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Abstract: A novel neural network model, termed the standard neural network model (SNNM), 
similar to the nominal model in linear robust control theory, is suggested to facilitate the 
synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural 
networks. The model is composed of a linear dynamic system and a bounded static delayed (or 
non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, 
Static state-feedback controller and dynamic output feedback controller are designed for the 
SNNMs to stabilize the closed-loop systems, respectively. The control design equations are 
shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various 
convex optimization algorithms to determine the control signals. Most neural-network-based 
nonlinear systems with time delays or without time delays can be transformed into the SNNMs 
for controller synthesis in a unified way. Two application examples are given where the SNNMs 
are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system 
modeled by the neural network, and for a chaotic neural network, respectively. Through these 
examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-
network-based systems much easier, but also provides a new approach to the synthesis of the 
controllers for the other type of nonlinear systems. 
 
Keywords: Asymptotic stability, chaotic neural network, feedback control, linear matrix 
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1. INTRODUCTION 
 
Applications of neural networks (NNs) in system 

identification and control have been extensively 
studied in the past ten years. It has been shown that 
successful identification and control may be possible 
using NNs for complex nonlinear dynamic systems 
whose mathematical models are not available from 
first principles, see for instance [1-3] for an overview. 
In practical applications, it is desirable to have a 
systematic method of ensuring stability, robustness, 
and performance properties of the overall system. 
Recently, several good NN control approaches have 
been proposed based on Lyapunov’s stability theory 

[3-6]. Suykens et al. introduce NLq-theory to design 
neural controller for nonlinear systems modeled by 
neural state space model via the linear matrix 
inequality (LMI) approach in [3]. The NLq theory is 
widely applied to the neuro-control field. Tanaka 
represented a sigmoid MLP as a linear difference 
inclusion (LDI) system in the context of stability 
analysis of neural networks in [4]. However, the 
representation was not rigorously discussed and was 
obtained only for a few sigmoid MLP examples. 
Limanond et al. [5] rigorously show that the sigmoid 
MLP does admit an LDI state-space representation. 
Then, based on the LDI representation, they designed 
a state-feedback controller for the nonlinear discrete-
time system which is approximated by a sigmoid MLP, 
such that the overall closed-loop system is globally 
asymptotically stable. The resulting equations are in 
the form of a set of LMIs. Based on the LDI 
representation of MLP in [4] and [5], Lin et al. [6] 
design an H∞ state-feedback controller for the 
continuous-time nonlinear system to eliminate the 
effect of reconstruction error and external 
disturbances via an LMI approach. However, the 
approaches in [3-6] can’t be applied to the time-
delayed systems. 

Time-delay is frequently encountered in various 
dynamical systems. Such time-delayed systems 
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generally arise as a result of delay in transmission of 
information between different parts of the system or 
the finite switching speed of electric component or 
mechanical device. It is well known that feedback 
control in the presence of time-delay leads to 
particular difficulties since a delay places a limit on 
the achievable control signal. Recently, stability 
analysis and application of recurrent neural networks 
with time delays is receiving much attention. Liao et 
al. have summarized the research results about 
stability analysis of various time-delayed recurrent 
neural networks in many published literature, and 
employed Lyapunov-Krasovskii stability theory for 
functional differential equations and the linear matrix 
inequality (LMI) approach to investigate the problems 
about asymptotical stability in [7] and exponential 
stability in [8] of neural networks with constant or 
time-varying delays. However, there does not seem to 
be much (if any) study on the stabilization for neural 
nonlinear systems with time delays via dynamic 
output feedback control.  

At present, the controller synthesis approaches are 
also varied as the different neural-network-based 
nonlinear systems. There are no unified methods to 
deal with these problems. In this paper, similar to the 
nominal models in linear robust control theory, we 
advance a standard neural network model (SNNM) 
with time delays. By the Lyapunov-Krasovskii 
stability theory, we analysis the global asymptotic 
stability of delayed SNNM. Based on the analysis 
results, we design static state-feedback controllers and 
dynamic output feedback controllers for the delayed 
SNNMs with inputs and outputs such that the closed-
loop systems are globally asymptotically stable, 
respectively. The resulting design equations are in the 
form of a set of LMIs which allow for the application 
of convex optimization algorithms to be possible. 
Here, it is shown that most delayed (or non-delayed) 
neural nonlinear systems can be transformed into 
SNNMs with inputs and outputs to be stabilization 
synthesized in a unified way.  

