction li, the regular expressions have number P(i), it
is not difficult to see that the simulations of an ADD instruction and a SUB instruction do not interfere with each other too.
That is why we take P(i) as a multiplicity of number 4.

Outputting the result and halting. Having the result of the computation in register r1, we can output the result by means
of the part of system from Fig. 4.
Assume now that the computation inM halts, which means that the halt instruction lm : HALT is reached. For systemΠ ,

this means that neuron σstate contains P(h)+ sT (for some s ≥ 1) spikes, neuron σr1 stores 4M(x) spikes (M(x) is the result
computed by M). Having P(h) + sT spikes inside, neuron σstate gets fired and emits 7 spikes. In the next step, neuron σb2
forgets these 7 spikes from σstate, neuron σb1 fires and sends 2 spikes to neuron σr1 . In this way, neuron σr1 has 4M(x) + 2
spikes, hence its rule a2(a4)+/a4 → a4 can be applied and sends 4 spikes to neuron σstate and σout . Four spikes arrive in
neuron σstate, which consumes these spikes immediately by rule aP(m)+2(aT)+/a4 → a (note that the one spike emitted will
be forgotten by neuron σb1 and σb2 at the next step); 4 spikes arrive in the output neuron σout , which spikes for the first
time, consuming one spike (after receiving the first spike from the output neuron, neuron σa2 has 2T +1 spikes inside and is
‘‘blocked’’). From the next step on until exhausting the spikes from neuron σr1 , the output neuron receives 4 spikes at each
step; the number of spikes in neuron σout is of the form 4k+ 3 for some k ≥ 0, and neuron σout cannot use its rules. When
neuron σr1 has only two spikes, its rule a

2
→ a can be applied and sends 1 spike to the output neuron, thus the output

neuron spikes for the second (and last) time. From then on, there is no rule can be applied in system Π , and in this way it
halts.
From the above description, it is clear that Π can simulate each computation of the weakly universal register machine

M , so Π is also weakly universal. It is easy to observe from Fig. 1 that the universal system Π has 9 neurons in total. We
formulate this result as a theorem.

1946 X. Zeng et al. / Mathematical and Computer Modelling 52 (2010) 1940–1946

Theorem 2. There is a weakly universal SN P system with extended rules (without delay) having 9 neurons.

5. Conclusions and remarks

In this paper, we have obtained an improvement (from 12 to 9) of the number of neurons for small weakly universal SN
P system. A weakly universal SN P systemwith 9 neurons looks already quite small. However, it remains open whether this
system is optimal; that is how to prove this system is smallest in the sense that we cannot construct a universal SN P system
with less neurons.
In our small SN P system, 3 neurons are used to take care of inputting spikes from the environment; 2 neurons are

associated with 2 registers; one neuron is used to output the result of computation, one neuron is used for all instructions of
the register machine; 2 auxiliary neurons are used between the neuron associated with instructions and neurons associated
with registers,whichworks as a ‘‘sieve’’ (only spikes thatwewant to pass through theseneurons canpass these neurons). Can
we remove these 4 auxiliary neurons to get smaller universal SN P systems? One possible way of removing these auxiliary
neurons is to use more rules in the neuron associated with instructions realizing the function of ‘‘sieve’’.
The reachability question for spiking neural P systems is as follows: given a configuration cx of a spiking neural P system

does it ever enter a configuration cy. It is worth noting that using the results in Theorem 2 smaller spiking neural P systems
with undecidable reachability questionsmay be given. Such systemsmay be given by removing the output neuron and the 3
neurons for initializing the system fromΠ . Thus, there exists spiking neural P systemwith 5 neuronswhich has undecidable
reachability question.
Strong universality has been considered in several variants of systems such as standard SN P systems, extended SN P

systems, asynchronous SN P systems, SN P systems with exhaustive use of rules (general information about these systems
can be found, e.g., in [12–14]). Small weak universality in these variants of systems also deserves to be investigated, checking
whether there are some unexpected results.

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant Nos. 30670540, 60674106, 30870826,
60703047, and 60533010), 863 Programof China (2009AA012413), Program for NewCentury Excellent Talents in University
(NCET-05-0612), Ph.D. Programs Foundation of Ministry of Education of China (20060487014), Chenguang Program of
Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural Science Foundation of Hubei Province (2008CDB113 and
2008CDB180).

References

[1] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systems, Fundamenta Informaticae 71 (2–3) (2006) 279–308.
[2] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Handbook of Membrane Computing, Oxford University Press, 2010.
[3] The P SystemWeb Page: http://ppage.psystems.eu.
[4] H.M. Chen, M. Ionescu, T.-O. Ishdorj, M.J. Pérez-Jiménez, Spiking neural P systems with extended rules, in: Proc. Fourth Brainstorming Week on
Membrane Computing, Sevilla, Spain, 2006, pp. 241–266.

[5] A. Păun, Gh. Păun, Small universal spiking neural P systems, BioSystems 90 (1) (2007) 48–60.
[6] X. Zhang, X. Zeng, L. Pan, Smaller universal spiking neural P systems, Fundamenta Informaticae 87 (1) (2008) 117–136.
[7] T. Neary, A Small universal spiking neural P system, in: Proc. 7th International Workshop on Computing with Biomolecules, Wien, Austria, 2008, pp.
65–74.

[8] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 3, Springer-Verlag, Berlin, 1997.
[9] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
[10] M. Minsky, Computation — Finite and Infinite Machines, Prentice Hall, New Jersey, 1967.
[11] I. Korec, Small universal register machines, Theoretical Computer Science 168 (2) (1996) 267–301.
[12] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systemswith exhaustive use of rules, International Journal of Unconventional Computing 3 (2007)

135–154.
[13] M. Cavaliere, O. Egecioglu, O.H. Ibarra, S. Woodworth, M. Ionescu, Gh. Păun, Asynchronous spiking neural P systems, Theoretical Computer Science

410 (24–25) (2009) 2352–2364.
[14] X. Zhang, Y. Jiang, L. Pan, Small universal spiking neural P systemswith exhaustive use of rule, in: Proc. Third International Conference on Bio-Inspired

Computing: Theory and Application, Adelaide, Austrilia, 2008, pp. 117–128.

http://ppage.psystems.eu

	A weakly universal spiking neural P system
	Introduction
	Prerequisites
	Spiking neural P systems
	A small weakly universal SN P system
	Conclusions and remarks
	Acknowledgements
	References

