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A novel four-dimensional autonomous hyperchaotic system is reported in this paper. Some basic dynamical

properties of the new hyperchaotic system are investigated in detail by means of a continuous spectrum, Lyapunov

exponents, fractional dimensions, a strange attractor and Poincaré mapping. The dynamical behaviours of the new

hyperchaotic system are proved by not only performing numerical simulation and brief theoretical analysis but also by

conducting an electronic circuit experiment.
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1. Introduction

Hyperchaos with more than one positive Lya-
punov exponent has been studied with increasing in-
terest in the last few years. As a higher-dimensional
chaotic system, the hyperchaotic system has more
complex and richer dynamical behaviours than a low-
dimensional chaotic system. Historically, the first hy-
perchaotic system was reported by Rössler in 1979.[1]

Due to its great potential applications in technol-
ogy, more researchers paid attention to constructing
and controlling hyperchaos.[2−5] Recently, based on an
originally chaotic system some hyperchaos has been
designed. Particularly, using a basic electronic circuit
to generate the hyperchaos has become a hot topic in
the nonlinear research field.[6−12]

The present paper reports on a new four-
dimensional hyperchaotic system, which also exhibits
complex and abundant hyperchaotic dynamic be-
haviours. More precisely, some complicated dynam-
ics has been analysed and explored in detail by using
Poincaré maps, bifurcation diagrams and Lyapunov
exponents. Finally, a novel oscillation circuit is de-
signed for physically realizing this hyperchaotic sys-
tem. The results of the circuit experiment are shown
to be in good agreement with computer numerical sim-
ulations. It is believed that this hyperchaotic system
can enhance the security of the communication scheme
in information processing and image manipulation.

2. System description and analy-

sis

This novel hyperchaotic system can be described
by the following four-dimensional autonomous differ-
ential equation:

ẋ = a(y − x + y2) + ew,

ẏ = by − kxz + mw,

ż = −cz + hy − lw,

ẇ = −dz, (1)

where x, y, z and w are state variables, and
a, b, c, k, h, e, m, l and d are all positive real parame-
ters. When the values of the parameters in system (1)
are selected as a = 0.5, b = 2.5, c = 4, k = 1, h = 1, e =
1,m = 1, l = 0.25 and d = 0.25, this new chaotic sys-
tem becomes hyperchaotic.

In order to reveal the hyperchaotic dynamical
properties of this nonlinear system, first, we discuss
the equilibria of the four-dimensional autonomous sys-
tem (1). Let

a(y − x + y2) + ew = 0,

by − kxz + mw = 0,

hy − cz − lw = 0,

−dz = 0, (2)

then system (1) will have only a real equilibrium,
which is described as O(0, 0, 0, 0). For equilibrium
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O(0, 0, 0, 0), system (1) is linearized, and the relevant
Jacobian matrix is

J0 =




−a a(1 + 2y) 0 e

−kz b −kx m

0 h −c −l

0 0 −d 0




=




−0.5 0.5 0 1

0 2.5 0 1

0 1 −4 −0.25

0 0 −0.25 0




. (3)

To gain its eigenvalues, let

|λI − J0| = 0,

then these eigenvalues corresponding to equilibrium

O(0, 0, 0, 0) will be obtained as follows:

λ1 = −0.5, λ2 = −4.025,

λ3 = 2.4844, and λ4 = 0.0406,

where λ1 and λ2 both are negative real roots, while
λ3 and λ4 both are positive real roots. Therefore,
equilibrium O(0, 0, 0, 0) is an unstable saddle in this
nonlinear four-dimensional autonomous system.

The initial values of state variables x, y, z and w

of system (1) are taken as 2.4, 2.2, 0.08 and 0, respec-
tively. According to both numerical and theoretical
analyses, it has been confirmed that new system (1) is
possessed of sophisticated and abundant hyperchaotic
dynamical behaviours.

The hyperchaotic strange attractors are shown in
Figs.1 and 2, which are also new butterfly-shaped at-
tractors.

Fig.1. x–y–z (a) and x–y–w (b) three-dimensional view of system (1).
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Fig.2. Strange attractors of system (1) in x–z (a), x–y (b), y–z (c), and x–w (d) phase planes.

The aforementioned analyses show that it is ap-
parently a new chaotic attractor, and its sensitivity
to the initial condition is a prominent characteristic
of chaotic behaviour: when the assigned initial val-
ues change, the chaotic dynamical behaviour of this
system will disappear quickly.

The waveforms of x(t) in time domain are shown
in Fig.3, and apparently, they are non-periodic in the
continuous-time four-dimensional autonomous chaotic
system (1), which shows basic chaotic dynamical prop-
erties.

Fig.3. x(t) waveform of system (1).

