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A traffic flow lattice model considering relative current
influence and its numerical simulation∗
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Based on Xue’s lattice model, an extended lattice model is proposed by considering the relative current information

about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing

the linear stability theory. The density wave is investigated analytically with the perturbation method. The results

show that the occurrence of traffic jamming transitions can be described by the kink–antikink solution of the modified

Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing

that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is

considered.
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1. Introduction

Traffic problems, especially the traffic jam, has

been a serious problem in modern society, and has

attracted much attention in the past decades. To

investigate the properties of traffic jams, many traf-

fic models[1−17] are presented, among them, the most

popular ones are the car following models, the cellular

automaton models, the gas kinetic models, and the

hydrodynamic models.

When vehicle density is high in a freeway, traf-

fic jams occur and propagate as density waves. In

the past, traffic jams have been investigated by mak-

ing use of nonlinear analysis method. Based on hy-

drodynamic model, Korteweg-de Vries (KdV) equa-

tion was presented by Kurtze and Hong.[18] Their re-

sults showed that the traffic soliton can be observed

near the neutral stability line. Modified KdV (mKdV)

equation, which was derived from the optimal veloc-

ity model by Komatsu and Sasa,[19] illustrated that

traffic jam could be described in terms of a kink den-

sity wave near the critical point. On the other hand,

the mKdV equation from the hydrodynamic model

was presented by Nagatani[20] and the density wave

in congestion was thus described by this equation.

As one of the macroscopic traffic models, in 1998,

Nagatani[20] proposed a simplified version of the hy-

drodynamic models which is convenient for analysing

the density wave of traffic flow. A continuum model is

adopted in this model to describe the jamming tran-

sition in traffic flow on highway, which is referred to

as model I in Ref. [20] and is described as

∂tρ+ ρ0∂x(ρv) = 0, (1)

∂tρv = aρ0V (ρ(x+ δ))− aρv, (2)

where ρ0 denotes the average density; a is the sensitiv-

ity of a driver; ρ(x+ δ) is the local density at position

x + δ and time t; δ represents the average headway,

which means δ = 1/ρ0; local density is expressed as

ρ(x + δ) = 1/h(x, t), where h(x, t) is the headway.

The right-hand side of Eq. (2) expresses the tendency

of traffic flow ρv at a given density to relax to some

natural average flow ρ0V (ρ(x+ δ)).

The continuity equation (2) is modified with di-

mensionless space x. Let x̃ = x/δ, and x̃ is indicated

as x hereafter.

∂tρj + ρ0(ρjvj − ρj−1vj−1) = 0, (3)

∂t(ρjvj) = aρ0V (ρj+1)− aρjvj , (4)

where j indicates the j-th site on a one-dimensional

lattice; ρj(t) denotes the local density on site j at time

t, and vj(t) represents its corresponding local velocity,

and V refers to the optimal velocity function.
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After that, Xue[21] improved the lattice ver-

sion of traffic model by considering the next-nearest-

neighbour headway and described it as

ρj(t+ τ)vj(t+ τ) = ρ0V (ρj+1(t))(1− p)

+ ρ0V (ρj+2(t))p, (5)

where p is a constant ranging 0–0.5 which means the

front term plays a dominant role.

When economic value is concerned, it is of great

significance to maximize the throughput of cars and

suppress the traffic jam on highways.[22] However,

these models mainly pay much attention to the ef-

fects of density and velocity of the sites. Here, we

concentrate on the enhancement and the stabilization

of traffic flow with other related information about the

interaction on a single lane. In particular, the infor-

mation about the relative current of two sites ahead

may have an important effect on traffic flow. By in-

troducing the relative current of two sites ahead, not

only the stability of traffic flow can be improved, but

also the appearance of traffic jams can be suppressed

effectively.

Based on Xue’s lattice model, an extended lat-

tice version of the continuum model was presented

in this paper by considering the relative current of

the next-nearest-neighbour sites ahead, and then, lin-

ear stability theory and nonlinear analysis are applied

to the extended model to derive the modified KdV

equation near the critical point by the perturbation

method. We analyse the effects of relative current

of the next-nearest-neighbour sites on traffic stability

and jam transition, and verified that the new con-

sideration can effectively suppress the traffic jams by

simulation.