In this paper, the following notations are used. ℜn 
denotes n dimensional Euclidean space, ℜn×m is the 
set of all n×m real matrices, I  denotes identity 
matrix of appropriate order, x  denotes the Euclid 
norm of the vector x, ∗ denotes the symmetric parts. 
The notation X Y>  and ,X Y≥  respectively, 
where X  and Y  are matrices of same dimensions, 
means that the matrix X−Y is positive definite and 
positive semi-definite, respectively. If X∈ℜp and 
Y∈ℜq, C(X; Y) denotes the space of all continuous 
functions mapping ℜp → ℜq. 

 
2. STANDARD NEURAL NETWORK MODEL 

 
In robust control, systems with uncertainty can be 

transformed into a standard form known as linear 
fractional transformation (LFT) [9]. Similar to the 
LFT, and referring to [10] and [11], we can synthesize 
controllers for the delayed nonlinear systems 
composed of neural network by transforming them 
into SNNMs. The SNNM represents a neural network 
model as the interconnection of a linear dynamic 
system and static delayed (or non-delayed) nonlinear 
operators consisting of bounded activation functions. 
Here, we discuss only the continuous-time SNNM, 
since there are similar architecture and results for 
corresponding discrete-time model [12]. The 
continuous-time SNNM with inputs and outputs is 
shown in Fig. 1. The block Φ is a block diagonal 
operator composed of nonlinear activation functions 
φi(ξi(⋅)), which are typically continuous, differentiable, 
monotonically increasing, slope-restricted, and 
bounded. The matrix N represents a linear mapping 
between the inputs and outputs of the integrator ∫ (or 
time delay z-1I in the discrete-time case) and the 
operator Φ. The vectors ξ(⋅) and φ(ξ(⋅)) are the inputs 
and outputs of the nonlinear operator Φ, respectively. 
The block D represents the delayed element. κ(⋅) is 
the time-varying delay satisfying 0<κ(⋅)≤h, where h is 
the maximal delay. The vectors u(⋅) and y(⋅) are the 
inputs and outputs of the SNNM, respectively.  

If N in Fig. 1 is partitioned as 

,
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then the input-output SNNM can be depicted as an 
linear difference inclusion (LDI): 

( ) ( ) ( ( ))

( ( κ( ))) ( ),

( ) ( ) ( ( ))

( ( κ( ))) ( ),

( ) ( ) ( ( ))

( ( κ( ))) ( ).

p

pd u

q p

pd qu

y yp

ypd u

x t Ax t B ξ t

B ξ t t B u t

ξ t C x t D ξ t

D ξ t t D u t

y t C x t D ξ t

D ξ t t D u t

φ
φ

φ
φ

φ
φ

= +


+ − +
 = +
 + − +
 = +
 + − +

 (2) 

with the initial condition function 

0 0( ( )) ( ( )), [ ,0],ξ t ξ t hφ θ φ θ+ = ∀ ∈ −  
 (3) 

where x∈ℜn is the state vector, A∈ℜn×n, Bp∈ℜn×L, 
Bpd∈ℜn×L, Bu∈ℜn×m, Cq∈ℜL×n, Cy∈ℜl×n, Dp∈ℜL×L, 
Dpd∈ℜL×L, Du∈ℜl×m, Dqu∈ℜL×m, Dypd∈ℜl×L and 
Dyp∈ℜl×L are the corresponding state-space matrices, 
ξ∈ℜL is the input vector of nonlinear operator Φ, 
φ∈C(ℜL; ℜL) is the output vector of nonlinear 
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operator Φ satisfying φ(0)=0, u∈ℜm is the input 
vector, y∈ℜl is the output vector, and L∈ℜ is the 
number of nonlinear activation functions (that is, the 
total number of neurons in the hidden layers and 
output layer of the neural network). 

