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The current research investigates a single cost for cost-sensitive neural networks (CNN) for decisionmaking. This
may not be feasible for real cost-sensitive decisions which involve multiple costs. We propose to modify the
existing model, the traditional back-propagation neural networks (TNN), by extending the back-propagation
error equation for multiple cost decisions. In this multiple-cost extension, all costs are normalized to be in the
same interval (i.e. between 0 and 1) as the error estimation generated in the TNN. A comparative analysis of ac-
curacy dependent on three outcomes for constant costswas performed: (1) TNN and CNNwith one constant cost
(CNN-1C), (2) TNN and CNNwith two constant costs (CNN-2C), and (3) CNN-1C and CNN-2C. A similar analysis
for accuracywas alsomade for non-constant costs; (1) TNN and CNNwith onenon-constant cost (CNN-1NC), (2)
TNN and CNNwith two non-constant costs (CNN-2NC), and (3) CNN-1NC and CNN-2NC. Furthermore, we com-
pared the misclassification cost for CNNs for both constant and non-constant costs (CNN-1C vs. CNN-2C and
CNN-1NC vs. CNN-2NC). Our findings demonstrate that there is a competitive behavior between the accuracy
and misclassification cost in the proposed CNN model. To obtain a higher accuracy and lower misclassification
cost, our results suggest merging all constant cost matrices into one constant cost matrix for decision making.
For multiple non-constant cost matrices, our results suggest maintaining separate matrices to enhance the accu-
racy and reduce the misclassification cost.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In the traditional artificial neural network (TNN) learning, TNN
classifiers try to minimize the error with training data sets [22]. This
concept will only make sense when the cost of information acquisi-
tion is not taken into account [12,20], and/or different costs for mis-
classification are treated equally [12,14]. This is not true in many
real-world applications of decision making. For instance, in medical
applications, predicting a woman to be cancer free, but who actually
has breast cancer, is far more costly than misdiagnosing a woman
with breast cancer when she is in fact healthy. The misclassification
in the former case may result in the loss of the patient's life. There-
fore, the cost-sensitive neural network (CNN) has attracted much at-
tention in machine learning and data mining communities.

In the past few years, several cost-sensitive learning methods have
been developed, and many of them are mainly developed from deci-
sion tree cost-sensitive models [2,7,16,24]. To make a TNN cost-
sensitive, four different methods have been proposed [13,17]. The
first leaves the learning procedure intact but modifies the network's
probability estimates in classifying new data sets. This method can
be used to make any cost-insensitive decision models cost-sensitive
[5,6,8,23,27]. The second is to adapt the output of a network to give
rights reserved.
higher impact on connection weights for certain classes with higher
expected misclassification costs [13,15,17]. The third is to adjust the
learning rate so that the prevalence of samples with a higher cost will
be increased significantly in training data sets [13,26]. The last is to
take the misclassification costs into account by modifying the learning
algorithm [3,9,13,17].

As far aswe know, the CNNhas focused on only one cost [1-21,23-28].
Inmany real world applications, there are usuallymultiple costs associat-
ed with the decision-making. However, these costs might not be com-
bined into one equivalent cost. For example, the economical cost and
the societal cost cannot be combined into one cost as these costs can
hardly bemeasured in a singlemetrological system. Furthermore, it is dif-
ficult to judge which cost is more important than another. To implicate
such different costs into account simultaneously, this paper introduces
multiple costs into the back-propagation error equation of the TNN. As
the importance of each cost cannot be evaluated precisely, we assume
that all the costs are of equal importance and normalize their values
into the same interval.

To investigate the performance of CNNs, we compare the average
accuracy between TNNs and CNNs. The CNN is constructed with one
or two cost matrices which are either constant or non-constant.
These comparisons are carried out based on experiments of eight dis-
crete UCI data sets (http://archive.ics.uci.edu/ml).