The remainder of the present paper is organized

as follows. In Section 2, we put forward the extended

lattice model considering the density and the relative

current of two sites ahead on a single-lane highway. In

Section 3, we consider the effect of the relative current

of the next-nearest-neighbour sites on the stability of

traffic flow by using the linear stability theory, and

the results show that the stability of traffic flow is

enhanced apparently. In Section 4, by means of the

nonlinear analysis, we derive the mKdV equation near

the critical point and obtain its kink–antikink soliton

solution to describe traffic jams. In Section 5, the

model is simulated under the periodic boundary con-

dition, and its result is in good agreement with the

analytic one. In Section 6 we draw some conclusions

from the present study.

2. Models

According to the idea mentioned above, and start-

ing from Xue’s model, we present an improved lat-

tice model in which relative current effect of two front

lattice sites is considered. The vehicle motion is de-

scribed by the following differential–difference equa-

tions:

∂tρj + ρ0(ρjvj − ρj−1vj−1) = 0, (6)

ρj(t+ τ)vj(t+ τ) = ρ0V (ρj+1(t), ρj+2(t))

+ kG(∆Qj ,∆Qj+1), (7)

where V (ρj+1, ρj+2) = (1 − p)V (ρj+1) + pV (ρj+2),

G(∆Qj ,∆Qj+1) = (1 − p)∆Qj + p∆Qj+1, ∆Qj =

ρj+1vj+1 − ρjvj and ∆Qj+1 = ρj+2vj+2 − ρj+1vj+1

is the relative currents, p is a constant ranging 0–0.5

which means the front term plays a dominant role.

Compared with Xue’s model, our model has an inter-

action term that is different from that of Xue’s model,

in which the relative current is assumed not to con-

tribute to the flux interaction. However, it is supposed

in our model that the relative current of two sites

ahead does influence the nature of traffic by response

factor k. When k = 0, equations (6) and (7) of the ex-

tended model reduce into those of Xue’s model. Equa-

tion (6) is the lattice version of a continuity equation,

while equation (7) is the evolution equation, V (ρ) ex-

presses the optimal velocity function and it decreases

monotonically with upper bound. We adopt the same

optimal velocity function as that used by Bando et

al.[23] except for density variable

V (ρ) =
Vmax

2
tanh

(
1

ρ
− hc

)
+ tanh(hc), (8)

where hc = 4 is the safety distance and Vmax = 2

denotes the maximal velocity.

By eliminating the speed v in Eqs. (6) and (7),

the density equations are obtained as follows:

∂tρj(t + τ) + ρ20[(1− p)(V (ρj+1)− V (ρj))

+ p(V (ρj+2)− V (ρj+1))]

− k[(1− p)(∂tρj+1 − ∂tρj)

+ p(∂tρj+2 − ∂tρj+1)] = 0. (9)

3. Linear stability analysis

We apply the linear stability method to the ex-

tended model to investigate the influence of the dif-

ference in relative current between two sites ahead on
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traffic flow. First, we define the state of uniform traf-

fic flow with constant density ρ0 and optimal velocity

V (ρ0). The solution of the homogeneous traffic flow

is given as

ρj(t) = ρ0, vj(t) = V (ρ0). (10)

Assume that yj(t) is a small deviation from the steady

state flow:

ρj(t) = ρ0 + yj(t), (11)

substituting Eq. (11) into Eq. (9) and linearize them,

then we will obtain

∂tyj(t + τ) + ρ20V
′(ρ0)[(1− p)(yj+1(t)− yj(t))

+ p(yj+2(t)− yj+1(t))]

− k[(1− p)(∂tyj+1(t)− ∂tyj(t))

+ p(∂tyj+2(t)− ∂tyj+1(t))] = 0, (12)

where V ′(ρ0) = dV (ρ)dρ|ρ=ρ0 .