Remark 1: The novel delayed neural network 
model (2) unifies several well-known dynamic neural 
networks with or without delays such as Hopfield 
neural networks, CNNs, BAM networks, RMLP etc. 
On the other hand, the system (2) can also describe 
some neural-network control systems. Ref. [13-16] 
illustrate that these neural network models and neural-
network control systems are special examples of (2).  

Firstly, we will analyze the stability of the SNNM 
(2) at the equilibrium point, on which the inputs and 
outputs can be set to the zero vectors of appropriate 
dimensions. Autonomous SNNM can be described by 

x( ) ( ) ( ( )) ( ( κ( ))),

( ) ( ) ( ( )) ( ( κ( ))).
p pd

q p pd

t Ax t B ξ t B ξ t t

ξ t C x t D ξ t D ξ t t

φ φ
φ φ

= + + −
 = + + −

(4) 

Since x=0, ξ=0 is a solution of (4), there exist at least 
one equilibrium point located at the origin i.e., xeq=0, 
ξeq=0.  

In this paper, we assume that the activation 
functions in the SNNM satisfy the sector conditions 
φi(ξi(t))/ξi(t)∈[qi, ui], i.e., [φi(ξi(t))−qiξi(t)]⋅[φi(ξi(t)) 
−uiξi(t)]≤0, ui>qi≥0, and the delays in SNNM are 
constant, i.e., κ(⋅)=h. We will discuss the global 
asymptotic stability for the SNNM in the following 
text.  

Theorem 1: If there exist symmetric positive 
definite matrices P and Γ, and diagonal semi-positive 
definite matrix Τ , such that the following LMI holds:  
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then the origin of SNNM (4) is globally 

asymptotically stable. The submatrices of G are 
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where Q=diag(q1, q2, …, qL)≥0, U=diag(u1, u2, …, 
uL)>0. 

Proof: For simplicity, we denote x(t) as x, ξ(t)asξ, 
ξi(t) as ξi , φi(ξi(t)) as φi, φ(ξ(t)) as φ, φ(ξ(t−h)) as φh, 
and φi(ξi(t−h)) as φh,i. For the SNNM (4), we construct 
Lyapunov-Krasovskii functional:  

0
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where P >0, Γ >0, thus, ∀x≠0, V(x)>0 and V(x)=0 if 
x=0. The derivative of V(x) along the solution of the 
SNNM (4) is 
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The sector conditions, (φi−qiξi)(φi−uiξi)≤0, can be 
rewritten as follows: 
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Fig. 1. Continuous-time standard neural network 
model (SNNM) with inputs and outputs. 
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where Cq,i denotes the ith row of Cq, Dp,i denotes the ith 
row of Dp, Dpd,i denotes the ith row of Dpd. Rewrite (6) 
in the matrix form as follows:  
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dp,i,j is the entry of the matrix Dp at the ith row and jth 
column, dpd,i,j is the entry of the matrix Dpd at the ith 
row and jth column. By the S-procedure [17], if there 
exist τi≥0 (i=1, …, L), such that the following 
inequality holds 
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where Ξ=Q+U, T=diag(τ1, τ2, …, τL), and T≥0, then 
T0<0, that is, ∀x≠0, dV(x)/dt<0 and dV(x)/dt=0 iff x=0. 
According to (5), we conclude that the origin of 
SNNM (4) is globally asymptotically stable. This 
completes the proof.                           

If Bpd=0 and Dpd=0, the autonomous SNNM (4) is a 
non-delayed standard neural network model, which is 
represented as: 
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There exist at least one equilibrium point located at 
the origin i.e., xeq=0, ξeq=0. For (7), we have 
following corollary.  

Corollary 1: If there exist symmetrical and positive 
definite matrix P, and diagonal semi-positive definite 
matrix Τ, such that the following LMI holds:  
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where Ξ = Q+U, then the origin of system (7) is 
globally asymptotically stable. 

