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Modified constructions of binary sequences

using multiplicative inverse

CHEN Zhi-xiong1,2 LIN Zhi-xing1

Abstract. Two new families of finite binary sequences are constructed using multiplicative

inverse. The sequences are shown to have strong pseudorandom properties by using some esti-

mates of certain exponential sums over finite fields. The constructions can be implemented fast

since multiplicative inverse over finite fields can be computed in polynomial time.

§1 Introduction

In the last decade, a new constructive approach has been developed to study pseudorandom-

ness of finite binary sequences. To the best of our knowledge, the starting work is [1]. The work

was motivated by the facts that pseudorandom binary sequences have many applications such

as in stream ciphers and the theory of pseudorandomness can be used to analyze certain se-

quences. Mauduit and Sárközy[1] first introduced the following measures of pseudorandomness

for a finite binary sequence with length N :

SN = {s1, s2, · · · , sN} ∈ {+1,−1}N .

The well-distribution measure of SN is defined as

W (SN ) = max
a,b,t
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,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤ a + (t− 1)b ≤ N ,

while the correlation measure of order k (or order k correlation measure) of SN is defined as

Ck(SN ) = max
M,D
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where the maximum is taken over all D = (d1, · · · , dk) with non-negative integers 0 ≤ d1 <

· · · < dk and M such that M + dk ≤ N .

SN is considered as a “good” pseudorandom sequence, if both W (SN ) and Ck(SN ) (at least

for small k) are “small” in terms of N (in particular, both are o(N) as N → ∞). It was shown

in [2] that for a “truly” random sequence SN ∈ {+1,−1}N (i.e., choosing SN ∈ {+1,−1}N with

probability 1/2N), both W (SN ) and Ck(SN ) (for some fixed k) are around N1/2logc(N) with

“near 1” probability. From [1] the Legendre sequence forms a “good” pseudorandom sequence.

Many other “good” (but slightly inferior) binary sequences were designed in the literature, see

for example [1-6] and references therein.

Very recently, Liu[7,8], Louboutin, Rivat and Sárközy[9] present some constructions of finite

binary sequences (see below) related to Lehmer numbers respectively. These sequences are

shown to be “good” pseudorandom sequences.

Let p be an odd prime. We denote by Fp = {0, 1, · · · , p − 1} the finite field of p elements,

by F ∗
p the multiplicative group of Fp. Let

γ =

{

γ−1, if γ ∈ F ∗
p ,

0, if γ = 0.

For any γ ∈ F ∗
p , we always suppose that γ ∈ {1, · · · , p − 1}.

Construction 1.[9] Let f(x) ∈ Fp[x] be of degree d with 1 ≤ d < p. Suppose f(n), f(n) ∈
{0, · · · , p − 1} for any n ∈ Fp. Define the sequence Ep−1 = {s1, s2, · · · , sp−1} by

sn :=

{

+1, if f(n) ≡ f(n) (mod 2),

−1, if f(n) 6≡ f(n) (mod 2).

Then the bounds hold

W (Ep−1) ≪ (d + s)p1/2log3(p) and C2(Ep−1) ≪ (d + s)p1/2log5(p),

where s is the number of distinct roots of f(x) in an algebraic closure of Fp.

It is easy to see for n ∈ {1, · · · , p − 1}, sn = (−1)f(n)+f(n).

Construction 2. [8] Suppose γ ∈ {0, · · · , p − 1}, ∀γ ∈ Fp. Define the sequence E′
p−1 =

{s′1, s′2, · · · , s′p−1} by

s′n :=

{

(−1)n+n, if n is a quadratic residue mod p,

(−1)n+n+1, if n is a quadratic nonresidue mod p.

Then the bounds hold W (E′
p−1) ≪ p1/2log2(p) and C2(E

′
p−1) ≪ p1/2log3(p).

Construction 3.[7] Suppose γ ∈ {0, · · · , p − 1} for any γ ∈ Fp. Let c ∈ {1, · · · , p − 1} be a

fixed number. Define the sequence E′′
p−1 = {s′′1 , s′′2 , · · · , s′′p−1} by

s′′n :=

{

(−1)n+n+c, if p ∤ n(n + c),

1, otherwise.