By expanding yj(t) = exp(i kj + zt), we have the

following equation of z:

zezt + ρ20V
′(ρ0)[(e

i k − 1)(1− p) + ei k(ei k − 1)p]

− kz[(ei k − 1)(1− p) + ei k(ei k − 1)p] = 0. (13)

Inserting z = z1 i k + z2(i k)
2 + · · · into Eq. (13)

and neglecting the higher order terms yield the first

order and second order terms as follows:

z1 = −ρ20V
′(ρ0), (14)

z2 = −
[
1 + 2p

2
+ ρ20V

′(ρ0)τ + k

]
ρ20V

′(ρ0). (15)

If z2 is a negative value, the uniformly steady-

state flow becomes unstable for long-wavelength

method, while the uniform flow is stable when z2 is

a positive value, thus the neutral stable condition for

this steady state is given by

τ = −
(
1 + 2p

2
+ k

)
1

ρ20V
′(ρ0)

. (16)

For a small disturbance with long wavelength, the

homogeneous traffic flow is stable on condition that

τ < −
(
1 + 2p

2
+ k

)
1

ρ20V
′(ρ0)

. (17)

In comparison with Xue’s model,[21] our extended

model has a stable area that is enlarged obviously in

the range

−
(
1 + 2p

2
+ k

)
1

ρ20V
′(ρ0)

< τ < − 1 + 2p

2(ρ20V
′(ρ0))

,

which means that the traffic stability could be en-

hanced further by introducing the effect of relatively

current of two lattice sites ahead.

The neutral stability lines in the parameter space

(ρ, a) is shown in Fig. 1 by the solid lines for the ex-

tended model.

Fig. 1. Phase diagram in parameter space (ρ, a).

In Fig. 1, the dot lines represent the coexisting

curves obtained from the solution of the mKdV equa-

tion (see Section 4). There exists the critical point

(ρc, ac) which is the apex of the neutral stability line.

In Fig. 1, the traffic flow is divided into three regions:

the region above the coexisting curve, which repre-

sents the stability region; the metastable region lying

between the neutral stability line and the coexisting

curve; the region below the neutral stability line, is the

unstable region. Traffic flow is stable above the neu-

tral stability line where traffic jam will not appear,

however, under the neutral stability line, traffic flow

is unstable and the density waves occur. Furthermore,

in Fig. 1, we can find out that with the value of k in-

creasing, the critical points and the neutral stability

line lower accordingly, which means that the traffic

flow is stabilized further when the relative current of

two sites ahead is considered. When k = 0, the neutral

stability line is the same as that of Xue’s model.

4. Nonlinear analysis and mKdV

equation

In this section, the reductive perturbation method

is applied to Eq. (9) and the system behaviour near the

critical point (ρc, ac) is deeply analysed. With such

a simplification, the nature of kink–antikink solitons

can be described by the mKdV equation.

We introduce slow scales for space variable j and

time variable t, and define slow variable X and T as

follows:[19,24]

X = ε(j + bt) and T = ε3t, 0 < ε ≤ 1, (18)

where b is a constant to be determined. Letting

ρj(t) = ρc + εR(X,T ), (19)
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substituting Eqs. (18) and (19) into Eq. (9) and making the Taylor expansion to the fifth order of ε lead to the

following expression:

ε2(b + ρ2cV
′)∂XR+ ε3

(
b2τ +

ρ2cV
′

2
+ ρ2cV

′p− kb

)
∂2
XR

+ ε4
[
∂TR+

(
b3τ2

2
+

ρ2cV
′

6
+ pρ2cV

′ − 1 + 2p

2
bk

)
∂3
XR+

ρ2cV
′′′

6
∂XR3

]
+ ε5

[
(2bτ − k)∂T∂XR+

(
b4τ3

6
+

1 + 14p

24
ρ2cV

′ − 6p+ 1

6
bk

)
∂4
XR+

1 + 2p

12
ρ2cV

′′′∂2
XR3

]
= 0, (20)

where V ′ = [dV (ρj)/dρj ]|ρj=ρc , and V ′′′ = [d3V (ρj)/dρ
3
j ]|ρj=ρc , with V ′ and V ′′′ corresponding to V ′(ρc) and

V ′′′(ρc) in the above equation and hereafter. Near the critical point (ρc, ac), τ = (1 + ε2)τc, taking b = −ρ2cV
′

and eliminating the second order and third order terms of ε from Eq. (20) result in the simplified equation:

ε4[∂TR− g1∂
3
XR+ g2∂XR3] + ε5[g3∂

2
XR+ g4∂

4
XR+ g5∂

2
XR3] = 0, (21)

where

g1 =
3(ρ2cV

′τc)
2 − 1− 6p− 3k − 6pk

6
ρ2cV

′, g2 =
ρ2cV

′′′

6
, g3 = (ρ2cV

′)2τc,

g4 =

[
1 + 14p− 4(2bτc − k)(1 + 6p)

24
− 3kb2τ2c − 5b3τ3c + 3k(2bτc − k)(1 + 2p)− k(6p+ 1)

6

]
ρ2cV

′,

and g5 =
1 + 2p− 4bτc + 2k

12
ρ2cV

′′′.

In order to derive the regularized equation, we

make the following transformations for Eq. (21):

T ′ = g1T, R =

√
g1
g2

R′. (22)

We have the standard mKdV equation with an

O(ε) correction term as follows:

∂T ′R′ − ∂3
XR′ + ∂XR′3 + εM [R′] = 0, (23)

where

M [R′] =
1

g1

[
g3∂

2
XR′ + g4∂

4
XR′ +

g1g5
g2

∂2
XR′3

]
. (24)

Ignore the O(ε) term, then we will obtain the mKdV

equation with the kink–antikink soliton solution

R′
0(X,T ′) =

√
c tanh

√
c

2
(X − cT ′). (25)

With the method described in Ref. [25], we obtain the

selected velocity c

c =
5g2g3

2g2g4 − 3g1g5
. (26)

Hence, we obtain the kink–antikink soliton solution as

follows:

ρj(t) = ρc +

√
g1c

g2

(
τ

τc
− 1

)
tanh

√
c

2

(
τ

τc
− 1

)

×
[
j +

(
1− cg1

(
τ

τc
− 1

))
t

]
. (27)

Then, amplitude A of the kink–antikink soliton is

given by

A =

√
g1c

g2

(
τ

τc
− 1

)
. (28)

The kink–antikink soliton represents coexisting

phases, which consist of the freely moving phase at low

density and the jammed phase at high density. The

densities corresponding to the freely moving phase

and the jammed phase are given, respectively, by

ρj = ρc + A and ρj = ρc − A. Thus we can obtain

the coexisting curve in the (ρ, a) parameter space (see

Fig. 1).

5. Numerical simulation

For the convenience of simulation, we rewrite

Eq. (9) into difference form

ρj(t + 2τ)− ρj(t+ τ) + τρ20[(1− p)(V (ρj+1)

− V (ρj)) + p(V (ρj+2)− V (ρj+1))]

− k[(1− p)(∆ρj(t+ τ)−∆ρj(t))

+ p(∆ρj+1(t+ τ)−∆ρj+1(t))] = 0, (29)

080514-4



Chin. Phys. B Vol. 19, No. 8 (2010) 080514

where ∆ρj = ρj+1 − ρj , using the method mentioned

in Section 2 yields the stability condition as follows:

τ < −1 + 2p+ 2k

3ρ20V
′(ρ0)

. (30)

The extended model described by Eq. (29) is

simulated by using the periodic boundary condition.

The initial conditions are chosen as follows: ρj(0) =

ρ0 = 0.25, ρj(1) = ρj(0) = 0.25, for j ̸= 50, 51,

ρj(1) = 0.25−0.1 for j = 50, and ρj(1) = 0.25+0.1 for

j = 51, where the total number of sites is N = 100,

the safety density is ρc = 0.25, and the sensitivity

a = 1.67.

The typical traffic patterns can be observed in

Fig. 2 after a sufficient long time (at least t = 104).

Fig. 2. Spatiotemporal evolutions of density for (a) k = 0, (b) k = 0.1, (c) k = 0.2 and (d) k = 0.3 (a = 1.67,

p = 0.1).

