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Abstract. Dealing with Relevance feedback (RF) using statistical learning has been a
key technique to improve the content-based image retrieval (CBIR) performance. How-
ever, there is still a big room to further RF performance since the popular RF methods
ignore the cooperation among various learning mechanisms. In this paper, we propose a
unified learning paradigm (ULP) that integrates the merits of ensemble learning, semi-
supervised learning, active learning and long-term learning into a uniform framework.
Concretely, unlabeled examples are exploited to facilitate ensemble learning by helping
augment the diversity among the base classifiers, and then, a strong ensemble is used to
identify the most informative examples for active learning. In particular, the semantic
clues are inferred in the long-term learning setting, which serves as the prior knowledge
to validate the effectiveness of the unlabeled examples used by ULP. Finally, a bias-
weighting strategy is developed to guide the ensemble of classifiers to pay more attention
to the positive examples than the negative ones. An empirical study shows that using
multiple learning strategies simultaneously in CBIR is beneficial, and that the proposed
scheme is significantly more effective than some existing approaches.
Keywords: Content-based image retrieval, Relevance feedback, Short-term learning,
Long-term learning, Unified learning

1. Introduction. With the explosive growth of digital images, content-based image re-
trieval (CBIR) has drawn substantial research attention in the last decade [1]. In general,
images are represented with visual features, such as color, texture and shape in CBIR
systems. However, the gap between visual features and semantic concepts usually leads
to poor performance. To narrow down the semantic gap, a few works focused on designing
sophisticated methods to segment out the meaningful objects from an image [2,3]. How-
ever, it is impossible to achieve exact segmentation due to the rich content but subjective
semantics of an image. Although it is feasible to bridge the semantic gap by building an
image index with textual annotation [4,5], fully automatic image annotation is still a long
way off. Relevance feedback, as an alternative and more promising way to mitigate the
semantic gap issue, has been intensively investigated in recent years [6].

1.1. Related works in relevance feedback. Relevance feedback (RF) focuses on the
interaction between the user and the search engine by letting the user provide feedback re-
garding the retrieval results, i.e., by labeling images returned as either positive or negative
in terms of whether they are relevant to the query concept or not. From the interaction
loop, the search engine is refined and the improved results are returned to the user. In
essence, RF can be regarded as a statistical learning problem, and more precisely as a
binary classification task between relevant and irrelevant classes. During the past years,
many RF techniques based on statistical learning have been proposed, as for instance
Bayesian learning, fuzzy sets, support vector machines (SVM) [7-9]. However, in CBIR
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systems, the labeled images are very limited (typically less than 20), whereas the database
often contains thousands of images. Thus, learning algorithms has to handle classifica-
tion with a few training examples, i.e., small example issue. This limitation has been
addressed by latter research efforts and we classify them into following groups.
Learning with multi-classifier, or called ensemble learning, aims at mining the comple-

mentary information of multiple classifiers to achieve strong generalization performance.
Tao et al. [10] trained a set of weak classifiers using different feature subspace and com-
bined them by using Bagging technique. Then, the ensemble classification model was
used to estimate the query concept. Wang et al. [11] independently trained and stored an
individual classifier at each round of feedback, and then combined them using Adaboost
technique for the retrieval task.
Learning with unlabeled data is another feasible way to achieve strong generalization

performance. Semi-supervised learning and active learning are two main paradigms for
this purpose. Semi-supervised learning focuses on exploiting a few confident unlabeled
examples in conjunction with the labeled ones to improve the performance of learning
system. For instance, Zhang et al. [7] proposed a stretching Bayesian method which
regarded some unlabeled examples near the negative examples in a kernel space as addi-
tional negative examples and applied them to improve the estimation of the distribution
of the irrelevant semantic class. Active learning aims to actively identify the most infor-
mative examples from unlabeled data and then query the user for labels, with the goal of
achieving the maximal information gain in decision-making. For example, in SVM active
learning [9], the images closest to the classification boundary are deemed as the most
informative examples and asked to be labeled by the user, so as to maximally reduce the
size of the version space. Moreover, many fusion methods of semi-supervised learning and
active learning for CBIR have been reported [12-14], which further prove that exploiting
unlabeled data is efficient to improve CBIR performance.
All of above-mentioned methods emphasize the learning within a single query session,

so called short-term learning (STL). From a long-term learning (LTL) perspective, the
accumulated users’ relevance judgments stored in log data could be used as an important
resource to aid the retrieval task. Learning with log data aims at mining the semantic
clues across previous query sessions. He et al. [15] devoted to constructing a semantic
space using log data, and a semantic correlation measure is then learned from the semantic
space for image retrieval. Hoi et al. [16] utilized the user-specified relevant images as seeds
to search through semantic space and obtain more positive examples for training SVM
such that the future retrieval precision improves.