The remainder of this paper is organized as follows. Section 2
briefly describes some related works. Section 3 introduces some nec-
essary definitions to describe the neural network's error equations,

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/j.dss.2011.10.023
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and then accommodates the misclassification costs into the error
equations. Section 4 describes the cost sensitive learning and weight
adjusting with respect to misclassification. Experimental results are
reported and analyzed in Section 5. Finally, conclusions are given in
Section 6.

2. Related work

In this section, we describe the data acquisition and the misclassi-
fication cost, and the cost processing methods applied in constructing
cost sensitive models.

2.1. Type of costs

Cost-sensitive decision making may take different kinds of costs
into account. Turney [25] provides a comprehensive survey of differ-
ent types of costs, including data acquisition, misclassification, active
learning, computation, and human-computer interaction. Generally,
the data acquisition and misclassification costs are extensively ap-
plied in building decision models [17].

Data acquisition cost is synonymous with test cost, i.e., the cost
occurred in testing of samples to get attributes, measurements, or
features [12,20,24]. Some medical tests such as PET/CT and direct-
to-consumer genetic testing are very expensive, so it is worthwhile
to find low-costive features to build diagnosing models [10]. Also,
it is desirable to build models for determining when to stop test-
ing for other features after balancing the test cost and the risk of
misdiagnosis [12].

Although the costs for some medical tests are very expensive,
they are still much lower than the misdiagnosis cost, which is usu-
ally identified as misclassification cost. Many decision models have
been built based on the misclassification cost, such as regressions
[1], decision trees [2,7,16,24], Bayesian networks [4], neural net-
works [13,14,19,21,26,28], and support vector machines [18], etc.
These models mainly concentrate on how to reduce the average
misclassification costs when trained with a single misclassification
cost.

The misclassification cost can be either a fixed value or a function,
and it can be associated with a sample or a class [11]. If a cost is asso-
ciated with a sample, such a cost is suitable to make any cost-
insensitive decision models cost-sensitive, but faces a higher risk of
over-fitting to training data sets when the cross validation technique
is used [17,23].

The fixed cost is usually associated with a class, and thus it cannot
describe special samples and conditions. However, it has a lower risk
of the so-called over-fitting problem. It has been widely applied to all
kinds of decision models and can be expressed with a misclassifica-
tion matrix [25].

2.2. Cost processing methods

There are four methods available to make a cost-insensitive TNN
cost-sensitive [13]. One method is to leave learning algorithms intact
and make the trained decision models cost-sensitive, by changing the
proportion of negative samples [8], relabeling the classes of samples
[6,27], weighting the class of samples [5], and adjusting the threshold
for minimizing misclassification cost [23]. As this method leaves
learning algorithms intact, it can be applied to almost all existing de-
cision models.

The second method is to adjust the outputs of decision models by
taking into account the impact of the misclassification cost. The out-
put is adjusted by imposing a higher impact on learning process for
classes with higher expected misclassification costs [13], or corrected
by utilizing thresholds to minimize misclassification costs [15], or
replaced by a different class that has minimum estimated conditional
risk concerned with misclassification costs [17].
The third method is to increase the learning rate for those samples
with higher costs [13,26]. This is equivalent to a sample with a higher
cost which will be learned more times than that which has a lower cost
[26]. To ensure the convergence of themodified back-propagation proce-
dure, Kukar and Kononenko use a method to normalize the replaced
learning rate [13].

The fourth method is to modify the learning algorithm to take
misclassification costs into account. This may be done by using cost
sensitive splitting criteria [7] and making cost-sensitive pruning [2]
in building a cost-sensitive decision tree, or by applying the addition-
al cost adjustment function into the weight updating rule which is
used to transform the cost-insensitive AdaBoost into a cost-sensitive
adaptive boosting AdaCost [9]. Similar methods are proposed for
two-class and multiple-class versions of cost-sensitive bagging [3].
By introducing misclassification cost into the TNN's error equation,
Kukar and Kononenko modify the TNN training algorithm into a
cost sensitive algorithm [13].

All methods mentioned above only take one kind of cost into ac-
count, and few of them have investigated the impact of costs against
the model's accuracy. In this paper, we study the CNN which is con-
structed with one or more fixed costs, and attempt to find the impact
of the costs relating to the accuracy as well as against one another. We
compare the impact of the fixed constant and non-constant costs and
analyze the possibility of merging them when encountered with mul-
tiple costs.

