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This paper proposes a method to identify the type and the Burgers vector of

dislocations visualized via transmission electron microscopy (TEM). The first

step is to determine experimentally the orientation, with respect to the sample

holder, of a grain of known crystal structure whose dislocation slip systems have

been previously reported. With this determined orientation of the grain, the

method calculates the orientation of the projections of the possible dislocation

line vectors in the transmission electron microscope screen coordinate system

and then compares them with the observed dislocations to identify their type

and the Burgers vector. The coordinate transformations underlying the method

are outlined, and its validity is demonstrated using TEM measurements on a

titanium sample. The method is expected to simplify the related TEM

determination work.

1. Introduction
Various physical and metallurgical processes, such as plastic

deformation, solid-state phase transformations and recrys-

tallization, are characterized by dislocation activity. Identifi-

cation of individual dislocations [dislocation type (edge, screw

or mixed) and Burgers vector] appears to be particularly

important to reveal the physical principles on which they are

based. The identification of dislocations has been an important

topic in the field of characterization by transmission electron

microscopy (TEM). The classical determination technique is

based on the ‘g � b’ invisibility criterion (Edington, 1975). The

image of a dislocation becomes invisible when it lies in the

reflecting plane. The scalar product of the diffraction vector, g,

and the Burgers vector, b, is then zero. In this context, the

Burgers vector of the dislocation could be uniquely deter-

mined with two independent tilt positions where the g � b ¼ 0

condition is fulfilled. As b is common to these two indepen-

dent reflections, b must be the zone axis of the two planes.

Thus the Burgers vector is determined. In reality, the avail-

ability of g � b ¼ 0 invisibility is limited, depending on the

elastic anisotropy of the material. If the crystal is elastically

anisotropic, significant contrast can occur when g � b ¼ 0,

increasing the ambiguities of practical determination. In this

context, the computer aided image matching technique was

developed (Head, 1967; Humble, 1968, 1970; Head et al.,

1973). The roughly determined Burgers vector b of the

dislocation is further confirmed by matching the contrast of

the observed dislocation image with that simulated. A detailed

description of the computer image simulation procedure has

been recently given by De Graef (2003). However, this tech-

nique cannot completely exclude the classical g � b ¼ 0

determination procedure. It is rather based on this procedure,

using it to obtain the initial input. The manipulation to obtain

the invisibility condition is critical and requires great care and

specialist experience. In many cases, no conclusions can be

drawn after a long examination. In view of the difficulty,

efforts have been made to ease the identification process with

the TEM crystallographic orientation determination tech-

nique (Schwarzer, 1997; Schwarzer & Zaefferer, 1995; Mora-

wiec, 1999; Morawiec et al., 2002), which is similar to that used

for scanning electron microscopy/electron backscatter

diffraction. One representative study was carried out by

Schwarzer & Zaefferer (1995). With the aid of TEM crystal-

lographic orientation determination software (Schwarzer &

Zaefferer, 1995; Morawiec et al., 2002), the favorable g � b ¼ 0

sample tilt position can be simulated instead of having to find

the sample tilt directly, which sometimes involves blind

searching. This technique significantly simplifies the determi-

nation process. However, the non-available invisibility situa-

tion still exists when the local orientation is not favorable or

the material is strongly elastically anisotropic (Edington,

1975). Further efforts to simplify the determination technique

are still necessary and possible.

After so many years of intensive study of dislocation slips in

a wide range of materials, the dislocation slip systems (Burgers

vector and slip plane) in many crystal structures are well

known and well documented. If the crystallographic orienta-

tion of a grain of a known crystal structure is given, the
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orientation of the dislocation lines in the crystal, and hence

their projections on the transmission electron microscope

screen under well defined sample loading, are uniquely

defined. Examining the projections of all possible dislocations,

the observed ones can be identified. From such a considera-

tion, a method to identify pure screw or edge dislocations is

proposed and demonstrated in this work. This method can be

used as a countercheck to the classical g � b ¼ 0 invisibility

determination technique. The proposed method is expected to

significantly reduce the required examination work and facil-

itate related studies.

2. Methodology

The basic principle of the method is to calculate the possible

dislocation line vectors in the transmission electron micro-

scope screen coordinate system, using the determined crys-

tallographic orientation of a grain with respect to the sample

holder and the orientation of the sample holder with respect

to the screen coordinate system. Then the projection of these

line vectors on the screen is compared with the observed

dislocation lines to identify the type and the Burgers vector of

the dislocations observed. The complete method will be

detailed in the following sections.