1.2. Motivation of our work. To achieve desirable results, multiple rounds of feedback
are generally required for learning. As a result, the RF phase can be extremely time-
consuming. Hence, it is necessary for CBIR system to achieve satisfactory results using
as few labeled examples as possible. Although a few works have been developed to tackle
the small example issue, there is still a big room to elevate the CBIR performance, because
few works take the cooperation among various learning techniques into account within a
unified framework.
This paper proposes a unified learning paradigm (ULP) that integrates several sta-

tistical learning techniques including ensemble learning, semi-supervised learning, active
learning and long-term learning in a synergistic way to maximize the generalization ca-
pability of a learning system. Furthermore, two smart learning tricks, respectively named
Bias-Sampling and Bias-Weighting mechanisms, are developed within ULP framework to
facilitate the learning task in CBIR. Our empirical study shows encouraging results in
comparison to some existing methods for interactive image retrieval. The rest of this
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paper is organized as follows: Section 2 provides an overview of the proposed framework
for ULP problem, followed by a formal definition and a solution for the problem; Section
3 elaborates the core component of ULP – biased semi-ensemble learning scheme; Section
4 shows experimental evaluations; finally, Section 5 concludes this paper.

2. Unified Learning Paradigm with Users’ Feedback.

2.1. Overview of the proposed scheme. We first give an overview of the proposed
scheme that integrates variant learning techniques into a uniform framework with the goal
of interacting with the user looking for image concepts in database, so termed as Unified
Learning Paradigm, ULP for short. Figure 1 shows the architecture of the proposed ULP
that can be roughly divided into four main modules.

(1). Initialization: Generally, a retrieval session is initialized using one query image
brought by the user. However, only one example can hardly train a reliable classifier.
Therefore, the k nearest neighbors (kNN) of the query point in the feature space are
identified using Euclidean distances measure, and returned to the user for labeling, which
are deemed initial labeled set for learning system.

(2). Long-term Learning: Given the labeled set and log data, the semantic correlation
between each image and query can be estimated from previous retrieval sessions. It worth
noting that semantic correlation is not enough to rank the whole image database since log
data cannot cover all target images. In our solution, semantic correlation serves as the
prior knowledge which is helpful to select the confident unlabeled examples in the semi-
supervised setting.

(3). Biased Semi-supervised Ensemble: Ensemble learning and semi-supervised learning
are usually employed for enhancing learning system. In this paper, we try to integrate
the merits of these two techniques in order to achieve strong learning performance. Con-
cretely, unlabeled data is exploited to facilitate ensemble learning by helping augment
the diversity among individual classifiers. In particular, considering the asymmetric dis-
tribution between the relevant and irrelevant image classes, ULP processes positive and
negative examples in different ways, whose details will be presented in Section 3.

For one thing, exploiting unlabeled data to enlarge positive set is more challenging than
doing that for negative set in CBIR, because positive examples make up an extremely small
proportion of the unlabeled set. The method presented in Section 3.1 employs the prior
knowledge inferred from log data to validate the effectiveness of unlabeled examples before
using them to enlarge the positive set. For another, in CBIR context, the user is more
interested in positive examples rather than negative examples. The method presented
in Section 3.2 can combine the individual classifiers with bias such that the generated
ensemble would pay more attention on positive examples than negative examples.

(4). Active Learning: ULP does not passively wait for the user to choose image to label.
Instead, it actively prepares a pool of images for feedback. To achieve active selection,
the retrieval result is separated from the feedback pool. In each round of feedback, the
images judged by ULP with low confidence are put into the feedback pool for the user to
label. Once the user labeled these examples, the learning system can achieve the maximal
information gain in decision making.