To deal with misclassification costs, we introduce cost matrices for
constant and non-constant misclassification costs in Section 3, and
propose a method for weighting one or more costs compared with
the classification error in Section 4. In addition, the CNN training
method is also presented in Section 4.

3. Defining cost matrices

The costmatrix stores costs that are functions from the actual classes
(targeted classes) to the output classes (predicted classes). For a cost
matrix C, the element C[i, j]stands for the cost ofmisclassifying a sample
of the actual class i as the output class j. When the CNN correctly
classifies a sample, i.e., the actual class i of the sample is the same as
the output class j, the misclassification cost is zero, e.g., C[i, j]=0 for
all i= j.

If the misclassification costs are equal to c, and the number of
the classes is N, we define a constant N×N cost matrix as in the
following [13]:

C i; j½ � ¼ c; i≠j
0; i ¼ j; i; j ¼ 1;2;…;N:

�
ð1Þ

The cost E[i] is used to stand for the expected cost of misclassifying
the sample that belongs to the ith class. When making a decision in
TNN, the expected cost of making a correct decision is the same as
making a wrong decision:

E i½ � ¼ 1
1−P ið Þ

XN
j≠i

P jð Þ⋅C i; j½ �; i ¼ 1;2;…;N; ð2Þ

where P(i) and P(j) are the estimated prior probabilities that a sample
belongs to the ith and the jth class respectively. In the case of a
constant cost matrix, the uniform cost vector is as follows:

E i½ � ¼ c; i ¼ 1;2;…;N: ð3Þ

The TNN performance criterion is the error rate or the classification
accuracy. But, when the cost is not constant for a data set, we are more
concerned with the average cost of CNN trained by this data set.
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The average cost is a very important performance measure for cost
sensitive learning. It should be evaluated in our experiments and is
defined as below:

A Sð Þ ¼ 1
Sj j∑s∈S

C TC sð Þ; PC sð Þ½ �; ð4Þ

where |S| is the number of the test samples in data set S, TC(s) is
the targeted class of sample s, and PC(s) is the predicted class of
sample s. When the constant cost matrix is used in Eq. (4), the
error rate may be viewed as a special case of the average cost. Usu-
ally, the TNN minimizes the squared error of its output vector for
sample s∈S.

e sð Þ ¼ 1
2

XN
k¼1

tk−okð Þ2; ð5Þ

where ok is the kth component of the predicted class of the TNN,
and tk is the binary classification of the kth class on sample s, i.e.,
tk=1 if k=TC(s) or 0 otherwise.

4. Cost sensitive learning

Since the cost is increased along with the error, we may take the
cost into account at the same time by multiplying the error with the
cost. Assuming that we use the sigmoid activation function for both
the hidden layer and the output layer; the outputs of the neural net-
work will be automatically normalized within interval [0, 1]. To treat
the cost and error with equal importance, we normalize the cost
within the interval of [0, 1] and extend Eq. (5) for both errors and
costs as follows [13]:

e sð Þ ¼ 1
2

XN
k¼1

tk−okð Þ2· ½~CðTCðsÞ; PC sð ÞÞ�2; ð6Þ

where ~C TC sð Þ; PC sð Þð Þ is the normalized cost of C[TC(s), PC(s)]. In TNN,
the cost of correct classification is the same as that of incorrect classi-
fication, thus the normalized cost ~C ði;jÞ is defined as follows:

~Cði; jÞ ¼

E½i�
maxq;r C q; r½ �ð Þ ;i ¼ j

C½i;j �
max
q;r

C q; r½ �ð Þ ;i≠j;
q; r; i; j ¼ 1;2;…;N;

8>>><
>>>:

ð7Þ

where max
q;r

C q; r½ �ð Þ is the maximummisclassification cost in matrix C.