The proof of Corollary 1 follows the same idea as 
that in the proof of Theorem 1, and is omitted here. 
For Corollary 1, we define the following Lyapunov 
functional: 

( ) .V x x PxΤ=  
 

3. FEEDBACK STABILIZATION OF 
THE SNNM 

 
Firstly, we consider state-feedback control design 

problem for the SNNM (2) with inputs and outputs. 
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Based on the stability analysis of the SNNM, we 
design state-feedback controllers so that the overall 
closed-loop systems are globally asymptotically stable. 
The controller is of the form 

( ) ( ),u t Kx t=     (9) 

where K∈ℜm×n is the feedback gain. The overall 
closed-loop system of the SNNM (2) and the feedback 
controller (9) is described by 
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Now, we are in a position to give the main result on 

the solvability of the state feedback control problem.  
Theorem 2: Consider the input-output SNNM (2). 
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where Ξ = Q+U. Furthermore, the feedback gain K is 
obtained as K=YX−1.  

Proof: Using Theorem 1, it is straightforward to 
obtain conditions of global asymptotic stability for the 
closed-loop system (10). We note that Inequality (5) is 
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Observing the structure of the parameters in (12), 
Inequality (12) is nonlinear matrix inequality over ,P  
Γ, T, and .K  Next, we will convert (12) into LMI 
over unknown parameters. 
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Γ Τ D ΞΤ ΤΞD ΤΞD

Γ

 + +
 
 − + +
 
 −
 

 

2 0.

T
q
T
p q p pd

T
pd

C

D ΤQU C D D

D

 
 
   − × <  
 
 

      (13) 

Since TQU≥0, if 

* 2 0

* *

T T
p q pd

T
p p pd

A P PA PB C ΞΤ PB

Γ Τ D ΞΤ ΤΞD ΤΞD

Γ

 + +
 
 − + + <
 
 −
 

 

(14) 
holds, inequalities (12) and (13) also hold. Pre-and 
post-multiplying the left-hand side matrix of (14) by 
diag (P-1, T-1, T-1), the inequality (14) is equivalent to 
 

1 1 1 1 1

1 1 1
1

1 1

1 1

2
*

* *

T T
p q pd

pdT
p p

P A AP B Τ P C Ξ B Τ

Τ ΓΤ Τ
ΞD Τ

Τ D Ξ ΞD Τ

Τ ΓΤ

− − − − −

− − −
−

− −

− −

 + +
 
  −
  

  + +  
 − 

0.<  (15) 

Let X=P−1, Y=KX, Σ=T-1, and S=T-1ΓT-1, the 
inequality (15) is rewritten as (11). Therefore, if 
inequality (15) have feasible solution, the feedback 
gain is K=YX-1. The proof of Theorem 2 is thus 
completed.                                  

If Bpd=0, Dpd=0, and Dypd=0, the SNNM (2) with 
inputs and outputs is a non-delayed system, which is 
described by 

( ) ( ) ( ( )) ( ),

( ) ( ) ( ( )) ( ),

( ) ( ) ( ( )) ( ).

p u

q p qu

y yp u

x t Ax t B ξ t B u t

ξ t C x t D ξ t D u t

y t C x t D ξ t D u t

φ
φ
φ

 = + +
 = + +
 = + +

 (16) 
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The following corollary provides a design approach 
of a state-feedback controller for system (16) without 
delays. 

Corollary 2: Consider the input-output SNNM (16). 
There exists a state-feedback control law (9) such that 
the closed-loop system is globally asymptotically 
stable provided that there exist symmetric positive 
definite matrices X, a matrix Y, and diagonal positive 
definite matrix Σ that satisfy the following LMI 

( ) ( )

* 2

T
Tu

p q qu
u

T
p p

AX B Y B Σ C X D Y Ξ
AX B Y

Σ ΣD Ξ ΞD Σ

  + + +   + +  
 

− + +  

 

0,<   (17) 

where Ξ = Q+U. Furthermore, the feedback gain K is 
obtained as K =YX−1.  