2.2. Problem formulation and preliminaries. To retrieve the desired images, a user
must first pose a query image q. Let Z= {z1, · · · , zn} denote the identity of target images.
Let X= {x1 · · ·xn} denotes the image database, where each xi is a feature vector of image
zi. Let R= {r1 · · · rm} denote the log dataset, where each ri contains relevance judgments
in the i-th log session. From the view of statistical learning, during the relevance feed-
back process, the image database can be regarded as a collection of labeled and unlabeled
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Figure 1. Framework of unified learning paradigm

images. Let L= {⟨zi, yi⟩ |yi ∈ {−1,+1}}nli=1 and U= {⟨zi, yi⟩ |yi = 0}nui=1 (nl + nu = n) re-
spectively denote the labeled and unlabeled image example set, where yi = +1 denotes
that zi is labeled as positive, yi = −1 denotes negative and yi = 0 denotes unlabeled.
Based on the above formulation, we now define the ULP problem as follows.

Definition 2.1. ULP for interactive image retrieval is to look for a relevance function fq
that maps each image zi to a real value of relevance degree within −1 and +1,

fq : Z 7→ [−1,+1]

based on the feature representation of images X, the log dataset R, and the training
examples, including L and U , acquired from online feedback.

Let Abs(a) denote the function used to produce the absolute value of a real number
a. In general, when Abs(fq) for a target image zi is high, the corresponding prediction
confidence will be high. Similarly, a low Abs(fq) of a target image means that the image
is close to the decision boundary and its corresponding prediction confidence will be low.
Thus, in our solution, images judged with highly positive confidence (fq (zi) ≈ +1) are
regarded as the retrieved results, while the unlabeled images judged with low confidence
(Abs(fq (zi)) ≈ 0) are regarded as the informative examples which are prepared for the
user to label.

2.3. Solution to the problem. Given L, a few semantic clues can be inferred from R
in the LTL setting; meanwhile, a visual similarity between each target image and query
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concept can be learned from X in the STL setting. A good learning algorithm should
achieve satisfactory results within only a few feedback steps, i.e., requiring a small number
of labeled examples collected from the online interaction. ULP tries to employ both LTL
and STL, with the goal of learning a valid relevance function by compensating the visual
similarity using the semantic clues. In the following, we will describe how to achieve LTL
and STL separately.

Let us first consider the LTL. Formally, the semantic space is represented by a relevance
matrix R (say of size m × n), where each column of such a matrix represents a target
image, and each row represents a log session in past interactions. ri,j= +1 denotes that
an image is judged as relevant in a log session, similarly, ri,j=−1 denotes that it is judged
as irrelevant, and ri,j=0 denotes that it is not judged. Given L = L+∪L−, for each target
image zi, its semantic similarity to current query concept can be inferred from R. We
apply the simplified method [16] to compute the semantic similarity:

fR (zi) = max
k∈L+

{ck,i} −max
k∈L−

{ck,i} (1)

where k are identities of images that belong to L+ or L−. The semantic correlation of each
image zi to the current query concept, fR (zi), is determined using its overall semantic
correlations to both positive and negative images. In the semantic spaceR, the correlation
between two images zu and zv can be estimated by:

cu,v =
m∑
t=1

δt,u,v · rt,u · rt,v (2)

where δt,u,v =

{
1, rt,u + rt,v ≥ 0
0, rt,u + rt,v < 0

that is used to remove (−1,−1) pairs among (rt,u, rt,v)

in the computation of similarity because nothing can be inferred when two images were
both marked as irrelevant. Based on above discussion, it is easy to conclude that a
target image zi is semantically relevant to current query concept when fR (zi) is positive,
similarly, irrelevant when fR (zi) is negative.

After obtaining the semantic clues, we can use them in learning the visual similarity.
Learning the visual similarity is a standard STL problem in CBIR. Dozens of algorithms
are available [6]. Among various approaches, support vector machine (SVM) is one of
the most effective techniques in practice. SVM select the optimal separating hyperplance
which has the largest margin and, hence, the lowest vicinal risk. Also, it applies kernel
trick to process the non-linear problem. As a state-of-the-art classification technique,
SVM has shown superior performance in many applications. However, its performance will
deteriorate significantly for its application to CBIR due to the limited training examples.
To generate strong learning performance, ULP focuses on dealing with SVMs ensemble in
the semi-supervised setting. Furthermore, two biased learning strategies are developed to
process the asymmetric distribution between the relevant and irrelevant semantic classes.
In the following section, we first introduce the semi-supervised ensemble framework and
then elaborate the two biased learning mechanisms.