Fig. 3. Density profiles of the density wave at t = 10200 correspond to the panels in Fig. 2 respectively.
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Figure 2 shows that for various values of k, the

spatiotemporal evolution of the density exhibit differ-

ent properties correspondingly. When p = 0.1, the

time evolutions of the density profile according to the

extended model for k = 0, 0.1, 0.2, and 0.3 are shown

in patterns (a), (b), (c) and (d) respectively. Pat-

tern (a) with k = 0 corresponds to that of the Xue’s

model. In patterns (a), (b) and (c), the traffic flows

are unstable because stability condition (30) is not

satisfied. When a small disturbance is added to the

uniform traffic flow, the traffic flow transits from free

flow to congested traffic, and the propagating back-

ward kink–antikink density wave appears. However,

under the same sensitivity, the pattern (d) exhibits

the freely moving phase, which demonstrates that the

relative current of two sites ahead should be consid-

ered.

Figure 3 shows the density profiles obtained at

t = 10200 corresponding to the panels in Fig. 2 re-

spectively.

With the same sensitivity, when the value of sensi-

tivity coefficient k increases, the amplitude of density

wave weakens and the initial small disturbance delays.

If we set k = 0.3, density wave disappears and traf-

fic flow turns uniform over the whole space in pattern

(d).

Consequently, we can conclude from all the re-

sults that considering the effect of the relative current

of two sites ahead can stabilize the traffic flow further

and suppress traffic jams efficiently.

6. Conclusion

By introducing the relative current of two sites

ahead into the Xue’s model, an extended lattice model

is presented in this paper to suppress traffic jams.

We worked out the stability criterion of the pro-

posed model through the linear stability analysis, and

showed that the stability of traffic flow is enhanced

by introducing the new consideration. Moreover, the

kink–antikink soliton solution of the mKdV equation

near the critical point is derived and used to describe

the traffic jam by nonlinear analysis method. The

good agreement between numerical simulation results

and linearly analytical results verifies that our consid-

eration is reasonable.

References

[1] Peng G H, Sun D H and He H P 2008 Acta Phys. Sin. 57

7541 (in Chinese)

[2] Xue Y, Dong L Y, Yuan Y W and Dai S Q 2002 Acta

Phys. Sin. 51 492 (in Chinese)

[3] Mo Y L, He H D, Xue Y, Shi W and Lu W Z 2008 Chin.

Phys. B 17 4446

[4] Chen X, Gao Z Y, Zhao X M and Jia B 2007 Acta Phys.

Sin. 56 2024 (in Chinese)

[5] Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin.

Phys. B 17 2366

[6] Ge H X, Zhu H B and Dai S Q 2005 Acta Phys. Sin. 54

4621 (in Chinese)

[7] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin.

Phys. B 18 975

[8] Peng G H, Sun D H and He H P 2009 Chin. Phys. B 18

468

[9] Ge H X, Dai S Q and Dong L Y 2008 Chin. Phys. B 17

23

[10] Sun D H and Peng G H 2009 Chin. Phys. B 18 3724

[11] Treiber M, Hennecke A and Helbing D 1999 Phys. Rev. E

59 239

[12] Tian J F, Jia B, Li X G and Gao Z Y 2010 Chin. Phys.

B 19 010511

[13] Sheng P, Zhao S L, Wang J F, Tang P and Gao L 2009

Chin. Phys. B 18 3347

[14] Peng G H and Sun D H 2009 Chin. Phys. B 18 5420

[15] Peng L J and Kang R 2009 Acta Phys. Sin. 58 830 (in

Chinese)

[16] Kang R, Peng L J and Yang K 2009 Acta Phys. Sin. 58

451 (in Chinese)

[17] Zhao S G 2009 Acta Phys. Sin. 58 7497 (in Chinese)

[18] Kurtze D A and Hong D C 1995 Phys. Rev. E 52 218

[19] Komatsu T and Sasa S 1995 Phys. Rev. E 52 5574

[20] Nagayani T 1998 Physica A 261 599

[21] Xue Y 2004 Acta Phys. Sin. 53 25 (in Chinese)

[22] Helbing D and Huberman B A 1998 Nature 396 738

[23] Bando M, Hasebe K, Nakayama A, Shibata A and

Sugiyama Y 1995 Phys. Rev. E 51 1035

[24] Nagitani T and Nakanishi K 1998 Physica A 31 5431

[25] Ge H X, Cheng R J and Dai S Q 2005 Physica A 357 466

080514-6