From Eq. (3), it is obvious that ~Cði;jÞ will be 1 for any constant cost
matrix C. As a result of using constant cost matrices, the cost-sensitive
learning should theoretically become cost-insensitive learning, i.e.,
Eq. (5) is a special case of Eq. (6). However, as the average cost in
Eq. (4) is closely related to the corresponding classification accuracy,
and the accuracy may be different for each training data set and testing
data set when the cross validation is used, we would like to explore
whether the constant cost matrix will have an impact on the accuracy
of cost-sensitive learning and vice versa.

Assume that there are two kinds of costs stored in cost matrices C1
and C2, respectively. There are two ways to take these two kinds of
costs into account. The first is to merge two kinds of costs into one
equivalent cost denoted by C3:

C3 i; j � ¼ C1 i; j � þ C2 i; j �; i; j ¼ 1;2;…;N½½½ ð8Þ

When two kinds of costs cannot be merged, we treat these two
costs with equal importance by normalizing them within the interval
of [0, 1], and take them into consideration independently. We extend
the Eq. (6) with the equal importance for two kinds of costs as
follows:

e sð Þ ¼ 1
2

XN
k¼1

tk−okð Þ2·½~C1ðTCðsÞ; PC sð ÞÞ·~C2ðTCðsÞ; PC sð ÞÞ�2 ð9Þ

Similar to Eq. (6), if C1, and C2 are all constant cost matrices, the
behavior of Eq. (9) should be theoretically identical to that of original
Eq. (5). Also, we would like to answer whether Eq. (9) still behaves
the same as what is expected for constant cost matrices. Furthermore,
we would like to learn the behavior of Eq. (9) if the cost matrix is not
constant.

At the nth TNN learning iteration, themomentum learning algorithm
modifies the l-layer synaptic weightwhk

(n)(l) of the hth neuron for the kth
output of the l-1 layer according to the delta rule [22], by computing the
local gradient δh(l). Please note that for the hidden layer l=1, and the
output layer l=2 in a 3-layer TNN.

Δw nþ1ð Þ
hk lð Þ ¼ α·Δw nð Þ

hk lð Þ þ 1−αð Þ·η·δh lð Þ·ok l−1ð Þ;
w nþ1ð Þ

hk lð Þ ¼ w nð Þ
hk lð Þ þ Δw nþ1ð Þ

hk lð Þ; ð10Þ

where η is the learning rate that controls the magnitude of the weight
changes, α is the momentum coefficient, and ok(l) is the kth compo-
nent of the output of layer l. In a 3-layer TNN, the computation of
δh(•) of the output layer differs from that of δh(•) of the hidden layer.

Assume that the sigmoid activation function is used for both the
output layer and the hidden layer. The computation of δh(l)for
Eq. (5) should be as follows:

δh 2ð Þ ¼ ðth�ohÞ·oh·ð1�ohÞ; for output layer;

δh 1ð Þ ¼ oh 1ð Þ·ð1�ohð1ÞÞ·
XN
k¼ 1

δk 2ð Þ·whk 2ð Þ; for hidden layer: ð11Þ

The computation of δh(l)for Eq. (6) can be formulated as follows:

δh 2ð Þ ¼ ½~C ðTCðsÞ;PC sð ÞÞ�2·ðth�ohÞ·oh·ð1�ohÞ; for output layer;

δh 1ð Þ ¼ oh 1ð Þ·ð1�ohð1ÞÞ·
XN
k¼ 1

δk 2ð Þ·whk 2ð Þ; for hidden layer:

ð12Þ
Similarly, the computation of δh(l)for Eq. (9) can be written as in

the following:

δh 2ð Þ ¼ ½~C1ðTCðsÞ;PC sð ÞÞ·~C2ðTCðsÞ;PC sð ÞÞ�2·ðth�ohÞ·oh·ð1�ohÞ;
for output layer;

δh 1ð Þ ¼ oh 1ð Þ·ð1�ohð1ÞÞ·
XN
k¼ 1

δk 2ð Þ·whk 2ð Þ; for hidden layer:

ð13Þ

If the normalized cost matrices ~C , ~C1, and ~C2 used in Eqs. (12) and
(13) are originally constant, Eqs. (12) and (13) will be identical to
Eq. (11).

