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The general mixed linear model can be denoted by y = X� + Zu + e, where �
is a vector of fixed effects, u is a vector of random effects, and e is a vector
of random errors. In this article, the problem of admissibility of Qy and Qy+ q
for estimating linear functions, � = L′� +M ′u, of the fixed and random effects is
considered, and the necessary and sufficient conditions for Qy (resp. Qy+ q) to
be admissible in the set of homogeneous (resp. potentially inhomogeneous) linear
estimators with respect to the MSE and MSEM criteria are investigated. We provide
a straightforward alternative proof to the method that was utilized by Wu (1988),
Baksalary and Markiewicz (1990), and Groß and Markiewicz (1999). In addition, we
derive the corresponding results on the admissibility problem under the generalized
MSE criterion.

Keywords Admissibility; General mixed linear model; (Generalized) MSE
criterion; Linear combination; MSEM criterion.

Mathematics Subject Classification 62C15; 62J05.

1. Introduction

The three small-area models of nested-error regression model proposed by Battese,
Harter, and Fuller (1988), random regression coefficient model considered by
Dempster, Rubin, and Tsutakawa (1981), and Fay-Herriot model investigated by
Fay and Herriot (1979), are all special cases (in a sense) of the general mixed linear
model, denoted by

y = X� + Zu + e� (1.1)
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Admissible Estimation in GML Models 2193

where y is the n-dimensional vector of observations; X and Z are known n× p
and n× q matrices, respectively, u and e are jointly distributed with means 0, and
covariance matrix �2�; i.e.,

�
(
u
e

)
= 0� �

(
u
e

)
= �2

(
G K
K ′ R

)
= �2� � 0�

For the three small-area models, it is customary to consider the problem of
estimating (or predicting) the special case of the general linear function of the
fixed effects � and the realized values of the random effects u, say ��l�m� = l ′� +
m′u� for special vectors, l and m, of constants. Denote now � = ZGZ ′ + ZK +
K ′Z ′ + R. In the past several decades, the problem mentioned above has received
considerable interest. In the case when K = 0 and � � 0, Henderson (1975) showed
that the best linear unbiased (BLU) estimator (or predictor) of � is expressible
as �̂ = l ′�̂ +m′GZ ′�−1�y− X �̂�, where �̂ is any solution to the generalized least
squares (GLS) equations X ′�−1X �̂ = X ′�−1y. For the general case, one can obtain
the essentially unique BLU estimator of � as �∗ = l ′�∗ +m′N ′T−�y− X�∗� by
virtue of Rao’s unified theory of least squares (cf. Wang, 1987), with the notations
N = ZG + K ′�T = �+ XUX ′, S = X ′T−X , and �∗ = S−X ′T−y, where U is any
arbitrary but fixed p× p symmetric nonnegative definite (s.n.n.d.) matrix satisfying
��T� = ��X ���, or equivalently, ��X� ⊆ ��T�. Without loss of generality, we
suppose ��U� ⊆ ��X ′� in the following. Note that one can readily justify ��N � ⊆
���� ⊆ ��T�� and therefore �∗ is invariant with respect to the choices of involved
generalized inverses since y ∈ ��T� (with probability 1) and ��S� = ��X ′�. For
more related results, one can see Harville (1976), Harville and Jeske (1992), Prasad
and Rao (1990), Robinson (1991), Das, Jiang-Jiming, and Rao (2004), Groß and
Markiewicz (2004), Ip, Wong, and Liu-Jinshan (2005), Heiligers and Markiewicz
(1996).

In this article, we will consider an the admissibility problem estimating

��L�M� = L′� +M ′u = �� say� (1.2)

for given p× k and q × k matrices, L and M , and investigate the sets of admissible
estimators of � under the mean squared error matrix (MSEM) and mean squared
error (MSE) criteria, in which the former would be a generalization of a respective
characterization of admissible linear estimators of linear combination of fixed effects
in general linear model with respect to MSEM criterion given in Baksalary and
Markiewicz (1963), whereas the latter is with respect to MSE criterion. A similar
process was used in part in Baksalary and Markiewicz (1990). Notice that we call
� estimable (or predictable) if L′� is linearly estimable under the model (1.1) or,
equivalently, ��L� ⊆ ��X ′�. Further, if � is estimable, then its estimator �̃ is said
unbiased if ���̃− ��= 0.