Then the bounds hold W (E′′
p−1) ≪ p1/2log3(p) and C2(E

′′
p−1) ≪ p1/2log5(p).
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We note that in the above three constructions, the numbers

f(n) + f(n), n + n, n + n + c ∈ {0, · · · , 2p − 2}

for all n ∈ {1, · · · , p− 1}. In particular, it seems difficult to consider the correlation measure of

higher order (> 2).

Motivated by these constructions, we present two new constructions. One is a variation

of Construction 3, the other is constructed using power functions. We estimate their well-

distribution measure and correlation measure of order k(≥ 2), which indicate that the resulting

sequences may form “good” pseudorandom sequences.

Throughout this paper, the implied constants in the symbol “ ≪ ” are absolute.

§2 New constructions

In our constructions, we will use 0 and 1 to represent the terms of a binary sequence.

Definition 1. Suppose γ ∈ {0, · · · , p − 1} for any γ ∈ Fp. Let c ∈ {1, · · · , p − 1} be a fixed

number. Define the sequence Xp−1 = {x1, x2, · · · , xp−1} by

xn :=

{

1, if [n + n + c]p is odd,

0, if [n + n + c]p is even,

where [u]p denotes the unique r ∈ {0, 1, · · · , p − 1} such that u ≡ r (mod p).

Definition 2. Suppose γ ∈ {0, · · · , p−1} for any γ ∈ Fp and c ∈ {1, · · · , p−1} is a fixed number.

Let η ∈ F ∗
p be a fixed primitive element. Define the sequence Yp−1 = {y1, y2, · · · , yp−1} by

yn :=

{

0, if ηn ≡ ηn + c (mod 2),

1, if ηn 6≡ ηn + c (mod 2).

2.1. Well-distribution and correlation of Xp−1

Theorem 1. Let Xp−1 = {x1, x2, · · · , xp−1} be defined as in Definition 1. Then we have

W (Xp−1) ≪ p1/2log2(p)

and

Ck(Xp−1) ≪ 2kkp1/2logk+1(p)

for k < p. In particular, C2(Xp−1) ≪ p1/2log3(p).

In order to prove Theorem 1, we need some basic results. Let em(z) = exp(2πiz/m).

Lemma 1.[10,11] Let m > 1 be a positive integer. Then

m−1
∑

c=0

∣

∣

∣

∣

∣

H+N
∑

z=H+1

em(cz)

∣

∣

∣

∣

∣

≤ m(1 + log(m))

holds for any integers H and 1 ≤ N ≤ m.
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Lemma 2. Let p be an odd prime number and λ ∈ Z with 0 ≤ |λ| ≤ p−1
2 . We define

U(λ) :=

(p−1)/2
∑

r=0

ep(−2λr) −
(p−1)/2
∑

r=1

ep(2λr). (1)

Then the following bound holds:
∑

|λ|≤(p−1)/2 |U(λ)| ≤ 2p(1 + log(p)).

Proof. Since |U(λ)| ≤
∣

∣

∣

∑(p−1)/2
r=0 ep(−2λr)

∣

∣

∣+
∣

∣

∣

∑(p−1)/2
r=1 ep(2λr)

∣

∣

∣, the desired result follows

from Lemma 1.

Lemma 3.[7,12] For any polynomials g(x), h(x) ∈ Fp[x] such that the rational function F (x) =

g(x)/h(x) is not constant on Fp, let χ be a nontrivial multiplicative character of Fp and s the

number of distinct roots of the polynomial h(x) in an algebraic closure of Fp. For p ∤ λ, we

have

(i)

∣

∣

∣

∣

∣

∣

∣

∑

ξ∈Fp

h(ξ) 6=0

ep (λF (ξ))

∣

∣

∣

∣

∣

∣

∣

≤ (max(deg(g), deg(h)) + s∗ − 2)
√

p + δ, where s∗ = s and δ = 1 if

deg(g) ≤ deg(h), and s∗ = s + 1 and δ = 0 otherwise.