2.1. Setting of coordinate systems

Considering the characteristics of TEM for sample loading

and imaging, it is convenient to introduce three Cartesian

coordinate systems in addition to the crystal lattice basis. All

the coordinate systems are of the same handedness, and they

are orthonormal. In the present work, we choose the right-

hand set. Of the three Cartesian coordinate systems, one is set

to the screen of the transmission electron microscope that

records the image of the dislocations. Its Z axis is set in the

inverse direction of the incident electron beam. One coordi-

nate system is set to the sample holder, also with its Z axis in

the inverse direction of the incident electron beam when the

holder is in the non-tilted position. The third is set to the

crystal. The setting of this coordinate system is not fixed but

variable. It can follow the convention used by the software

Channel 5 (Oxford Diffraction, 2006), for example. The

orientation relationships between the Cartesian coordinate

systems are defined with a triplet of rotations (Euler angles in

Bunge notation; Bunge et al., 1981), transforming one coor-

dinate system into the other. It should be noted that the

setting of the coordinate systems is not unique. There are

several ways to define the corresponding reference frames,

depending on the sample loading manner of the microscope

and the targeted work. A complete and pedagogic description

of the choice of the reference systems from the examined

defect in the crystal to the screen of the transmission electron

microscope and the corresponding coordinate transformation

matrices is given by De Graef (2003).

2.2. Determination of the dislocation line vector in the
crystal lattice basis

As in TEM only dislocation lines are visible, the dislocation

type and Burgers vector can be identified by examining the

projection of the dislocation lines. For a given dislocation slip

system in a known crystal system, the dislocation type (pure

screw or pure edge) and its Burgers vector are defined. For

screw dislocations, as the dislocation line is parallel to its

Burgers vector by definition, the line vector can be taken as

the Burgers vector. This means that the coordinates of the

dislocation line in the crystal basis (i.e. in the Bravais lattice)

can be expressed by the Miller indices. For edge dislocations,

as the dislocation line lies in the slip plane and is perpendi-

cular to the Burgers vector, the line vector in the crystal basis

can be obtained by the cross product of the slip plane normal

and the corresponding Burgers vector. Before entering into

the calculation procedure in detail, let us briefly review the

corresponding fundamental properties concerning the direct

and reciprocal space of a crystal lattice. First, a lattice plane in

direct space with Miller indices (hkl) corresponds to a lattice

vector that is normal to this plane with the same indices as

coordinates in reciprocal space and vice versa. Second, the

vector product of two lattice vectors in direct space results in a

vector with the corresponding coordinates in reciprocal space

and vice versa. Third, the coordinate transformation between

the two spaces can be easily performed using the corre-

sponding direct and reciprocal metric tensors (Shmueli, 1996).

Now we come to the calculation procedure of the edge

dislocation line vector. With the direct metric tensor, the

components of the Burgers vector in reciprocal space can be

calculated as follows:

u�

v�

w�

0
@

1
A ¼ G

u

v

w

0
@

1
A; ð1Þ

where u, v and w are the Miller indices of the Burgers vector;

u*, v* and w* are the components of the Burgers vector in

reciprocal space; and G is the metric tensor of direct space

(Shmueli, 1996). Therefore, the proportional coordinates of

the vector indicating the direction of the dislocation line in the

crystal basis can be obtained by the vector cross product of the

slip plane normal vector and the covariant Burgers vector in

reciprocal space:

kw� � lv�

lu� � kw�

hv� � ku�

0
@

1
A; ð2Þ

where h, k and l are the Miller indices of the slip plane.

2.3. Coordinate transformation from the screen coordinate
system to the crystal basis

The coordinate transformation from the screen coordinate

system to the crystal basis can be decomposed into the

following two or three steps depending on the crystal basis: the

transformation from the screen coordinate system to the

sample holder coordinate system, the transformation from the

sample holder coordinate system to the Cartesian coordinate

system linked to the crystal lattice basis and the transforma-

tion from this Cartesian coordinate system to the possibly non-

Cartesian crystal basis.
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The transformation from the screen coordinate system to

the sample holder coordinate system depends on the indivi-

dual operation that includes the magnetic rotation (if not

corrected by the transmission electron microscope) and the tilt

of the sample holder. The transformation can be further

decomposed into two steps, R1 and R2, given that the magni-

fication-dependent magnetic rotation is not corrected by the

microscope. As the two coordinate systems are orthonormal,

each transformation can be parameterized by a triplet of

rotations [Euler angles (’1;�; ’2) in Bunge’s notation (Bunge

et al., 1981)]. The first step is from the screen system to the

non-tilted sample holder system (this is characterized by the

calibrated magnification-dependent magnetic rotation, ’M,

around the Z axis of the screen coordinate system). The

second step is from the non-tilted to the final tilted sample

holder position. According to the characteristics of the

commercially available TEM sample holders, there are two

kinds of tilt combinations: � tilt (around the X axis of the

sample holder) + � tilt (around the Y axis of the sample

holder) and � tilt + � rotation (around the Z axis of the sample

holder). All these rotations in their Euler angle representation

are summarized in Table 1. With the rotations described, the

transformation matrix can be built as follows (in matrix

notation):

Ms!h ¼ MR1
MR2

; ð3Þ

where Ms!h is the coordinate trans-

formation matrix from the screen

coordinate system to the final tilted

sample holder position, MR1
the

transformation from the screen coor-

dinate system to the non-tilted sample

holder position and MR2
the transfor-

mation from the non-tilted to the final

tilted sample holder position. Special

attention should be paid to the

sequence of the combined tilt opera-

tions during the TEM examination.