3. Training Biased SVMs Ensemble in the Semi-supervised Setting. To generate
strong learning systems, ensemble learning tries to mine the complementary information
of multiple classifiers, while semi-supervised learning aims to benefit from the unlabeled
data. Indicated by Zhou [17], however, ensemble learning and semi-supervised learning are
actually mutually beneficial, a key element is that exploiting unlabeled data in ensemble is
helpful to augment the diversity among the individual classifiers. Based on this viewpoint,
we introduce Semi-supervised Boosting (SemiBoost) technique [18-20] into our solution
and modify it for CBIR purpose.



4982 Z. LIN, J. WU, Z. XIAO, J. DUAN AND M. LU

Similar to boosting, the main idea of SemiBoost is to train an ensemble classifier it-
eratively. At each round of iterations, the pseudo-labels of the unlabeled examples are
predicted using existing ensemble and the pairwise similarity between examples, and then
a few confident pseudo-labeled examples in conjunction with all labeled ones are used to
train a new classifier. Finally, all of the learned classifiers will be combined to form the
final ensemble. An outline of the SemiBoost algorithm is presented in Figure 2.

Input: labeled examples, unlabeled examples, supervised learning method.
Parameter: T – the number of individual classifiers used in ensemble.
Output: ensemble

• Start with an empty ensemble;
• for t = 1. . .T

– Compute the pseudo-label and its confidence for each unlabeled ex-
ample (using existing ensemble and the pairwise similarity);

– Sample the most confident pseudo-labeled examples; combine them
with the labeled examples and train an individual classifier using a
supervised learning method;

– Update the ensemble by including the individual classifier with an
appropriate weight.

• end for

Figure 2. An outline of the SemiBoost algorithm

Let S= [Si,j]
n×n denote the symmetric similarity matrix, where Si,j ≥ 0 represents the

similarity between example xi and xj. Let y= [yl;yu] denote the labels of entire image
database. Let h(t) (x) :X → {−1,+1} denote the individual classifier learned at the t-th
iteration. Let H (x) :X → R denote the combined classification model learned after the
T iterations. It is computed as a linear combination of the T individual classifiers, i.e.,
H (x) =

∑T
t=1 αth

(t) (x) where αt is the combination weight. At the (T + 1)-st iteration,
SemiBoost aims to find a new component classifier h (x) and the combination weight α
by solving the following optimization problem:

argmin
h(x),α

(
F (y,S) = Fl

(
y,Slu

)
+CFu (yu,S

uu)
)

⇔ argmin
h(x),α

(
nl∑
i=1

nu∑
j=1

Slu
i,j exp

(
−2yli (Hj + αhj)

)
+C

nu∑
i,j=1

Suu
i,j exp (Hi −Hj) exp (α (hi − hj))

)
s.t. hi = yli, i = 1 · · ·nl

(3)

where Hi ≡ H (xi), hi ≡ h (xi) and the constant C = nl/nu is introduced to weight the
importance between the labeled and the unlabeled data.
To simplify the computation, the above optimization problem can be transformed to a

simple format. In detail, by substituting Hi ← Hi+αhi into F and regrouping the terms,
an equivalent and simplified optimization problem can be obtained.

F1 =
nu∑
i=1

exp (−2αhi) pi + exp (2αhi) qi (4)
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pi =
nl∑
j=1

Sul
i,j exp (−2Hi) δ (yj, 1) +

C

2

nu∑
j=1

Suu
i,j exp (Hj −Hi) (5)

qi =
nl∑
j=1

Sul
i,j exp (2Hi) δ (yj,−1) +

C

2

nu∑
j=1

Suu
i,j exp (Hi −Hj) (6)

where δ (x, y) = 1 when x = y and 0 otherwise. The quantities pi and qi can be interpreted
as the confidence in classifying the unlabeled example xi into the positive class and the
negative class, respectively. Since F1 is difficult to optimize, its upper bound F2 is then
constructed. More details can be found in [19].