(ii)

∣

∣

∣

∣

∣

∣

∣

∑

ξ∈F∗
p

h(ξ) 6=0

ep (λF (ξ)) χ(ξ)

∣

∣

∣

∣

∣

∣

∣

≤ (max(deg(g), deg(h)) + s∗ − 1)
√

p, where s∗ = s if deg(g) ≤

deg(h), and s∗ = s + 1 otherwise.

Remark 1. Let F (x) be defined as in Lemma 3. According to Lemma 3 and Lemma 1, one

can estimate incomplete sums

B
∑

n=A+1

h(n) 6=0

ep (F (n)) and

B
∑

n=A+1

h(ηn) 6=0

ep (F (ηn)) ,

where 0 ≤ A < B ≤ p − 1 and η ∈ F ∗
p is a primitive element. In fact,

B
∑

n=A+1

h(n) 6=0

ep (F (n)) =
B
∑

n=A+1

p−1
∑

m=0

h(m) 6=0

ep (F (m)) · 1
p

p−1
∑

µ=0
ep(µ(n − m))

= 1
p

p−1
∑

µ=0

B
∑

n=A+1

ep(µn)
p−1
∑

m=0

h(m) 6=0

ep (F (m) − µm) ,

and
B
∑

n=A+1

h(ηn) 6=0

ep (F (ηn)) =
B
∑

n=A+1

p−1
∑

m=1

h(ηm) 6=0

ep (F (ηm)) · 1
p−1

p−1
∑

µ=1
ep−1(µ(m − n))

= 1
p−1

p−1
∑

µ=1

B
∑

n=A+1

ep−1(−µn)
p−1
∑

ξ=1

h(ξ) 6=0

ep (F (ξ)) χµ(ξ),

where χµ(ηm) = ep−1(µm) is a multiplicative character of Fp.
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Proof of Theorem 1. Let f(n) = n + n + c. For any 1 ≤ n ≤ p − 1 with p ∤ (n + c) we have

1

p

(p−1)/2
∑

r=0

∑

|λ|≤(p−1)/2

ep(λ(f(n) − 2r)) =

{

1, if [f(n)]p is even,

0, if [f(n)]p is odd,
(2)

and

1

p

(p−1)/2
∑

r=1

∑

|λ|≤(p−1)/2

ep(λ(f(n) + 2r)) =

{

0, if [f(n)]p is even,

1, if [f(n)]p is odd.
(3)

Subtracting (3) from (2) yields

1

p

∑

|λ|≤(p−1)/2

ep(λf(n))U(λ) =

{

1, if [f(n)]p is even,

−1, if [f(n)]p is odd,

where U(λ) is defined as in Lemma 2.

It is easy to see that for any 1 ≤ n ≤ p − 1 with p ∤ (n + c),

(−1)xn =
1

p

∑

|λ|≤(p−1)/2

ep(λf(n))U(λ). (4)

For a, b, t ∈ N with 1 ≤ a ≤ a + (t − 1)b ≤ p − 1, we have

∣

∣

∣

∣

∣

t−1
∑

j=0

(−1)xa+jb

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

p∤a+jb+c

(−1)xa+jb

∣

∣

∣

∣

∣

∣

∣

+ 1 = 1
p

∣

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

p∤a+jb+c

∑

|λ|≤(p−1)/2

U(λ)ep(λf(a + jb))

∣

∣

∣

∣

∣

∣
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+ 1

= 1
p

∣

∣

∣

∣
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∣
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∑

|λ|≤(p−1)/2

U(λ)
t−1
∑

j=0

p∤a+jb+c

ep(λf(a + jb))

∣

∣

∣

∣

∣

∣

∣

+ 1

≤ 1
p

∑

|λ|≤(p−1)/2

|U(λ)| ·

∣

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

p∤a+jb+c

ep(λf(a + jb))
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∣

∣

∣

∣

∣

∣

+ 1

≤ 1
p







(p−1)/2
∑

|λ|=1

|U(λ)| ·

∣
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∣

∣
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t−1
∑

j=0

p∤a+jb+c

ep(λf(a + jb))
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∣

∣
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p

(p−1)/2
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|λ|=1

|U(λ)| ·

∣
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∣
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t−1
∑

j=0

p∤a+jb+c

ep(λf(a + jb))

∣
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∣
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∣

∣

∣

+ 2.