The multiplication sequence of the

submatrices of MR2
should conform to

the corresponding tilt sequence.

The coordinate transformation from

the final sample holder position to the

Cartesian crystal reference frame can

be performed on the basis of the

experimentally determined orientation

of the crystal with respect to the

sample holder. The orientation of the crystal can be directly

determined, for example, by indexing the Kikuchi line pattern

using the software Euclid Phantasies (EP; Morawiec, 1999;

Morawiec et al., 2002). Then, three Euler angles of the rota-

tions transforming the sample holder coordinate system to the

Cartesian crystal reference linked to the crystal lattice basis

are given by the software. Thus the corresponding transfor-

mation matrix, Mh!CarCry, can be constructed.

The orientation relationship between the Cartesian crystal

coordinate system and the not necessarily orthonormal

Bravais lattice basis is set under the convention given by

Channel 5 (Oxford Diffraction, 2006). Thus the transforma-

tion matrix MCarCry!BraLatt is defined.

Then the transformation matrix Ms!BraLatt from the screen

coordinate system to the crystal basis (Bravais lattice) can be

obtained:

Ms!BraLatt ¼ Ms!h Mh!CarCry MCarCry!BraLatt: ð4Þ

2.4. Identification of the dislocation system

Using equation (4), the dislocation line vector can be

calculated in the screen coordinate system through coordinate

transformation. The X- and Y-axis coordinates of the vector

define its projection on the screen plane. In this way, the

projections of all the possible dislocation lines for a given

crystal structure can be calculated according to the crystal

orientation. By comparing the possible lines (intersection

angle of the projection with one of the two axes X or Y) with

those of the actually observed dislocation lines, the type and

the Burgers vector of the effective dislocation systems can be

selected according to the best match criterion.
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Table 1
Summary of the two-step (R1 and R2) coordinate transformations from
the screen coordinate system to the final tilted sample holder positions.

The coordinate transformations are parametrized by a triplet of rotations
expressed in Euler angles.

R2

R1 � tilt (�) � tilt (�) � tilt (�)

(’M, 0, 0) (0, �, 0) (90, �, �90) (�, 0, 0)

Figure 1
(a) Bright-field image of the interior of a deformed T40 grain and the screen coordinate system. (b)
Kikuchi line pattern acquired from the same area (top) and the pattern overlapped with the pattern
recalculated by EP (bottom).



3. Application example

In this section, we present an example to illustrate the appli-

cation of the method. The material used in this example is

commercially pure titanium T40. The plate sample with

dimensions 30 � 18 � 1.6 mm was sheared by 5% at room

temperature. The sample was then mechanically thinned to

100–150 mm in thickness. TEM 3 mm discs were electro-

lytically cut from the thinned plate in a solution of 10%

perchloric acid in methanol at a voltage of 17 V and a

temperature in the range from 258 to 263 K, using Struers

TenuPol-5. The final thinning to render the discs transparent

to electrons for TEM was performed in the same solution

under the same conditions. The TEM examination was

performed using a Philips CM200 equipped with the orienta-

tion determination software EP.

Fig. 1(a) shows a bright-field image of the interior of a

deformed T40 grain, where two sets of differently oriented

dislocation lines can be observed. The angles of the two types

of dislocation lines with respect to the X axis of the screen

coordinate system are measured to be 142.25 and 21.8�,

respectively, as indicated in the figure. A Kikuchi line pattern

acquired from the same area is displayed in Fig. 1(b). The

pattern was indexed using EP and the Euler angles expressing

the orientation of the grain (’1, �, ’2) in Bunge notation with

respect to the sample holder coordinate system are (320.163,

�20.437, 234.388�). The pattern recalculated by EP (in red)

matches well the measured pattern and is displayed below the

raw pattern in Fig. 1(b). The TEM magnetic rotation angles in

image and diffraction modes and the sample holder tilt angles

at which the bright-field image and the diffraction pattern are

acquired are given in Table 2. Five well identified dislocation

slip systems in titanium reported in the literature (Partridge,

1967; Yoo, 1981; Kelly et al., 2000) are shown in Table 3 as

potential candidates. With the above experimental parameters

and the grain orientation determined, the angles of the

projection of the candidate dislocation lines with respect to

the X axis of the screen coordinate system were calculated

(Table 4). Comparing the angles measured for the dislocation

lines observed with those calculated, one can conclude that

screw dislocations with the Burgers vectors [1120] (22.2926�)

and [2110] (142.863�) have the best fit with the respective

measured angles, as highlighted in bold in Table 3. This indi-

cates that the dislocation lines appearing in the deformed

grain are two variants of screw hai dislocations.