It is well known that the admissibility is a favorable property that a good
estimation or prediction, for which a number of original works appeared in the
past several decades. Wang (1987) collected many useful corresponding results,
in which the admissibility of X �̂ for estimating X�, obtained by Rao, under the
MSE criterion was mentioned. Wu (1983) investigated the necessary and sufficient
conditions for Qy to be admissible for estimating L′� with respect to MSEM
criterion. For the similar problem under the MSE criterion, one can see Yu and
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2194 Liu and Rong

Xu (2004), and Xu and Yu (2005). In addition, Wu (1987, 1988) considered a
linear model with stochastic coefficients, and derived a class of linear admissible
estimators (called predictors) under the quadratic or matrix loss function by virtue
of a respective characterization of admissible linear estimators of linear combination
of fixed effects in general linear models with respect to MSE and MSEM criteria.
In a way similar to this, one can see Theorem 5 and a comment on it in Groß and
Markiewicz (1999). Here, we would like to offer another alternative straightforward
proof and some new representations and then give some concluding remarks.

2. Admissibility of Linear Estimation

We will call an estimator �̃1 of � MSEM-superior (resp. MSE-superior) over
another estimator �̃2 of � in the sense that MSEM��̃2� ��−MSEM��̃1� �� � 0 (resp.
MSE��̃2� ��−MSE��̃1� �� ≥ 0� is satisfied for any pair ��� �2�, with equality not
holding for at least one point, say ��0� �

2
0�, in which MSEM��̃� �� = ���̃− ����̃−

��′, MSE��̃� �� = ���̃− ��′��̃− ��. Furthermore, an estimator �̃ is said MSEM-
admissible (resp. MSE-admissible) in � (a set of estimators for �) if �̃ ∈ � without
any other estimator �̂ ∈ � , which is MSEM-superior (resp. MSE-superior) over
�̃. For convenience in the following, we denote by �H = �Qy�Q � k× n	 and
�INH = �Qy+ q�Qy ∈ �H� q � k× 1	 the sets of homogeneous linear estimators and
(potentially) inhomogeneous linear estimators, respectively.

2.1. Admissibility of Homogeneous Linear Estimation

Here, we will discuss the admissibility of homogeneous linear estimator for �

regarding the MSEM and the MSE criteria and give the necessary and sufficient
conditions for Qy to be admissible in the set �H. Denote by �H-MSEM and �H-MSE the
sets of all MSEM-admissible and MSE-admissible homogeneous linear estimators of
�. Clearly, �H-MSE ⊆ �H-MSEM ⊆ �H. With regard to the characterizations of �H-MSE

and �H-MSEM, one can see Groß and Markiewicz (1999) in part in a sense. We mainly
offer an alternative method in the present article.

2.1.1. MSEM-Admissibility of Homogeneous Linear Estimation. Here, we follow the
idea used in Xu and Yu (2005) and Yu and Xu (2004). Let us first give a lemma as
follows.

Lemma 2.1. For any given Qy ∈ �H, there is Q∗y ∈ �H such that MSEM�Qy� �� �
MSEM�Q∗y� �� holds for any pair ��� �2�.

Proof. Denoting W = X�X ′T−X�−X ′T− = XS−X ′T− for any fixed arbitrary
generalized inverse of T gives WX = X , W 2 = W and WTW ′ = WT = TW ′ =
XS−X ′. Taking

Q∗ = QXS−X ′T− +M ′N ′�T− − T−XS−X ′T−� = QW +M ′N ′T−�I −W�� (2.1)

we get MSEM�Qy� �� = MSEM�Q∗y� ��+ �+ �+ �′, where � = ��Q −
Q∗�yy′�Q −Q∗�′ and � = ��Qy−Q∗y��Q∗y− ��′. To finish the proof, it suffices to
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Admissible Estimation in GML Models 2195

justify � = 0. In fact, noting that Q −Q∗ = �Q −M ′N ′T−��I −W�, Q∗X = QX ,
and TQ∗′ −NM = XS−X ′Q′ −WNM , we get

� = ��Q −Q∗��X� + Zu + e� 
�Q∗X − L′� � + �Q∗Z −M ′�u +Q∗e�′

= �2�Q −Q∗��Z� I���Q∗Z −M ′�Q∗�′ = �2�Q −Q∗���Q∗′ −NM�

= �2�Q −M ′N ′T−��I −W��TQ∗′ −NM − XUX ′Q∗′�

= �2�Q −M ′N ′T−��I −W��XS−X ′Q′ −WNM − XUX ′Q∗′� = 0

combining WX = X and W 2 = W . Thus, for any ��� �2�, MSEM�Qy� �� �
MSEM�Q∗y� ��, with equality holding if and only if � = 0. �

By the proof of Lemma 2.1, it is easily seen that

� = 0 ⇔ �Q −Q∗���2�+ X��′X ′��Q −Q∗�′ = 0 ⇔ �Q −Q∗���Q −Q∗�′ = 0

⇔ �Q −Q∗���+ XUX ′��Q −Q∗�′ = 0 ⇔ �Q −Q∗�T = 0

⇔ �Q −M ′N ′T−� �I −W�T = 0 ⇔ �Q −M ′N ′T−��T − XS−X ′� = 0

⇔ P
T+ 1

2 X

(
T

1
2 �Q′ − T−NM�

)
= T

1
2 �Q′ − T−NM� �

⇔ �
(
T

1
2 �Q′ − T−NM�

)
⊂ �

(
T+ 1

2X
)

⇔ ��TQ′ −NM� ⊂ ��X� ⇔ ���Q′ −NM� ⊂ ��X��

in view of the inherent equality �Q −Q∗�X = 0. That is, � = 0 ⇔ ���Q′ −NM� ⊂
��X�. Let � = �Q����Q′ −NM� ⊆ ��X�	 below. We restate the result in a
lemma version as follows.

Lemma 2.2. Assume that Q∗ is defined as (2.1) (the same below), Qy is a given
estimator (or predictor) in �H. Then MSEM�Qy� �� = MSEM�Q∗y� �� holds for any
��� �2� if and only if Q ∈ �.

From Lemmas 2.1 and 2.2, it follows that Qy ∈ �H\�H-MSEM if ���Q′ −
NM� ⊂ ��X� is not satisfied. Consequently, we need only to consider the subset of
�H, say,

� ∗
H = �Qy ∈ �H ����Q′ −NM� ⊂ ��X�	�

Let us deduce the MSEM of Qy with respect to � for a given Qy ∈ � ∗
H.

Actually, noticing that ��N � ⊂ ��T�, which combining QT = Q∗T = QXS−X ′ +
M ′N ′�T− − T−XS−X ′T−�T yields QN = QTT−N = Q∗TT−N = Q∗N , we obtain

MSEM�Qy� ��

= �
�QX − L′�� + �QZ −M ′�u +Qe�
�QX − L′�� + �QZ −M ′�u +Qe�′

= �QX − L′���′�QX − L′�′ + �2�Q�Q′ −QNM −M ′N ′Q′ +M ′GM�

= �2�Q∗TQ∗′ −QXUX ′Q′ −Q∗NM −M ′N ′Q∗′ +M ′GM�+ J��′J ′�
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2196 Liu and Rong

with the notation

J = QX − L′�

the same below. Further, we have Q∗TQ∗′ = QXS−X ′Q′ +M ′N ′�T− −
T−XS−X ′T−�NM and Q∗NM = QXS−X ′T−NM +M ′N ′�T− −
T−XS−X ′T−�NM , and thus it follows that MSEM�Qy� �� = ��Q�+H , where
H = �2
M ′GM −M ′N ′�T− − T−XS−X ′T−�NM �, and ��Q� = �2
QX�S− −
U�X ′Q′ −QXS−X ′T−NM −M ′N ′T−XS−X ′Q′�+ J��′J ′. In the following, we
give a lemma concerning the comparison of two estimators in � ∗

H.

Lemma 2.3. Assume that Py�Qy ∈ � ∗
H. If there does not exist any scalar � ∈ 
−1� 1�

such that PX − L′ = ��QX − L′� = �J , then Py is not MSEM-superior over Qy.

Proof. Provided that Py is MSEM-superior over Qy, i.e., MSEM�Qy� ��−
MSEM�Py� �� � 0, or, equivalently, ��Q� � ��P� for all ��� �2� and ��Q� 
= ��P�
for some ��0� �

2
0�, from the fact (see Appendix) that for symmetric matrices A and

C , A+ Bxx′B′ � C +Dxx′D′ holds for any x if and only if A � C and B = �D for
some � ∈ 
−1� 1�, it follows that our supposition contradicts the conditions given in
Lemma 2.3.

From the above discussions, we give the following theorems concerning
�H-MSEM.

Theorem 2.1. Assume � is not estimable under model (1.1). Then �H-MSEM = � ∗
H.

Proof. Clearly, �H-MSEM ⊆ � ∗
H. On the other hand, we assume Py and Qy are

two fixed arbitrary estimators of �, with Py ∈ �H and Qy ∈ � ∗
H. Without loss of

generality, we suppose Py ∈ � ∗
H due to the above discussions.

• If PX = QX , then ��P� = ��Q�, and thereafter MSEM�Py� �� =
MSEM�Qy� ��.