Now by Lemmas 2 and 3, we obtain the bound of W (Xp−1).

For D = (d1, · · · , dk) and M with 0 ≤ d1 < · · · < dk ≤ p − 1 − M , there are at most k

elements n(1 ≤ n ≤ M < p − 1) such that p|(n + dj + c) for at least one number j : 1 ≤ j ≤ k.
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Then we have

∣

∣

∣

∣

M
∑

n=1
(−1)xn+d1

+···+xn+dk

∣
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∣
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∣

M
∑

n=1
p∤(n+dj+x)

1≤j≤k

k
∏

i=1

(

1
p

∑

|λi|≤(p−1)/2

U(λi)ep(λif(n + di))

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ k

= 1
pk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

|λ1|≤(p−1)/2

· · ·
∑

|λk|≤(p−1)/2

U(λ1) · · ·U(λk)
M
∑

n=1
p∤(n+dj+x)

1≤j≤k

ep(
k
∑

i=1

λif(n + di))

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ k

≤ 1
pk











(

∑

0<|λi|≤(p−1)/2

|U(λi)|
)k

·

∣

∣

∣

∣
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∣

∣
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∣

M
∑

n=1
p∤(n+dj+c)

1≤j≤k

ep

(

k
∑

i=1

λif(n + di)

)

∣

∣

∣

∣

∣

∣
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+ M











+ k.

If
k
∑

i=1

λif(y + di) is a nonconstant rational function in Fp(y) when λ1, · · · , λk are not all zero,

then by Lemma 3,

∣

∣

∣

∣

∣

∣

∣

∣

∣

M
∑

n=1
p∤(n+dj+c)

1≤j≤k

ep

(

k
∑

i=1

λif(n + di)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 4k
√

p(1 + log(p)). So

∣

∣

∣

∣

∣

M
∑

n=1

(−1)xn+d1
+···+xn+dk

∣

∣

∣

∣

∣

≤ 4k2k√p(1 + log(p))k+1 + k + 1 = O(k2k√plogk+1(p)).

It remains to prove if λ1, · · · , λk are not all zero,
k
∑

i=1

λif(y + di) is a nonconstant rational

function. Suppose that there are s(1 ≤ s ≤ k < p) elements λi1, · · · , λis are not zero (while

other coefficients are zero), i.e.,

F (y) ,

k
∑

i=1

λif(y + di) = λi1f(y + di1) + λi2f(y + di2) + · · · + λisf(y + dis).

Let

H(y) = (y + di1)(y + di1 + c)(y + di2)(y + di2 + c) · · · (y + dis)(y + dis + c) ∈ Fp[y].

If β ∈ Fp is a zero of H(y) and (y − β)2 ∤ H(y), then β is a pole of F (y), therefore F (y) is

nonconstant. While if

H(y) = (y + di1)
2(y + di2)

2 · · · (y + dis)
2,

then since di1 < di2 < · · · < dis, we have



















di1 ≡ dj1 + c (mod p),

di2 ≡ dj2 + c (mod p),

· · ·
dis ≡ djs + c (mod p),
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where dj1, dj2, · · · , djs is a permutation of di1, di2, · · · , dis. So sc ≡ 0 (mod p), which yields

c = 0. it is a contradiction since c ∈ {1, · · · , p − 1}. Therefore, there exists a zero β of H(y)

such that (y − β)2 ∤ H(y), which makes F (y) to be nonconstant. The proof is completed.

2.2. Well-distribution and correlation of Yp−1

Theorem 2. Let Yp−1 = {y1, y2, · · · , yp−1} be defined as in Definition 2. Then we have

W (Yp−1) ≪ p1/2log3(p) and C2(Yp−1) ≪ p1/2log5(p).