F1 ≤ F2 =
nu∑
i=1

(pi + qi) (exp (2α) + exp (−2α)− 1)−
nu∑
i=1

2αhi (pi − qi) (7)

Obviously, F2 is linear in hi (pi − qi) and is minimized when hi = sign (pi − qi), for
maximum values of Abs(pi − qi). Therefore, to minimize F2, the optimal pseudo-label
ci for the example xi is ci = sign (pi − qi) and its corresponding prediction confidence is
Abs(pi − qi). Also, by differentiating F2 with regard to α and setting it to 0, the optimal
α that minimizes the objective function is

α =
1

4
ln

∑nu
i=1 piδ (hi, 1)+

∑nu
i=1 qiδ (hi,−1)∑nu

i=1 piδ (hi,−1)+
∑nu

i=1 qiδ (hi, 1)
. (8)

Input: L – labeled example set, U – unlabeled example set, R – log data.
Parameter: σ – sampling scale used in boosting
Output: L∗ – sampled example set.

• L∗ = Ø;
• while |L∗| < m = [σ · |U |]

– Compute pi and qi for every unlabeled example using Equations (5)
and (6)

– Compute the pseudo-label ci = sign (pi − qi) for each example
– Single out example xi from U by the weight Abs(pi − qi)
– if ci = +1 then
∗ compute the semantic correlation fR (zi) using Equation (1)
∗ if fR (zi) ≥ 0 then L∗ ← L∗ ∪ {⟨xi, ci⟩} end if

– else L∗ ← L∗ ∪ {⟨xi, ci⟩} end if
• end while

Figure 3. Bias-sampling mechanism

3.1. Bias-sampling the unlabeled examples. Given any query concept, the relevant
target images are much less than the irrelevant ones. Besides, the classifiers learned during
the online RF process are not strong, especially at the beginning of retrieval. As a result,
singling out the positively confident examples from unlabeled data set only depending
upon the classifiers’ prediction is unreliable. Almost none of existing semi-supervised
techniques can deal with this problem [21]. In contrast, selecting negatively confident
examples is relatively easy since irrelevant images make up an extremely large proportion
of the existing database. Considering this, we propose a Bias-Sampling strategy used by
ULP for retrieval purpose, which is summarized in Figure 3.
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Actually, ULP pays more attention on the positively pseudo-labeled examples than the
negatively pseudo-labeled examples during the sampling process. Roughly speaking, it
selects unlabeled examples for relevant class depending upon both classifiers’ prediction
and semantic clues inferred from log data, while do that for irrelevant class only using
classifiers’ prediction. This Bias-Sampling strategy aims at validating the effectiveness
of the positively pseudo-labeled examples by means of the semantic clues, in order to
compensate the weak predictions of learned classifiers.

3.2. Bias-weighting the individual classifiers. As mentioned before, relevant images
are much less than irrelevant images in the database and thus positive examples will be
also less than negative examples in the sampled example set. However, SemiBoost fails
to take this class-imbalance problem into account, and thus it tends to be overwhelmed
by the majority (irrelevant) class and ignore the minority (relevant) class.
In CBIR context, the user is more interested in positive images rather than negative

images. Hence, individual classifiers with high true positive rate should be emphasized.
Considering this, we propose a Bias-Weighting mechanism used by ULP for retrieval
purpose.

α =
η

4
ln

∑nu
i=1 piδ (hi, 1)+

∑nu
i=1 qiδ (hi,−1)∑nu

i=1 piδ (hi,−1)+
∑nu

i=1 qiδ (hi, 1)
+ (1− η) exp (tpr)

tpr = Pr [h (xj) = yj & yj = +1] , j = 1, · · · , nl +m (9)

where tpr denotes the true positive rate of classifier h (x) learned from a mixture of
nl labeled examples and m pseudo-labeled examples. exp (tpr) is used to augment the
relative contribution of tpr. Under the influence of Bias-Weighting, the ensemble pays
more attention on positive images than negative ones. η ∈ (0, 1] is used to control the
relative contribution of each component.