To check the validity of the method, the sample was further

tilted about the X axis of the sample holder to � = 12.98 and

�4.30� to obtain the invisibility criteria for the respective

[1120] and [2110] dislocations. Fig. 2 shows the dark-field

images obtained using the (2201) reflection at � = 12.98� and

the (0111) reflection at � = �4.30�. It is seen that, from

Fig. 2(a), the [1120] dislocations are invisible and the scalar

product of the reflection vector and the Burgers vector

g2201 � b1120 is zero, while from Fig. 2(b), the [2110] dislocations

are invisible and the scalar product of the reflection vector and

the Burgers vector g0111 � b2110 is zero. In both cases the

g � b ¼ 0 conditions are satisfied. This demonstrates that the

proposed method could correctly identify the type and the

Burgers vectors of the dislocations observed.
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Table 3
Five well documented dislocation slip systems in titanium (Partridge,
1967; Yoo, 1981; Kelly et al., 2000).

Name System

Basal slip {0001} h1210i
Prismatic {1010} h1210i
Pyramidal hai {1011} h1210i
Pyramidal ha + ci�1 {1011} h2113i
Pyramidal ha + ci�2 {2112} h2113i

Table 2
TEM magnetic rotations and sample holder tilt angles to acquire the
bright-field image and the Kikuchi line pattern, and the determined
orientation of the grain by EP.

Magnetic rotation (�)† Sample holder tilt (�) Orientation (�)‡

Diffraction
mode

Image
mode � tilt � tilt ’1 � ’2

119.33 125.57 18.52 0 320.163 �20.437 234.388

† Magnetic rotation about the Z axis of the screen coordinate system. ‡ Euler angles
in Bunge notation of the orientation determined by EP.

Table 4
Angles of the projection of the candidate dislocation lines with the X axis
of the screen coordinate system calculated using the determined
orientation of the grain and the identification method.

Angle of projection (�)

Name System Edge Screw

Basal (0001) [1210] 172.917 81.5362
(0001) [1120] 112.167 22.2926
(0001) [2110] 51.6076 142.863

Prismatic (1010) [1210] 114.588 81.5362
(1100) [1120] 114.588 22.2926
(0110) [2110] 114.588 142.863

Pyramidal hai (1101) [1120] 110.35 22.2926
(1101) [1120] 112.894 22.2926
(1011) [1210] 17.6085 81.5362
(1011) [1210] 156.568 81.5362
(0111) [2110] 26.7887 142.863
(0111) [2110] 69.0528 142.863

Pyramidal ha + ci�1 (0111) [1123] 136.38 2.68119
(1011) [1123] 90.4966 2.68119
(0111) [1123] 134.112 42.4349
(1011) [1123] 87.7354 42.4349
(0111) [1213] 148.702 65.3134
(1101) [1213] 18.0689 65.3134
(1101) [1213] 11.8758 90.2685
(0111) [1213] 152.458 90.2685
(1011) [2113] 71.766 135.343
(1101) [2113] 32.7488 135.343
(1101) [2113] 26.4953 157.4
(1011) [2113] 75.9286 157.4

Pyramidal ha + ci�2 (2112) [2113] 51.6076 135.343
(2112) [2113] 51.6076 157.4
(1122) [1123] 112.167 42.4349
(1122) [1123] 112.167 2.68119
(1212) [1213] 172.917 90.2685
(1212) [1213] 172.917 65.3134



4. Summary

In summary, a new method for identifying dislocations (type

and Burgers vector) observed via TEM is proposed in this

work. For a given crystal structure, the possible dislocation

line projections on a transmission electron microscope screen

are calculated using the determined crystallographic orienta-

tion of the crystal. Then the calculated projections are

compared with those observed on the microscope screen to

conclude the types and Burgers vectors of the dislocations

observed. With this method, no special efforts in searching the

g � b ¼ 0 invisibility conditions are required and the related

examination work is dramatically simplified.
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Figure 2
(a) Dark-field image using the (2201) reflection at an � tilt angle of 12.98� where the [1120] dislocations are invisible. (b) Dark-field image using the
(0111) reflection at an � tilt angle of �4.30� where the [2110] dislocations are invisible.
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