Next, we will provide the design procedure of the 
full-order dynamic output feedback controller for the 
SNNM (2). The output feedback controller is of the 
form 

( ) ( ) ( ),
( ) ( ),
c c c c

c c

x t A x t B y t
u t C x t

= +
 =

   (18) 

where xc∈ℜn is the controller state, Ac∈ℜn×n, Bc∈ℜn×l, 
and Cc∈ℜm×n are matrices of appropriate size. The 
overall closed-loop system of the SNNM (2) and the 
feedback controller (18) is described by 

( ) ( ) ( ( )) ( ( )),

( ) ( ) ( ( )) ( ( )),

( ) ( ) ( ( )) ( ( )),

p pd

q p pd

y yp ypd

x t Ax t B ξ t B ξ t h

ξ t C x t D ξ t D ξ t h

y t C x t D ξ t D ξ t h

φ φ

φ φ

φ φ

 = + + −
 = + + −


= + + −

 (19) 

where 

, ,

, ,

, .

T u c
c

c y c c u c

p pd
p pd

c yp c ypd

q q qu c y y u c

A B C
x x x A

B C A B D C

B B
B B

B D B D

C C D C C C D C

  = =    + 
   

= =   
      
   = =   

 

It is obvious that we have the following theorem to 
design output feedback controllers for the SNNM (2) 
from Theorem 1. 

Theorem 3: There exists a full-order dynamic 
output feedback control law (18) such that the closed-
loop system (19) is globally asymptotically stable if 
there exist symmetric positive definite matrices P  
and Γ, diagonal semi-positive definite matrix ,T  and 
matrices Ac, Bc and Cc that satisfy the following 
nonlinear matrix inequality 

* 2 0,

* *

T T
p q pd

T
p p pd

A P PA PB C ΞΤ PB

Γ Τ D ΞΤ ΤΞD ΤΞD

Γ

 + +
 
 − + + <
 
 −
 

 

(20) 
where Ξ=Q+U. Furthermore, the controller 
parameters Ac, Bc, and Cc can be obtained by solving 
the non-convex optimization problem (20).  

The problem described by (20) is bilinear matrix 
inequality (BMI) feasible problem over the unknown 
controller parameters (Ac, Bc, and Cc) and Lyapunov 
parameters (P, Γ, and Τ). BMI problems, in general, 
are proven to be NP-hard [18]. Local search 
algorithms typically either use an iterative search 
method by solving alternated LMIs, or approximate 
the BMI problem by an LMI problem based on 
linearization techniques [19,20]. Most of the global 
BMI algorithms are variations of the branch and 
bound method [21,22]. In what follows, we transform 
(20) into the LMI problems under the assumption that 
Bu=0 in the SNNM (2). If u(t) is an input of neural 
network, u(t) only exists in the nonlinear terms, i.e., 
Bu=0. In most case, the assumption is satisfied, so we 
have the following corollary. 

Corollary 3: Consider the input-output SNNM (2) 
where Bu=0. There exists a full-order dynamic output 
feedback control law (18) such that the closed-loop 
system (19) is globally asymptotically stable provided 
that there exist symmetric positive definite matrices X, 
Y and Γ, diagonal semi-positive definite matrix T, 
matrices Â  and ˆ,B  and special structure matrix Ĉ  
that satisfy the following LMI 

ˆ

ˆ ˆ* ( )

* *
* *

ˆ

ˆ ˆ
0,

2

*

T T

T T
y y

T
p pd

T
p yp q pd ypd

T
p p pd

AX XA A A

A Y YA BC BC

B C Ξ B

YB BD C TΞ YB BD

Γ T ΞTD D TΞ ΞTD

Γ

 + +

 + + +





+

+ + +

<
− + +

− 

 (21) 

0,
Y I
I X
 

> 
 

    (22) 

where Ξ = Q+U. Furthermore, the desired dynamic 
output feedback controller is given in the form of (18) 
with parameters as follow:  

1 T 1

1

ˆ( )( ) ,

ˆ,

qu c q

c

D C T C TC X M

B N B

− −

−

= −

=
  (23) 
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1 T 1

T 1

ˆ( )( )

( ) ,
c

c y c u c

A N A YAX M

B C X M B D C

− −

−

= −

− −
 

where M and N are any nonsingular matrices 
satisfying 

T .MN I XY= −     (24) 

Proof: According to Theorem 3, if Inequality (20) 
holds, the closed-loop system (19) is globally 
asymptotically stable. To proceed, we partition P and 
its inverse P-1 as 