• If PX 
= QX , then together with � not estimable, or, equivalently, ��L� ⊂
��X ′�, one can readily verify that there does not exist � ∈ 
−1� 1� such
that PX − L′ = ��QX − L′�. In fact, PX − L′ = QX − L′ contradicts PX 
=
QX , and PX − L′ = ��QX − L′� for some � ∈ 
−1� 1� implies L = X ′�P −
�Q�′/�1− ��, which contradicts ��L� ⊂ ��X ′�.

The above analysis (the latter) combining Lemma 2.3 would mean that Qy ∈ � ∗
H is

MSEM-admissible in the set �H, i.e., Qy ∈ �H-MSEM, which completes the proof. �

Theorem 2.2. Assume that � is estimable under the model (1.1), and Qy ∈ �H. Then
Qy ∈ �H-MSEM if and only if Qy ∈ � ∗

H and either QX = L′, or QX 
= L′ but for any � ∈
�0� 1�, ����Q� � 0, where ����Q� = �J�S− −U�J ′ +QX�S− −U�X ′Q′ − L′�S− −
U�L− JS−X ′T−NM −M ′N ′T−XS−J ′�

Proof of Necessity. Let Qy ∈ �H-MSEM. It is clear that Qy ∈ � ∗
H. If QX 
= L′

and there is some �0 ∈ �0� 1� such that ���0� Q� � 0, taking P = �0Q + �1−
�0�
L

′S−X ′T− +M ′N ′�T− − T−XS−X ′T−��, noting that � is estimable, or,
equivalently, ��L� ⊂ ��X ′� = ��S�, it follows that Py ∈ � ∗

H and PX − L′ =
�0�QX − L′� = �0J , and therefore

MSEM�Qy� ��−MSEM�Py� �� = �1− �0��
2���0�Q�+ �1− �20�J��

′J ′ � 0
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Admissible Estimation in GML Models 2197

holds for any ��� �2�. The left side of the above expression is non-zero for at least
some pair ��0� �

2
0�, which contradicts Qy ∈ �H-MSEM, since QX 
= L′.

Proof of Sufficiency. To show the sufficiency, it suffices to show that Py is
impossible MSEM-superior over Qy for any Py ∈ � ∗

H, following from Lemmas 2.1
and 2.2. Actually,

• For the case of QX = L′. If PX = L′, then MSEM�Py� �� = MSEM�Qy� ��;
If PX 
= L′, then by Lemma 2.3, Py is not MSEM-superior over Qy.

• For the case of QX 
= L′. If PX = L′, then by direct operations, one
can conclude that �MSEM�Qy� ��−MSEM�Py� ��	�=0 = �2��0�Q� is not
s.n.n.d.; If PX 
= L′, it suffices to show that Py is not MSEM-superior
over Qy for any P satisfying PX − L′ = ��QX − L′� for some � ∈ 
−1� 0� ∪
�0� 1�, following from Lemma 2.3 (since PX 
= L′). Actually, as one can see
�MSEM�Qy� ��−MSEM�Py� ��	�=0 = �1− ���2����Q�:

• If −1 ≤ � < 0, then ����Q� � ��0�Q� and therefore �1−
���2����Q� � 0;

• If � = 1, then PX = QX , it follows that MSEM�Qy� �� =
MSEM�Py� ��;

• If 0 < � < 1, it is clear that 
MSEM�Qy� ��−MSEM�Py� ����=0 � 0.

Therefore, Py is not MSEM-superior over Qy for any Py ∈ � ∗
H with Q

satisfying conditions given in context. This conclusion would imply Qy ∈ �H-MSEM.
�

Corollary 2.1. Assume that � is estimable under the mixed linear model (1.1). Then
�∗ ∈ �H-MSEM, where �∗ = �L′S−X ′T− +M ′N ′�T− − T−XS−X ′T−�	y is the BLU
estimator of �.

The following corollary concerns the case M = 0; e.g., cf. Wu (1986).

Corollary 2.2. Assume L′� is linearly estimable under the mixed linear model (1.1).
Then Qy is MSEM-admissible for L′� if and only if the following conditions hold
simultaneously:

• QT = QXS−X ′;
• Either QX = L′, or ����Q��M=0 � 0 does not hold for all � ∈ �0� 1� when QX 
=

L′.

Specially, if M = 0 and � � 0, we get the conclusion obtained by Wu (1983) by
taking U = 0, which will be restated in a corollary below.

Corollary 2.3. Assume L′� is linearly estimable under the mixed linear model (1.1)
with � � 0. Then Qy is MSEM-admissible for L′� if and only if the following conditions
hold simultaneously:

• Q� = QX�X ′�−1X�−X ′;
• Either QX = L′, or QX�X ′�−1X�−J ′ + J�X ′�−1X�−X ′Q′ − �1−
��J�X ′�−1X�−J ′  0 does not hold for all � ∈ �0� 1� when QX 
= L′.