4. Experiments and Discussions. For the evaluation purpose, we pick 5000 real-word
images from COREL collection with 50 semantic categories. Two kinds of low-level fea-
tures are used to describe images. (1) Color: The color features are derived using 4×4×4
bins histogram in HSV space. (2) Texture: the texture features are derived using 3-level
pyramidal wavelet transform (PWT) from the Y component in YCbCr space, and then
the mean and variance calculating in each of 9 high-frequent sub-bands is used to form a
18-dimension vector.
To demonstrate the effectiveness of the proposed ULP, we compare it with three other

well-known RF approaches: SVM Active Learning (SVM-AL) [9], Boost SVM Active
Learning (BSVM-AL) [11] and Transductive SVM Active Learning (TSVM-AL) [12].
Furthermore, in order to study whether the Bias-Sampling and Bias-Weighting strate-
gies used by our algorithm are useful, two degenerated variant of ULP, i.e., ULP-d1 and
ULP-d2, are evaluated in the comparison. Unlike ULP, the ULP-d1 directly uses the
original weighting strategy used by SemiBoost. In detail, ULP aims to emphasize the
importance of positive examples by setting η = 0.3 in Equation (9) while ULP-d1 regards
the positive and negative examples equally, i.e., η = 1. Based on ULP-d1, the ULP-d2
can be further obtained by omitting the Bias-Sampling process, i.e., ULP-d2 samples the
unlabeled examples in Boosting iterations only depending upon the classifiers’ prediction.
Initially 10 images are presented to the user for labeling. After obtaining the labeled

images, four learning algorithms are employed to rerank the image database separately.
For each scheme, five rounds of feedback are conducted and 10 images are labeled by
the user in each round. We adopted the experimental design technique to select the
optimal values of parameters T and σ in Figures 2 and 3. The feasible values of them
are set to {5, 10, 15, 20} and {5%, 10%, 15%, 20%}, respectively. In experiment, we found
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that, with the growing of T and σ, the performance of ULP improves slowly while the
computational time increases quickly. Considering the tradeoff between the effectiveness
and the computational complexity, T and σ are set to 5 and 5%, respectively.

Figure 4. Performance of the proposed algorithm compared with some
existing algorithms

At first, the performance of ULP, SVM-AL, BSVM-AL and TSVM-AL are compared.
Figure 4 shows the precision curves of the different methods at the top 20, top 40, top
60 and top 80 retrieval results. Several observations can be drawn from the experimental
results. First, by examining the results with all methods, we found that all methods
outperform the baseline SVM-AL, which demonstrates that both ensemble learning and
semi-supervised learning are beneficial to improve the retrieval performance of a CBIR
system. Second, however, the ensemble solution BSVM-AL is only marginally better than
the baseline method SVM-AL. The main reason is that the AdaBoost may degenerates to
a single strong classifier due to the over-fitting caused by the limited number of labeled
examples. Finally, by comparing the two semi-supervised solutions, it is impressive that
the performance of ULP is always the best, which shows that integrating the merits of
various leaning techniques is more effective than only using a single solution to deal with
the small example issue.

Furthermore, in order to study whether the two biased learning strategies are helpful
or not, the performance of ULP, ULP-d1 and ULP-d2 are compared. Figure 5 shows the
comparison results (Precision @ Top 50) of the three algorithms. As can been seen, the
performance of ULP and ULP-d1 are much better than ULP-d2, which illustrates that
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using the semantic clues is helpful to enhance the performance of short-term learning.
What’s more, ULP increasingly outperforms ULP-d1 with the rounds of feedback growing.
It is conjectured that positive and negative examples are nearly balance at the early rounds
of feedback. By gradually adding the user’s feedbacks, the positive and negative examples
become imbalance and thus Bias-Weighting strategy contributes more.

Figure 5. Performance the proposed algorithm compared with its degen-
erated variants

5. Conclusions. In this paper, we proposed a novel RF scheme that integrates the merits
of ensemble learning, semi-supervised learning, active learning and long-term learning to
address the small example problem. In particular, two biased learning strategies are used
within our framework to deal with the asymmetric distribution between the relevant and
irrelevant classes. The empirical results showed the advantages of the proposed solution
compared with some existing methods. In future, we will study more efficient solution to
reduce the redundancy among the informative examples by using clustering technique.
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