Lemma 4.
∑

|λ|≤(p−1)/2

∣

∣

∣

∣

p−1
∑

u=1
(−1)uep(−λu)

∣

∣

∣

∣

≤ 2p(1 + log(p)).

Proof. In fact,

p−1
∑

u=1

(−1)uep(−λu) =

(p−1)/2
∑

r=1

ep(−2λr) −
(p−1)/2
∑

r=1

ep(−λ(2r − 1)).

Then the proof is similar to that of Lemma 2.

Proof of Theorem 2. Our approach follows the path of [7,8]. It is easy to see for n ∈
{1, · · · , p − 1} with p ∤ (ηn + c),

(−1)yn = (−1)ηn+ηn+c. (5)

For a, b, t ∈ N with 1 ≤ a ≤ a + (t − 1)b ≤ p − 1, we have

∣

∣

∣

∣

∣

t−1
∑

j=0

(−1)ya+jb

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

p∤ηa+jb+c

(−1)ηa+jb+ηa+jb+c

∣

∣

∣

∣

∣

∣

∣

+ 1

= 1
p2

∣

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

p∤ηa+jb+c

p−1
∑

u=1

∑

|λ|≤(p−1)/2

ep(λ(ηa+jb − u))

×
p−1
∑

v=1

∑

|µ|≤(p−1)/2

ep(µ(ηa+jb + c − v))(−1)u+v

∣

∣

∣

∣

∣

+ 1

= 1
p2

∣

∣

∣

∣

∣

∑

|λ|≤(p−1)/2

p−1
∑

u=1
(−1)uep(−λu)

× ∑

|µ|≤(p−1)/2

p−1
∑

v=1
(−1)vep(−µv)

t−1
∑

j=0

p∤ηa+jb+c

ep(ληa+jb + µηa+jb + c)

∣

∣

∣

∣

∣

∣

∣

+ 1.

Suppose the multiplicative order of ηb ∈ F ∗
p is T . For λ 6= 0 and µ 6= 0, by Lemma 3 we have

∣

∣

∣

∣

∣

∣

∣

T−1
∑

j=0

p∤ηa+jb+c

ep(ληa+jb + µηa+jb + c)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

T−1
∑

j=0

p∤ηa+jb+c

ep(ληa(ηb)j + µηa(ηb)j + c)

∣

∣

∣

∣

∣

∣

∣

= T
p−1

∣

∣

∣

∣

∣

∑

ξ∈F∗
p

∗
ep

(

λ(ηaξ(p−1)/T +c)+µηaξ(p−1)/T

ηaξ(p−1)/T (ηaξ(p−1)/T +c)

)

∣

∣

∣

∣

∣

≤ 4p1/2 + 1,
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where
∑∗

indicates that the poles of the corresponding rational function are excluded from the

summation. So by Remark 1 we have
∣

∣

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

p∤ηa+jb+c

ep(ληa+jb + µηa+jb + c)

∣

∣

∣

∣

∣

∣

∣

∣

≤ (4
√

p + 1)(1 + log(p)).

Now by Lemma 4 we have
∣

∣

∣

∣

∣

∣

t−1
∑

j=0

(−1)ya+jb

∣

∣

∣

∣

∣

∣

≤ 4(4
√

p + 1)(1 + log(p))3.

For integers d1, d2 and M with 0 ≤ d1 < d2 ≤ p − 1 − M , we have

∣

∣

∣

∣

M
∑

n=1
(−1)yn+d1

+yn+d2

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

M
∑

n=1

p∤(ηn+d1+c)(ηn+d2+c)

(−1)ηn+d1+ηn+d1+c+ηn+d2+ηn+d2+c

∣

∣

∣

∣

∣

∣

∣

+ 2

= 1
p4

∣

∣

∣

∣

∣

∣

∣

M
∑

n=1

p∤(ηn+d1+c)(ηn+d2+c)

p−1
∑

u1=1

∑

|λ1|≤(p−1)/2

ep(λ1(ηn+d1 − u1))