Instead of treating the error and cost equally, we may give different
weights for the error and costs. Assume the weight for error, costs
~C1 and ~C2 are α, β and γ, respectively, Eq. (9) will be reformulated
as follows:

e sð Þ ¼ 1
2

XN
k¼1

tk−okð Þ2α⋅ ~C1ðTCðsÞ;PC sð ÞÞ�2β⋅ ~C2ðTCðsÞ;PC sð ÞÞ�2γ
hh

ð14Þ
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And the computation of δh(l) for Eq. (14) can be written as in
the following:

δh 2ð Þ ¼ α·½~C1ðTCðsÞ;PC sð ÞÞ�2β·½~C2ðTCðsÞ;PC sð ÞÞ�2γ·ðth�ohÞ·oh·ð1�ohÞ;
for output layer;

δh 1ð Þ ¼ oh 1ð Þ·ð1�ohð1ÞÞ·
XN
k¼ 1

δk 2ð Þ·whk 2ð Þ; for hidden layer:

ð15Þ

In case we cannot differentiate important degrees about the error,
the costs ~C1 and ~C2, we may assume α=β=γ=1. Then, Eq. (15) will
be reduced to Eq. (13).

5. Experiments

We compare the classification accuracy between TNN and CNN
using eight UCI data sets. To compare the performance of the classifi-
cation accuracy and the average misclassification cost defined in
Eq. (4), we construct three-layer neural networks for the testing of er-
rors and misclassification costs, assuming that the misclassification
costs are as equally important as the classification error.

The number of hidden neurons in a TNN or CNN is4⋅
ffiffiffiffiffiffiffiffiffi
m⋅n

p
(m is the

number of inputs, n is the number of classes). We use 10-fold cross-
validation to evaluate the accuracies and costs. The following parame-
ters are used for the neural networks in all the experiments. The learning
rate is 0.25, the momentum is 0.07, the important degrees are
α=β=γ=1, and the number of iterations is 5000. We are aware that
by fixing those parameters it may result in the networks under-fitting
or over-fitting for some data sets.

5.1. Data sets and cost matrices

Our experimentswere carried out on eight data sets fromUCI repos-
itory, which are Original Breast Cancer (BC), Congressional Voting (CV),
Lymphography (LG), SPECT Heart (SH), Poker Hand (PH), Haberman's
Survival (HS), Balance Scale (BS), and Car Evaluation (CE). The class
label or the category attribute is not counted in the number of attri-
butes. When training a neural network, the reduced attributes output-
ted by an attribute reduction algorithm are used as its inputs in our
experiments, in order to achieve higher predication accuracy in case
of a small number of samples in most of the data sets, as shown in
Table 1.

We provide constant and non-constant matrices to compare our
CNNs. The constant matrix C0 is used to test whether the accuracy
of such a CNN-1C is the same as that of a TNN. C0 is a 0–1 constant
cost matrix, which is defined as follows:

C0 i; j½ � ¼ 1; i≠j;
0; i ¼ j:

�
ð16Þ

Constant matrix C1 is constructed as C1=2⋅C0, which is used to
compare the one-cost CNN-1C from constant C1 with the two-cost
Table 1
Basic characteristics of the datasets showing the number of samples, number of attri-
butes, number of attributes used, number of classes, and percentage of samples in
the major class.