1, ,T T

Y N X M
P P

N W M Z
−   

= =   
      

 

where X∈ℜn×n and Y∈ℜn×n are symmetric positive 
definite matrices. The condition P⋅P-1=I implies 

.
0 0T T

X I I Y
P

M N

   
=   

      
 

Defining 

1 2, .
0 0T T

X I I Y
F F

M N

   
= =   
      

 

and under the condition Bu=0, we obtain 

1 1 2 1

,

( )

T T

c y
c yT

c c u c

F PAF F AF
AX A

YAX NB C X
YA NB C

N A B D C M

=

 
 + =    +  + +   

 (25) 

1 2 ,
pT T

p p
p c yp

B
F PB F B

YB NB D
 

= =  
+  

 (26) 

1 2 ,
pdT T

pd pd
pd c ypd

B
F PB F B

YB NB D
 

= =  
+  

 (27) 

1 .T
q q qu c qC F C X D C M C = +    (28) 

Pre- and post-multiplying the left-hand side matrix of 
(20) by diag (F1

T, I, I) and diag (F1, I, I), respectively, 
the inequality (20) is equivalent to 

1 1 1 1 1 1

* 2

* *

T T T T T T
p q

T
p p

F A PF F PAF F PB F C ΞΤ

Γ Τ D ΞΤ ΤΞD

 + +

 − + +




 

1

0.

T
pd

pd

F PB

ΤΞD

Γ




<


− 

(29) 

Substituting (29) by (25)-(28) and defining 

Tˆ ( ) ,
ˆ ,
ˆ ,

c y c c u c

c
T

q qu c

A YAX NB C X N A B D C M

B NB

C TC X TD C M

 = + + +
 =


= +

 (30) 

we obtain Ieq.(21). The controller parameters Ac, Bc, 
and Cc can be deduced from (30). It is worth noting 
that the structure of matrix Ĉ  is determined by the 
form of Dqu. 

Using the condition P-1⋅ P=I, we have MNT=I−XY. 
By the Schur complement formula [17], the inequality 
(22) can be expressed as Y−X−1>0, therefore I−XY is 
nonsingular. This ensures that there always exist 
nonsingular matrices M and N such that (24) is 
satisfied. We thus complete the proof.             

 
4. APPLICATION EXAMPLES 

 
To apply Theorems 2 and 3 (or Corollaries 2 and 3) 

to synthesize feedback controllers to stabilize neural-
network-based nonlinear systems, it is necessary to 
transform them into the SNNMs (2) (or SNNMs (16)). 
The following examples, synthesis of feedback 
stabilizing controllers for SISO continuous-time 
nonlinear system in [23] and [24] modeled by a 
dynamic recurrent neural network (DRNN), and for 
chaotic neural network, illustrate that the SNNM can 
be widely applied to the synthesis of nonlinear 
systems.  

 
4.1. State-feedback controller synthesis for the single-

input/single-output nonlinear system 
Consider a continuous-time, single-input/single-
output (SISO), nonlinear-control affine system 
described as follows [23,24]: 

( ) ( ( )) ( ) ( ),
( ) ( ( )),
t f t g t u t

y t h t
χ χ

χ
= +

 =
  (31) 

where χ(t)∈ℜn is the state vector, u(t)∈ℜ is the 
control input, y(t)∈ℜ is the output, g(t)∈ℜn is the 
parametric vector, f(χ(t))∈C(ℜn; ℜn) and h(χ(t)) 
∈C(ℜn; ℜ) are continuous nonlinear mapping. 
Delgado et al. employed the following DRNN to 
approximate the nonlinear system (31) in [23,24].  

( ) ( ) ( ( )) ( ),
( ) ( ),NN

t t Wσ t Vu t
y t C t
η η η

η
= − + +

 =
  (32) 

where yNN(t)∈ℜ is the output of the DRNN, η(t)∈ℜN 
is the state vector of the approximating DRNN, and N 
is the number of neurons in the DRNN. Delgado et al. 
provided the approximation conditions in [23], that is, 
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if N ≥n, the DRNN (32) can approximate the nonlinear 
system (31). When the approximation error can be 
guaranteed to be small in a neighborhood of the origin, 
a controller designed for a neural-network 
approximation model can maintain its performance 
while applied to the actual nonlinear system [5].  