2.1.2. MSE-Admissibility of Homogeneous Linear Estimation. Being similar to
Lemmas 2.1 and 2.2, we give Lemma 2.4 concerning � ∗

H as follows.
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2198 Liu and Rong

Lemma 2.4. For Qy ∈ �H, let Q∗ be defined as (2.1). Then MSE�Qy� �� ≥
MSE�Q∗y� ��, with equality holding for all ��� �2� iff either �Q −Q∗�T = 0 or
��TQ′ −NM� ⊆ ��X� is satisfied.

Since MSE�Qy� �� = tr�MSEM�Qy� ��	, it follows that Lemma 2.4 holds
clearly. With notations �Q� = tr���Q�	 and h = tr�H�, we give the following
theorem concerning the set of MSE-admissible homogeneous linear estimators, of �.

Theorem 2.3. Assume � is estimable under model (1.1), and Qy ∈ �H. Then Qy ∈
�H-MSE if and only if Qy ∈ � ∗

H and the following conditions hold simultaneously:

(1) QX�S− −U�X ′Q′ � QX�S− −U�L+M ′N ′T−XS−J ′ (= F , say);
(2) Either QX = L′, or QX 
= L′ but ��J� = ��D�, where the matrix D refers to

D = J�S− −U�J ′ + F −QX�S− −U�X ′Q′ = M ′N ′T−XS−J ′ − L′�S− −U�J ′�

Proof of Necessity. Let us first show the necessity. Assume Qy ∈ �H-MSE, then it
is clear that Qy ∈ � ∗

H. For any k-dimensional vector d , and any fixed arbitrary
scalar � ∈ 
0� 1�, denoting q = Q′d , m = Md , l = Ld , and taking p′��� = �q′ + �1−
��
l ′S−X ′T− +m′N ′�T− − T−XS−X ′T−��, with the notation f��� �� �2� = �p′����,
we obtain

f��� �� �2�

= �2�′�q′X − l ′�′�q′X − l ′�� + �2
�2 q′X�S− −U�X ′q + �1− ��2l ′�S− −U�l

+ 2��1− ��q′X�S− −U�l − 2�q′XS−X ′T−Nm − 2�1− ��l ′S−X ′T−Nm��

It follows that �2f��� �� �2�/��2 = 2�′�q′X − l ′�′�q′X − l ′�� + 2�2�q′X − l ′��S− −
U��q′X − l ′�′ ≥ 0 for any given pair ��� �2�. Note that �q′� = f�1� �� �2�.
Following from the fact (the proof is similar to Theorem 7.2 shown in Wang (1987)
and thus omitted here) that Qy ∈ �H-MSE implies q′y is admissible for d ′�, and
observing that �1− �2��′�q′X − l ′�′�q′X − l ′�� ≥ 0 holds for any � ∈ 
0� 1�, we get
h��� ≤ 0, where the symbol h��� stands for

h��� = �f�1� �� �2�− f��� �� �2�− �1− �2� �′�q′X − l ′�′ �q′X − l ′� �	/
�1− �� �2�

= �1+ ��q′X�S− −U�X ′

× q − �1− ��l ′�S− −U�l − 2 �q′X�S− −U�l − 2 �q′X − l ′�S−X′T−Nm�

Let � now tend to 1−, then we get q′X�S− −U�X ′q ≤ �q′X − l ′�S−X ′T−Nm +
q′X�S− −U�l� or equivalently,

d ′QX�S− −U�X ′Q′d ≤ d ′Fd � (2.2)

To establish (1), it is sufficient to show that F ′ = F . If not, then D′ 
= D, which
combining the algebraic fact stated in Wang (1987) (Lemma 7.2, p. 205) yields that
there is an orthogonal matrix H such that tr�HD� > tr�D�. Taking P = HQ + �I −
H�
L′S−X ′T− +M ′N ′�T− − T−XS−X ′T−��� it follows that Py ∈ � ∗

H and PX −
L′ = H�QX − L′�. Further, by direct operations, we obtain

�P� = �′�PX − L′�′�PX − L′�� + �2tr�PX�S− −U�X ′P′ − 2PXS−X ′T−NM	
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= �′J ′J� + �2tr�QX�S− −U�X ′Q′ − 2QXS−X ′T−NM	+ 2�2tr��I −H�D	