Data
set

No. of
samples

No. of
attributes

No. of attributes
used

No. of
classes

% major
class

BC 699 9 4 2 0.66
CV 435 16 9 2 0.61
LG 148 18 8 4 0.45
SH 80 22 22 2 0.50
PH 25010 10 5 10 0.50
HS 306 3 3 2 0.74
BS 625 4 4 3 0.46
CE 1728 6 6 4 0.70
CNN-2C from two constant C0s. The non-constant matrix C3 is used
to train CNN-1NC, which is defined as C3=C0+C2, where the
non-constant matrix C2 is constructed as follows:

C2 i; j½ � ¼
1
0

i−jþ 1

; ibj;
; i ¼ j;
; i > j:

8<
: ð17Þ

Similarly, the non-constant matrix C5 is defined as C5=C0+C4,
and the non-constant matrix C4 is constructed as follows:

C4 i; j½ � ¼
j−iþ 1

0
1

; ibj;
; i ¼ j;
; i > j:

8<
: ð18Þ

In summary, the cost matrix C1 is equivalent toC0+C0, the cost
matrix C3 is equivalent to C0+C2, and the cost matrix C5 is equivalent
to C0+C4. If a CNN is trained by two cost matrices, and both of them
are constant, this CNN is called a CNN-2C. Otherwise, it is called a
CNN-2NC.

5.2. Results and analysis

The first experiment is to compare the accuracy between TNN and
CNN, in which cost matrices are applied to Eqs. (6) and (9). As shown
in Table 2, the accuracies in the second column TNN are higher than
the corresponding accuracies in column CNN-1C [C0] for data sets BC,
LG, PH, HS, and BS; the accuracy in column TNN for the data set SH is
identical to the accuracy in column CNN-1C [C0]; and the accuracies in
column TNN for the data sets CV and CE is less than the corresponding
accuracies in column CNN-1C [C0]. Thus, the accuracies of the TNNs
are usually higher than those of the CNN-1Cs.

A similar observation can be made between accuracies in column
TNN and column CNN-1C [C1]. Moreover, we find that the accuracies
of CNN-1Cs are usually higher than those of CNN-2Cs. Comparing
between the lower cost matrix C0 and the higher cost matrix C1, the
accuracies of CNN-1C [C0] are almost equal to those of the CNN-1C
[C1] (4 higher and 4 lower of 8 comparisons). This is because they
are both one-cost and the normalized costs (for Eq. (6)) are the
same for C0 and C1. From this experiment, we learn that in most
cases even if the cost-sensitive learning with constant cost matrices
can be theoretically viewed as a cost-insensitive learning, these
cost matrices still show their negative effects to the CNN accuracies
in the learning process.

Similar to most TNNs, the CNNs trained with two-class data sets
converge much faster than the CNNs trained with multi-class data
sets when the same learning rate, the same momentum, and the
same number of iterations are used. In other words, nomatter whether
the neural network is a TNN or a CNN, experiments show that the
convergence speed is mainly determined by the number of classes
rather than the number of costs. For example, data set LG has only
148 learning samples, but has as many as 4 classes,its accuracy is
Table 2
Average accuracies of TNNs and CNNs from constant cost matrices: TNN column obtained
by Eq. (5), columns CNN-1C [C0] and CNN-1C [C1] obtained by Eq. (6), CNN-2C [C0+C0]
column obtained by Eq. (9).

Cost matrices TNN CNN-1C [C0] CNN-2C [C0+C0] CNN-1C [C1]

BC 0.964±0.019 0.947±0.030 0.943±0.024 0.956±0.026
CV 0.945±0.034 0.952±0.036 0.939±0.034 0.959±0.023
LG 0.360±0.118 0.353±0.130 0.360±0.167 0.313±0.100
SH 0.663±0.177 0.663±0.196 0.688±0.169 0.600±0.227
PH 0.456±0.039 0.445±0.038 0.432±0.033 0.443±0.039
HS 0.732±0.051 0.723±0.061 0.710±0.065 0.732±0.083
BS 0.886±0.032 0.876±0.047 0.868±0.034 0.860±0.034
CE 0.660±0.056 0.666±0.046 0.689±0.036 0.675±0.047



Table 4
Average costs of CNNs from constant matrices: columns CNN-1C [C0] and CNN-1C [C1]
obtained by Eq. (6), CNN-2C [C0+C0] column obtained by Eq. (9).