We can transform (32) into the SNNM (16), where 
x(t)=η(t), A=−I, Bp=W, Bu=V, Cq=I, Dp=0, Dqu=0, 
Cy=C, Dyp=0, Du=0, and φ(ξ(t))=σ(ξ(t)), and design 
the state-feedback control law by Corollary 2.  

To illustrate our SNNM-based feedback control 
design algorithm and to demonstrate the closed-loop 
stability guarantee, we consider a single-link 
manipulator which is described by the second-order 
nonlinear differential equation:  

2 ( ) ( ) sin ( ) ( ),ml t v t mgl t u tθ θ θ+ + =   (33) 

where the length, mass and friction coefficients are 
l=1m, m=2.0kg, and v=1.0kg m2/s, respectively. Let 

1( ) ( ),t tχ θ=  2 ( ) ( ),t tχ θ=  and y(t)=θ(t), we obtain 
the following state representation of the system (33): 

1 2

2 1 2

1

( ) ( ),
( ) 9.8sin ( ) 0.5 ( ) 0.5 ( ),

( ) ( ).

t t
t t t u t

y t t

χ χ
χ χ χ

χ

=
 = − − +
 =

 (34) 

In [24], the system (34) was identified with a DRNN 
(32) where ( )σ η =tanh(η) and N=2. The parameters 
of the DRNN (32) after the training in [24] were 

0.61 2.79 0
, , 1 0 .

4.04 0.29 0.23
W V C

     = = =     −   
 

We transform the system (32) into the SNNM (16) 
where x(t)=η(t), A=−I, Bp=W, Bu=V, Cq=I, Dp=0, 
Dqu=0, Cy=C, Dyp=0, and Du=0, (ξ( )) tanh(ξ( )),t tφ =  
Q=0, U=I. While we adopt the state feedback 
controller (9), where u(t)∈ℜ, K∈ℜ1×2, the close-loop 
system is shown in Fig. 2. According to Corollary 2, 
solving the LMI (17) by the convex optimization 
technique of MATLAB LMI Toolbox [25], we obtain 
the feedback gain K=[−4.1432 −27.7556]. Fig. 3 
shows the state response of the close-loop systems 
with state-feedback controllers. It is obvious that the 
states asymptotically converge to the zeroes.  

 
4.2. Feedback control of chaotic neural network with 

time delays  
Now, we consider the following chaotic neural 
network with time delays:  

1 1 1 2

1 3

2 2 2

2 3

3 3 3 3

( ) ( ) 3tanh( ( )) 0.02 tanh(1.5 ( ))
5.8 tanh( ( 1)) 0.785 tanh(2 ( 1)),

( ) ( ) 3tanh(1.5 ( ))
5.8 tanh(1.5 ( 1)) 0.785 tanh(2 ( 1)),

( ) ( ) tanh(2 ( )) 5.8 tanh(2 ( 1)),

x t x t x t x t
x t x t

x t x t x t
x t x t

x t x t x t x t

= − + +
− − + −

= − +
− − + −
= − + − −








(35) 
with the initial value x1(0)=0.8, x2(0)=5, x3(0)=0.2. 
The behaviour of the chaotic neural network is shown 
in Fig. 4. We convert the system (35) into the 
autonomous SNNM depicted by 

( ) ( ) ( ( )) ( ( 1)),

( ) ( ),
p pd

q

x t Ax t B ξ t B ξ t

ξ t C x t

φ φ= + + −
 =

 (36) 

where 
 

1 2 3( ) ( ) ( ) , diag( 1, 1, 1),

3 0.02 0 5.8 0 0.785
0 3 0 , 0 5.8 0.785 ,
0 0 1 0 0 5.8

1 0 0
0 1.5 0 .
0 0 2

p pd

q

x x t x t x t A

B B

C

 = = − − − 
−   

   = = −   
   −   
 
 =  
  

 
In order to globally stabilize the SNNM (36) (i.e., 

system (35)), we adopt the following control laws.  

Fig. 2. The close-loop system of the single-link 
manipulator.  