= �Q�+ 2�2tr�D −HD	 < �Q��

This fact contradicts Qy ∈ �H-MSE, and therefore F ′ = F , which combining (2.2)
holding for any d yields (1); Now, it is clear that ��D� ⊆ ��J� since D′ = D. If
d ′D = 0, then d ′Dd = 0; that is,

d ′J�S− −U�J ′d + 
d ′Fd − d ′QX�S− −U�X ′Q′d � = 0� (2.3)

Note that the first term of the left side of (2.3) is nonnegative. Together with Eqs.
(2.2) and (2.3), it follows that d ′J�S− −U�J ′d = 0 and the following equality hold
simultaneously,

d ′QX�S− −U�X ′Q′d = d ′Fd = d ′QX�S− −U�Ld + d ′M ′N ′T−XS−J ′d (2.4)

Further, d ′J�S+ −U� = 0, since we have assumed ��U� ⊂ ��X ′� = ��S� in
Sec. 1. Thus, one can conclude that S+ −U � 0 (for the general case, either
X�S+ −U�X ′ � 0 or S+ − PX ′UPX ′ � 0 holds), which combining Eq. (2.4) yields
d ′JS−X ′T−NMd = 0 and

d ′QX�S− −U�X ′Q′d = d ′L′�S− −U�X ′Q′d = d ′L′�S− −U�Ld �

Consequently,

MSE�q′y� ��−MSE�p′�0�y� �� = f�1� �� �2�− f�0� �� �2� = �′�q′X − l ′�

× �q′X − l ′�′� + �2�q′X�S− −U�X ′q

+ 2l ′S−X ′T−Nm − 2q′XS−X ′T−Nm − l ′�S− −U�l	

= �′�q′X − l ′��q′X − l ′�′��

Therefore, q′X = l ′, or equivalently, d ′QX = d ′L, since q′y is admissible for d ′�.
It follows that the implication d ′D = 0 ⇒ d ′J = 0 holds, further, ��J� ⊆ ��D�,
which combining with ��D� ⊂ ��J� yields (1.2). Thus, we complete the proof of
the necessity.

Proof of Sufficiency. Assume Py�Qy ∈ � ∗
H and Q satisfies conditions (1) and (2)

simultaneously. We will show in the following that Py is not MSE-superior over Qy:

• QX = L′: Noting that �P� = �′�PX − L′�′�PX − L′�� +�2tr�PX�S− −
U�X ′P′ − 2PXS−X ′T−NM	, �Q� = �2tr�L′�S− −U�L− 2L′S−X ′T−NM	,
we obtain �Q� = �P� if PX = L′, and �Q� < �P� for some ��0� �

2
0� if

PX 
= L′, which follows from the fact (see Appendix) that for symmetric
matrices A�B and scalars a� b, x′Ax+ a ≤ x′Bx+ b holds for any x if and
only if A � B and a ≤ b.

• QX 
= L′:

1. When PX = L′, then 
�Q�− �P���=0 ≤ −�2tr�D� combining
condition (1). It is observed that D � 0 and ��D� = ��J� 
= �0	, which means
tr�D� > 0, and therefore we obtain 
�Q�− �P���=0 < 0. Thus, Py is not MSE-
superior over Qy.
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2. When PX 
= L′ and PX = QX , then �Q� = �P�.

3. Provided PX 
= L′ and PX 
= QX . Owing to the fact stated in the Appendix,
we need only to consider when �PX − L′�′�PX − L′� � J ′J . Combining the fact that
if A � 0 and B � 0, then implication A � B ⇒ ��A� ⊂ ��B� holds inherently, we
get �
�PX − L′�′� ⊂ ��J ′�� or, equivalently, PX − L′ = CJ with C = �PX − L′�J+.
Clearly, C ′C � I . We shall show 
�Q�− �P���=0 < 0 in the following. Actually,
noting that 0 � QX�S− −U�X ′Q′ � F , I − C ′C � 0 and PX = CQX + �I − C�L′,
and writing � = 
�Q�− �P���=0, we obtain

� = �2tr��I − C ′C�QX�S− −U�X ′Q′	 − 2�2tr��I − C�QXS−X ′T−NM	

− �2tr��I − C�′ × �I − C�L′�S− −U�L− 2�I − C�′CQX�S− −U�L	

+ 2�2tr��I − C�L′S−X ′T−NM	�

≤ �2tr��I − C ′C�F	 − 2�2tr��I − C�QXS−X ′T−NM	

− �2tr��I − C�′�I − C�L′�S− −U�L

− 2�I − C�′CQX�S− −U�L	+ 2�2tr��I − C�L′S−X ′T−NM	

= −�2tr��I − C�D�I − C�′	

by direct operations. Further, one can readily justify that � ≤ 0 since D � 0. On
the other hand, �I − C�J = J − �PX − L′� = QX − PX 
= 0� which combined with
��D� = ��J� yields � < 0.