Cost
matrices

CNN-1C [C0] CNN-2C [C0+C0] CNN-1C [C1]

C0 C0

BC 0.053±0.030 0.057±0.024 0.057±0.024 0.089±0.051
CV 0.048±0.036 0.061±0.034 0.061±0.034 0.082±0.047
LG 0.647±0.130 0.640±0.167 0.640±0.167 1.373±0.199
SH 0.338±0.196 0.313±0.169 0.313±0.169 0.800±0.453
PH 0.555±0.038 0.568±0.033 0.568±0.033 1.115±0.078
HS 0.277±0.061 0.290±0.065 0.290±0.065 0.535±0.167
BS 0.124±0.047 0.132±0.033 0.132±0.033 0.279±0.068
CE 0.334±0.046 0.311±0.036 0.311±0.036 0.650±0.095
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the lowest among all data sets. This is because the classification
performance decreases with the increase of the number of classes
[19].

The second experiment is to compare the accuracies between two
CNNs which are constructed with non-constant cost matrices. Re-
member that matrix C3 is equal to C0+C2 and C5 is equal to C0+C4.
As shown in Table 3, we can observe the average accuracies of CNN-
2NCs are higher than those of CNN-1NCs, because accuracies with
two-cost are higher than the corresponding accuracies with one-
cost in 9 comparisons, and lower in 6 comparisons out of all 16
pairs. If we further compare the accuracies between CNN-1NC and
its equivalent CNN-2NC (as comparison pair in black-edged square),
we may find that there are 6 pairs in which the accuracy increase
with respect to CNN-1NC is more than 0.016, but there are only 3
pairs in which the accuracy decrease with respect to CNN-1NC is
more than 0.016. In addition, if we take each data set as a comparison
unit, the accuracy of CNN-2NC is higher than the corresponding accu-
racy of CNN-1NC in 4 data sets, and lower in 2 data sets among all
8 data sets. There is no clear distinction for the remaining 2 data
sets. The abrupt accuracy decrease of data set HS (as comparison
pair in black-edged square) with respect to CNN-1NC is owing to its
large imbalance of class distribution and few number of learning sam-
ples [19].

The third experiment is to compare the costs between CNNs with
different constant cost matrices. As shown in Table 4, columns CNN-
1C [C0] and CNN-1C [C1] are obtained by using Eq. (6), and the
CNN-2C [C0+C0] column is obtained by using Eq. (9). Because cost
matrix C1 is the double of C0, the average costs in column CNN-1C
[C1] should be also the double of the costs in column CNN-1C [C0] if
their CNNs have the same performance on misclassification cost.
Also, we observe that the costs are somehow related with the accura-
cies shown in Table 2; the higher the prediction accuracy, the lower
the misclassification cost. We can derive the following results based
on our analysis; (1) there are more CNN-1Cs in columns CNN-1C
[C0] and CNN-1C [C1] whose costs are relatively lower than those of
CNN-2Cs in column CNN-2C [C0+C0] (as comparison pair in black-
edged square); and (2) between constant cost matrices C0 and C1,
the costs of CNN-1Cs trained by the lower cost C0 are lower than
those of CNN-1Cs trained by the higher cost C1.

The fourth experiment is to compare the costs between CNN-1NCs
and CNN-2NCs, as is shown in Table 5. Remember that matrix C3 is
equal to C0+C2 and C5 is equal to C0+C4, where C2 and C4are defined
in Eqs. (17) and (18) respectively. If we compare the costs between
CNN-1NC [C3] and CNN-2NC [C0+C2], and the costs between CNN-
1NC [C5] and the CNN-2NC [C0+C4] in Table 5, we may find that
there are many more CNN-1NCs whose costs are larger than the
sum of two costs of their equivalent CNN-2NCs (11 larger out of 16
comparisons).

6. Conclusions

In this paper, the effects ofmultiple constant and non-constant costs
in training CNNs have been studied empirically on eight discrete UCI
Table 3
Average accuracies of CNNs from non-constant cost matrices: columns CNN-1NC [C3] and C
obtained by Eq. (9).