×
p−1
∑

u2=1

∑

|λ2|≤(p−1)/2

ep(λ2(ηn+d1 + c − u2))
p−1
∑

u3=1

∑

|λ3|≤(p−1)/2

ep(λ3(ηn+d2 − u3))

×
p−1
∑

u4=1

∑

|λ4|≤(p−1)/2

ep(λ4(ηn+d2 + c − u4)) · (−1)u1+u2+u3+u4

∣

∣

∣

∣

∣

+ 2

= 1
p4

∣

∣

∣

∣

∣

∑

|λ1|≤(p−1)/2

p−1
∑

u1=1
(−1)u1ep(−λ1u1) ·

∑

|λ2|≤(p−1)/2

p−1
∑

u2=1
(−1)u2ep(−λ2u2)

× ∑

|λ3|≤(p−1)/2

p−1
∑

u3=1
(−1)u3ep(−λ3u3) ·

∑

|λ4|≤(p−1)/2

p−1
∑

u4=1
(−1)u4ep(−λ4u4)

×
M
∑

n=1

p∤(ηn+d1+c)(ηn+d2+c)

ep

(

λ1ηn+d1 + λ2ηn+d1 + c + λ3ηn+d2 + λ4ηn+d2 + c
)

∣

∣

∣

∣

∣

∣

∣

+ 2.

Since η is a primitive element of F ∗
p , for λ1, · · · , λ4 are not all zero, by Lemma 3 we have

p−1
∑

n=1

p∤(ηn+d1+c)(ηn+d2+c)

ep

(

λ1ηn+d1 + λ2ηn+d1 + c + λ3ηn+d2 + λ4ηn+d2 + c
)

=
∑

ξ∈F∗
p

∗
ep

(

λ1ηd1ξ + λ2ηd1ξ + c + λ3ηd2ξ + λ4ηd2ξ + c
)

≤ 5
√

p + 1,

where
∑∗

indicates that the poles of the corresponding rational function are excluded from the

summation. Now by Remark 1 we have
∣

∣

∣

∣

∣

∣

∣

M
∑

n=1

p∤(ηn+d1+c)(ηn+d2+c)

ep

(

λ1ηn+d1 + λ2ηn+d1 + c + λ3ηn+d2 + λ4ηn+d2 + c
)

∣

∣

∣

∣

∣

∣

∣

≤ (5
√

p + 1)(1 + log(p)).
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So by Lemma 4 we derive
∣

∣

∣

∣

∣

M
∑

n=1

(−1)yn+d1
+yn+d2

∣

∣

∣

∣

∣

≤ 8(5
√

p + 1)(1 + log(p))5 + 2,

which completes the proof.

2.3. Linear complexity profile

We recall that the linear complexity profile of a binary sequence

S = {s0, s1, · · ·} ∈ {0, 1}∞

is the function L(S, N) defined for every positive integer N , as the least order l of a linear

recurrence relation

sn = c1sn−1 + · · · + clsn−l, ci = 0, 1

for all n with l ≤ n ≤ N − 1, which S satisfies. We use the convention that L(S, N) = 0 if the

first N elements of S are all zero and L(S, N) = N if the first N − 1 elements of S are zero and

sN−1 = 1. The value

L(S) = sup
N≥1

L(S, N)

is called the linear complexity of S, see for example [13]. For the linear complexity of any

periodic sequence of period t one easily verifies that L(S) = L(S, 2t) ≤ t. It is desirable to have

sequences with large linear complexity for cryptographic applications.

Proposition 1.[14] Let S be a T−periodic binary sequence. For 2 ≤ N ≤ T − 1 we have

L(S, N) ≥ N − max
1≤k≤L(S,N)+1

Ck(S).

Corollary 1. Let Xp−1 = {x1, x2, · · · , xp−1} be defined as in Definition 1. For 2 ≤ N ≤ p − 1

we have

L(Xp−1, N) = Ω

(

log(N/p3/4)

loglog(p)

)

.