The spectrum of non-linear system (1) is also
studied, and it is continuous as shown in Fig.4.

The Poincaré mapping of this non-linear au-
tonomous system is also analysed. It can be seen that
the Poincaé mapping is composed of these points as
shown in Fig.5.

Fig.4. Spectrum of |x| in system (1).

Fig.5. Poincaré map of the x–y plane of system (1).

The bifurcation diagram of x versus a is given
in Fig.6, which shows richer and complex dynamical
behaviours.
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Fig.6. Bifurcation diagram versus a with b = 2.5, h = 1, k =

1, e = 1, m = 1, l = 0.25, and d = 0.25 of system (1).

The divergence of system (1) is given by

∇V =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
+

∂ẇ

∂w
= −a+b−c−d = −δ. (4)

Since ∇V = −δ = −0.5 + 2.5− 4− 0.25 = −2.25
and its value is a negative constant, system (1) is dis-
sipative. Therefore, this shows that each volume con-
tained in the trajectory of this system shrinks to zero
as t → ∞ at an exponential rate V (0)e−δt. Thus, all

orbits of system (1) ultimately are confined to a subset
of zero volume, and it is apparent that the asymptotic
motion for the non-linear system settles down to an
attractor finally.

According to chaos theory, the Lyapunov expo-
nent is a measure of exponential rates of divergence
and convergence of nearby trajectories in phase space
of system (1). As is well known, there is more than one
positive exponent in a hyperchaotic four-dimensional
autonomous system.

The computation results of Lyapunov exponents
are shown in Fig.7. The two maximum values of posi-
tive Lyapunov exponents of the nonlinear autonomous
system (1) are calculated to be L1 = 0.1277 and
L2 = 0.0444, which show the expanding nature in dif-
ferent directions in phase space. Another Lyapunov
exponent is

L3 = 0,

which shows the critical nature between the expand-
ing and the contracting nature in different directions
in phase space.

Fig.7. Lyapunov exponents of system (1).

While the negative Lyapunov exponent of the
nonlinear autonomous system (1) is

L4 = −2.1673,

which shows the contracting nature in different direc-
tions in phase space. Therefore, by theoretical analy-
sis and numerical simulation, the Lyapunov dimension

of this hyperchaotic system is obtained as follows:

DL = j +
1

|Lj+1|
j∑

i=1

Li

= 3 +
(L1 + L2 + 0)

|L4|
= 3 +

0.1277 + 0.0444 + 0
|−2.1673| = 3.079. (5)

The Lyapunov dimension of this new hyperchaotic sys-
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tem is also fractional dimension.
The above theoretical analysis and numerical sim-

ulation both show that system (1) is a new hyper-
chaotic system and possesses a more sophisticated
topological structure and abundant hyperchaotic dy-
namical properties.[13−20]

3. Circuitry experimental confir-
mation of the hyperchaotic
system

In this section, an electronic oscillation circuit is
designed to realize the new hyperchaotic system (1)

based on Ref.[21]. The designed hyperchaotic oscilla-
tion circuit is shown in Fig.8, and it comprises linear
resistors, linear capacitors, operational amplifiers and
analogue multipliers. The four state variables x, y,
z and w are respectively obtained from the terminal
outputs of vC1 , vC2 , vC3 and vC4 in this electronic cir-
cuit. The experimental phase portraits of the new
transverse butterfly-shaped attractor (1) are shown
in Fig.9. The results of the circuit experiment are
shown to be in agreement with numerical simulations.
The designed chaos oscillator shown in Fig.8 is very
useful in the electronic technique and communication
engineering.[21−26]

Fig.8. Circuitry realization of the hyperchaotic system (1).
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Fig.9. Experimental phase portraits of system (1) in (a) x–z plane (2 V/div, 0.5 V/div); (b) x–y plane (5 V/div,

2 V/div); (c) y–z plane (2 V/div, 0.5 V/div); (d) x–w plane (2 V/div, 0.2 V/div).

4. Conclusion

There are abundant and complex dynamical be-
haviours in the new hyperchaotic system (1). This
new hyperchaotic attractor is different from the hy-
perchaotic Lorenz attractor, the hyperchaotic Chen
attractor, the hyperchaotic system proposed by Chen
et al.[8] It is a new transverse butterfly-shaped hyper-
chaotic attractor of a Lorenz-like system. This new

hyperchaotic attractor can be realized with an elec-
tronic oscillation circuit and has great potential appli-
cations in the electronic technique and communication
engineering. These new hyperchaotic attractors and
their forming mechanism need further study. Their
topological structure should be completely and thor-
oughly investigated. More detailed theoretical analy-
ses and simulations are expected to occur elsewhere in
the near future.
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