The proof of the sufficiency is also finished. �

Corollary 2.4. Assume � is estimable under model (1.1). Then �∗ ∈ �H-MSE.

The following theorem gives a concise result of Theorem 2.3.

Theorem 2�3′. Assume � is estimable under (1.1), and Qy ∈ �H. Then Qy ∈ �H-MSE if
and only if Qy ∈ � ∗

H, (1) (stated in Theorem 2.3) and rk�J� = rk�D� (say (3)) hold.

Noting D = D′ = J 
S−X ′T−NM − �S− −U�L′�, Theorem 2.3′ holds clearly. As
a consequence, we state the following corollary. For a trivial modified version, one
may see Wu (1986).

Corollary 2.5. Assume L′� is linearly estimable under (1.1). Then Qy is MSE-
admissible for L′� if and only if the following conditions hold simultaneously:

(4) QT = QXS−X ′;

(5) QX�S− −U�X ′Q′ � QX�S− −U�L;

(6) rk�J� = rk�J�S− −U�X ′�.

Proof. Employing Theorem 2�3′, it follows that the necessary and sufficient
conditions for Qy to be MSE-admissible for L′� are (4) (5) and rk�J� = rk�J�S− −
U�L�, say (7). To establish the corollary, it suffices to show the equivalence
(4) (5) (6) ⇔ (4) (5) (7). Actually, the implication (4) (5) (7) ⇒ (4) (5) (6)
holds clearly since ��L� ⊂ ��X ′�. Conversely, one can justify that J�S− −U�J ′ �
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−J�S− − U �L by (5). This fact combining S+ −U � 0 and L = PX ′L would imply
that rk
J�S− −U�X ′� ≤ rk
J�S+ −U�� = rk
J�S− −U�J ′� ≤ rk
−J�S− −U�L� ≤
rk
J�S− −U�X ′�� which means (7) holds and thereby (4) (5) (6) ⇒ (4) (5) (7). �

From the proving of Corollary 2.5, the condition (7) can be replaced with
rk�J� = rk
J�S+ −U��, say (8). Further, (4) (5) (6) ⇔ (4) (5) (7) ⇔ (4) (5) (8).
Specially, if M = 0 and � � 0, taking U = 0, we have the following result obtained
by Rao (1976). See also Wang (1987).

Corollary 2.6. Assume that L′� is linearly estimable under the model (1.1) with � �
0. Then Qy is MSE-admissible for L′� if and only if the following conditions hold
simultaneously:

(9) Q� = QX�X ′�−1X�−X ′;

(10) Q�Q′ � QX�X ′�−1X�−L.

Remark 2.1. It can be concluded that Qy is linearly sufficient in some sense
iff ��X �N � ⊆ ��TQ′�. On the other hand, if Qy is admissible for � in the
sense of any version proposed in the present article, then ��TQ′ −NM� ⊆ ��X�
is inherently satisfied. We write TQ′ −NM = XA for some matrix A. Further,
TQ′ = �X �N � �A′�M ′�′. Together with the above statements, we obtain a necessary
condition for Qy to be admissible and linearly sufficient as ��X �N � = ��TQ′�.

2.2. Admissibility of Inhomogeneous Linear Estimation

Denote by �INH-MSEM and �INH-MSE the sets of all MSEM-admissible and MSE-
admissible inhomogeneous linear estimators of �, respectively. It follows that
�INH-MSE ⊂ �INH-MSEM ⊂ �INH. In a similar fashion, we obtain the following
three theorems concerning �INH-MSEM and �INH-MSE. The proofs are similar to
Theorems 2.1, 2.2, 2.3 and are thus omitted here.

Theorem 2.5. Assume that � is not estimable under the model (1.1), and Qy+ q ∈
�INH. Then Qy+ q ∈ �INH-MSEM if and only if Qy ∈ � ∗

H.

Theorem 2.6. Assume that � is estimable under the model (1.1), and Qy+ q ∈ �INH.
Then Qy+ q ∈ �INH-MSEM if and only if Qy ∈ � ∗

H and either q = 0 when QX = L′, or
����Q� � 0 for any � ∈ �0� 1� when QX 
= L′.

Theorem 2.7. Assume that � is estimable under the model (1.1), and Qy+ q ∈ �INH.
Then Qy+ q ∈ �INH-MSE if and only if Qy ∈ �H-MSE and q ∈ ��J�.