 

0 5 10 15 20 25 30
-0.3

-0.2

-0.1

0

0.1

0.2

Time(Sec)

()tχ

Fig. 3. The state responses χ1(t) (solid line) and χ2(t)
(dashed line) for the closed-loop system where
the initial states of the system (34) are χ1(0)=0.1, 
χ2(0)=−0.2, and the initial states of the DRNN
(32) are initialized arbitrarily.  
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4.2.1 Static state feedback control 
By introducing an external control term u(t) into the 

SNNM (36), it yields the control system of the form 

( ) ( ) ( ( ))

( ( 1)) ( ),

( ) ( ),

p

pd u

q

x t Ax t B ξ t

B ξ t B u t

ξ t C x t

φ
φ

 = +
 + − +
 =

  (37) 

where Bu=diag(1,1,1), and the controller (9), where 
u(t)∈ℜ3, K∈ℜ3×3. According to Theorem 2, solving 
the LMI (11), we obtain the feedback gain as 

26.7380 1.1277 19.6468
0.7708 39.9005 7.0757 .

17.6104 1.9526 35.4105
K

− − 
 = − − 
 − − 

 

The state responses of the close-loop system of open 
loop system (37) under the state feedback controller 
(9) are shown in Fig. 5, where the states are initialized 
arbitrarily.  

4.2.2 Full-order dynamic output feedback control 
By introducing an external control term u(t) into the 

SNNM (36), it yields the control system of the form 

( ) ( ) ( ( )) ( ( 1)),

( ) ( ) ( ),

( ) ( ),

p pd

q qu

y

x t Ax t B ξ t B ξ t

ξ t C x t D u t

y t C x t

φ φ = + + −
 = +
 =

 

where Dqu=diag(1,1,1), 
1 1 1
1 2 1 ,
1 2 3

yC
 
 =  
  

 and the 

controller (18), where Ac∈ℜ3×3, Bc∈ℜ3×3, and 
Cc∈ℜ3×3. Then, using the MATLAB LMI Control 
Toolbox [25] to solve the LMIs in (21) and (22) by 
Corollary 3, a desired dynamic output feedback 
controller can be constructed as in (18) with 

4

12.1868 19.0678 147.7005
21.7185 17.4271 389.9062 ,

100.3549 330.2285 21.6490

0.1542 0.3928 0.1367
10 0.8840 1.1687 0.2430 ,

2.0012 0.4390 0.7523

0.0232 0.0129 0.0029
0.0030 0.0165 0.

c

c

c

A

B

C

− − 
 = − − 
 − − 

− 
 = × − − 
 − − 

−
= 0516 .

0.0229 0.0530 0.0251

 
 
 
 − 

 

With the aforementioned dynamic output feedback 
controller, the simulation results of the state response 
of the closed-loop system are given in Fig. 6 where 
the states are initialized arbitrarily.  

From these simulation examples, it can be seen the 
designed static state feedback controller and dynamic 
output feedback controller both ensure the global 
asymptotic stability of the closed-loop system.  
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Fig. 4. Phase portrait with the plane (x1(t), x2(t)). 
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Fig. 6. State response of x1(t) (solid line), x2(t)(dashed 
line) and x3(t)(dot-dashed line). 
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Fig. 5. State trajectories of x1(t) (solid line), x2(t) 
(dashed line) and x3(t)(dot-dashed line). 
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5. CONCLUSIONS 
 
In this paper, we study the design approaches of 

static state feedback controllers and dynamic output 
feedback controllers for a class of nonlinear systems 
composed of neural networks such that the closed-
loop systems are globally asymptotically stable. The 
resulting design equations are a set of linear matrix 
inequalities which can be solved by the MATLAB 
LMI Control Toolbox [25] to determine control 
signals. Central to our design are the introduction of 
the SNNM, and the transformation of the neural-
network-based nonlinear system to the SNNM. The 
design approaches can be extended to synthesize any 
nonlinear systems as long as their equations can be 
transformed into the SNNMs. Simulation results of 
some examples have showed the effectiveness and the 
applicability of the proposed design approaches. Here, 
it is worth noting that there are no unified ways about 
how to convert the non-SNNM into the SNNM, but 
generally state-transformation is applied. 
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