Proof. The proof is similar to that of [14,Corollary 1], we give below for completeness. From

Proposition 1 (see the proof of [14,Theorem 1]), we see that

N − L(Xp−1, N) ≤ max
1≤k≤L(Xp−1,N)+1

Ck(Xp−1),

which yields

N ≪ L2L√plogL+2(p)

by Theorem 1. Suppose L ≤ log(p1/4), otherwise the result is trivial. Then we have

N ≪ p3/4logL+3(p),

hence we obtain

L ≫ log(N/p3/4)

loglog(p)
.
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Table 1 Comparison of our sequences with some other sequences

Sequences Length Well-distributied Correlation of order k

Legendre sequence N = p − 1 O(p1/2log(p)) O(kp1/2log(p)); k ≥ 2

index sequence N = p − 1 O(p1/2log2(p)) O(k4kp1/2logk+1(p)); k ≥ 2

Ep−1 N = p − 1 O(p1/2log3(p)) O(p1/2log5(p)); k = 2

E′

p−1 N = p − 1 O(p1/2log2(p)) O(p1/2log3(p)); k = 2

E′′

p−1 N = p − 1 O(p1/2log3(p)) O(p1/2log5(p)); k = 2

Xp−1 N = p − 1 O(p1/2log2(p)) O(k2kp1/2logk+1(p)); k ≥ 2

Yp−1 N = p − 1 O(p1/2log3(p)) O(p1/2log5(p)); k = 2

Remark 2. The implied constant in the symbol “O” may sometimes depend on the degree

deg(f) of a function f adopted in the corresponding constructions and is absolute otherwise.

§3 Conclusions

We have constructed two families of finite binary sequences using multiplicative inverse,

which were used in [7,8,9] to construct different sequences described in Constructions 1,2 and 3,

respectively. The sequence Xp−1 is a variation of Construction 3, while the sequence Yp−1 is con-

structed using power functions. Two important pseudorandom measures, the well-distribution

measure and the correlation measure of order k, are estimated by using some estimates of

certain exponential sums.

In Table 1, we compare our sequences with some other sequences, such as the Legendre

sequence[1], the index sequence[4] and Ep−1, E
′
p−1, E

′′
p−1 described in §1. We conclude that our

sequences also have strong pseudo-random properties. So these constructions may provide a

very attractive alternative to traditional methods in applications.

From a point of implementation view, the sequences can be computed fast, since the multi-

plicative inverse can be computed fast (in polynomial time).

Finally we remark that in [15,16] the recursive inversive generators, explicit inversive gen-

erators and explicit nonlinear generators are used to build families of binary sequences with

strong pseudorandom properties in a different way.
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9 Louboutin S R, Rivat J, Sárközy A. On a problem of D. H. Lehmer, Proc Amer Math Soc, 2007,

135: 969-975.

10 Lidl R, Niederreiter H. Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20,

second ed., Cambridge: Cambridge University Press, 1997.

11 Shparlinski I E. Cryptographic Applications of Analytic Number Theory: Complexity Lower

Bounds and Pseudorandomness, Progress in Computer Science and Applied Logic, Vol.22, Basel:

Birkhauser Verlag, 2003.

12 Niederreiter H, Winterhof A. On the distribution of some new explicit nonlinear congruential

pseudorandom numbers, In: Lecture Notes in Computer Science, Vol 3486, Berlin, Heidelberg:

Springer-Verlag, 2005, 266-274.

13 Cusick T W, Ding C, Renvall A. Stream Ciphers and Number Theory, Amsterdam: Elsevier,

1998.

14 Brandstätter N, Winterhof A. Linear complexity profile of binary sequences with small correlation

measure, Periodica Mathematica Hungarica, 2006, 52 (2): 1-8.

15 Chen Z X. Finite binary sequences constructed by explicit inversive methods, Finite Fields and

Their Applications, 2008, 14 (3): 579-592.

16 Niederreiter H, Rivat J. On the correlation of pseudorandom numbers generated by inversive

methods, Monatsh Math, 2008, 153(3): 251-264.

1 Key Laboratory of Applied Mathematics, Putian University, Putian 351100, China

2 Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou 350007,

China