3. Concluding Remarks

By virtue of the method utilized in part by Baksalary and Markiewicz (1990),
Groß and Markiewicz (1999), and Wu (1988), one can consider the admissibility
problem with respect to generalized MSE (GMSE) criterion in the sense that
GMSE��̃� ��	� = ���̃− ��′	��̃− �� with 	 being a given k× k nonzero s.n.n.d.
matrix. Accordingly, we have the symbols �H-GMSE and �INH-GMSE. Let us now write
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	 = 	′
0	0 for some 	0 satisfying the above representation. Clearly, such 	0 may be

not unique. Denoting Q̃ = 	0Q, L̃ = L	′
0, M̃ = M	′

0, we find

GMSE�Qy� ��L�M��	� = MSE
(
Q̃y� �

(
L̃� M̃

))
�

Thus, the admissibility problem under GMSE may be operated as an admissibility
problem under MSE. Being similar to Theorem 2.3, it follows that

Theorem 3.1. Assume that � is estimable under the model (1.1). Then Qy ∈
�H-GMSE if and only if ���Q′	′

0 −NM	′
0� ⊆ ��X� and the following conditions hold

simultaneously:

• 	0QX�S− −U�X ′Q′	′
0 � 	0QX�S− −U�L	′

0 + 	0M
′N ′T−XS−J ′	′

0 (= F̃0,
say);

• Either 	0QX = 	0L
′, or 	0QX 
= 	0L

′ but ��̃J0� = ��D̃0� with J̃0 =
	0J , where the matrix D̃0 refers to D̃0 = J̃0�S

− −U �̃J ′
0 + F̃0 − 	0QX�S− −

U�X ′Q′	′
0�

Obviously, the above conclusion is invariant regarding the choice of 	0.
Actually, we have

Theorem 3.2. Assume that � is estimable under the model (1.1). Then Qy ∈
�H-GMSE if and only if ���Q′	−NM	� ⊂ ��X� and the following conditions hold
simultaneously:

• 	QX�S− −U�X ′Q′	 � 	QX�S− −U�L	+ 	M ′N ′T−XS−J ′	 (= F̃ , say);
• Either 	QX = 	L′, or 	QX 
= 	L′ but ��̃J� = ��D̃� with J̃ = 	J , where the
matrix D̃ refers to D̃ = J̃�S− −U �̃J ′ + F̃ − 	QX�S− −U�X ′Q′	.

With similar fashion, we can deal with �INH-GMSE utilizing Theorem 2.7 and
omit it here.

Appendix

Here, we offer an alternative proof of the following two algebraic facts: For
symmetric matrices A and C of suitable orders, the statements below hold: (1) A+
Bxx′B′ � C +Dxx′D′ holds for any x if and only if A � C and B = �D for some
� ∈ 
−1� 1�; (2) x′Ax+ a ≤ x′Cx+ b holds for any x if and only if A � C and a ≤ b.

Proof of (1). The sufficiency holds inherently. We need only to show the necessity.
Actually, provided that A+ Bxx′B′ � C +Dxx′D′ holds for any x, we can get
A � C by taking x = 0, and Bxx′B′ � Dxx′D′ for any x. Otherwise, there is some
t0 such that t′0Bxx

′B′t0 > t′0Dxx′D′t0, taking k0 large enough and putting y0 =
k0x, we get t

′
0�A+ By0y

′
0B

′�t0 > t′0�C +Dy0y
′
0D

′�t0� which contradicts A+ Bxx′B′ �
C +Dxx′D′. Because Bxx′B′ � Dxx′D′ holds for any x, it follows that B′B � D′D
and therefore ��B′� ⊂ ��D′�. Further, B = FD for some matrix F . On the other
hand, Bxx′B′ � Dxx′D′ implies ��Bx� = ��Bxx′B′� ⊂ ��Dxx′D′� = ��Dx�� i.e.,
there exists �x such that Bx = �xDx, which combined with B = FD yields FDx =
�xDx. Further, Dx is the eigenvector of F with respect to the eigenvalue, �x, of F if
Dx 
= 0.
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If there exist x and y such that Dx 
= 0�Dy 
= 0 and �x 
= �y, then Dx and Dy
are linearly independent. Noting that �xDx+ �yDy = FDx+ FDy = FD�x+ y� =
�x+yDx+ �x+yDy, or equivalently, ��x − �x+y�Dx+ ��y − �x+y�Dy = 0, we get �x =
�x+y = �y, which contradicts �x 
= �y. Thus, for any x and y, if Dx 
= 0 and Dy 
=
0, then �x = �y = �, say. Clearly, Bx = �Dx holds for any x. Again by Bxx′B′ �
Dxx′D′ for any x, we have � ∈ 
−1� 1�. �

Proof of (2). It is with similar fashion.
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