Cost matrices CNN-1NC [C3] CNN-2NC [C0+

BC 0.956±0.014 0.951±0.030
CV 0.932±0.044 0.950±0.034
LG 0.320±0.125 0.307±0.095
SH 0.597±0.195 0.613±0.109
PH 0.420±0.007 0.421±0.009
HS 0.706±0.069 0.277±0.065
BS 0.878±0.039 0.887±0.027
CE 0.657±0.042 0.682±0.049
data sets. The TNN, one-cost and two-cost CNNs are constructed and
tested. Our results show that the greater the number of cost matrices,
the slower the convergence of the related CNNs. Furthermore, our ex-
periments confirmed that the convergence speed is mainly determined
by the number of classes rather than the number of the costs [19].

In general, when the neural networks are trained with the same
data sets and the same learning parameters, the TNNs are usually
more accurate than CNN-1Cs and CNN-2Cs. And based on our exper-
iments, the CNN-1Cs are usually more accurate than the CNN-2Cs.
This is resulted from the competition of the two equivalent constant
costs. For constant one-cost matrices, the accuracy of the CNN-1Cs
trained with lower costs is almost equal to those with higher costs.
The reason is that the number of cost matrices is same and the nor-
malized cost matrices are also same according to Eq. (6).

As it is well known in data mining literature, the misclassification
costs and the classification accuracy are inversely related. We
obtained similar conclusions from our experiments: (1) the misclassi-
fication costs of CNN-1Cs are usually lower than those of the equiva-
lent CNN-2Cs, and the accuracies of CNN-1Cs are usually higher than
those of the equivalent CNN-2Cs; and (2) for constant one-cost matri-
ces, the misclassification costs of the CNN-1Cs trained with lower
costs are usually lower than those of the CNN-1Cs trained with higher
costs, this is because their accuracies are almost identical, but the cost
of the latter is higher than that of the former.

Between CNN-1NCs and their equivalent CNN-2NCs, the accura-
cies of the CNN-1NCs are lower than those of the CNN-2NCs, and
the misclassification costs of the CNN-1NCs are significantly higher
than those of the CNN-2NCs. For the CNN-2NC, because one of its
cost is smaller than the other, and it is likely that the competition
will be over quickly, the CNN-2NC will have more time to improve
its accuracy. Therefore, when there are two or more non-constant
costs, it is better to keep the costs separated to obtain higher accuracy
and lower cost CNNs.
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0.954±0.020 0.933±0.030
0.941±0.024 0.964±0.027
0.320±0.088 0.420±0.122
0.638±0.199 0.638±0.150
0.444±0.032 0.438±0.046
0.732±0.071 0.684±0.073
0.870±0.021 0.895±0.026
0.675±0.036 0.758±0.038



Table 5
Average costs of CNNs from non-constant cost matrices: columns CNN-1NC [C3] and CNN-1NC [C5] obtained by Eq. (6), columns CNN-2NC [C0+C2] and CNN-2NC [C0+C4] obtained
by Eq. (9).

Cost
matrices

CNN-1NC
[C3]

CNN-2NC [C0+C2] CNN-1NC
[C5]

CNN-2NC [C0+C4]

C0 C2 C0 C4

BC 0.100±0.036 0.049±0.030 0.059±0.039 0.123±0.055 0.067±0.030 0.084±0.041
CV 0.168±0.122 0.050±0.034 0.050±0.034 0.159±0.071 0.036±0.027 0.036±0.027
LG 1.833±0.350 0.693±0.095 0.900±0.158 1.907±0.318 0.580±0.122 0.920±0.231
SH 1.050±0.540 0.388±0.109 0.500±0.118 0.888±0.469 0.363±0.150 0.513±0.260
PH 1.275±0.018 0.579±0.009 0.702±0.014 2.023±0.221 0.562±0.046 1.012±0.170
HS 0.881±0.206 0.723±0.065 0.723±0.065 0.535±0.143 0.316±0.073 0.316±0.073
BS 0.284±0.091 0.113±0.027 0.149±0.040 0.349±0.071 0.105±0.026 0.140±0.039
CE 0.861±0.123 0.319±0.049 0.398±0.070 0.835±0.092 0.242±0.038 0.283±0.058
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