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A dynamic saliency attention model based on local complexity is proposed in this paper. Low-level visual
features are extracted from current and some previous frames. Every feature map is resized into some
different sizes. The feature maps in same size and same feature for all the frames are used to calculate
a local complexity map. All the local complexity maps are normalized and are fused into a dynamic
saliency map. In the same time, a static saliency map is acquired by the current frame. Then dynamic
and static saliency maps are fused into a final saliency map. Experimental results indicate that: when
there is noise among the frames or there is change of illumination among the frames, our model is
excellent to Marat’s model and Shi’s model; when the moving objects do not belong to the static salient
regions, our model is better than Ban’s model.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The human visual system can effortlessly detect an interesting
region or object in natural scenes through the selective attention
mechanism. Motion is clearly involved in visual attention based on
the fact that people’s attention is more easily directed to a mo-
tive stimulus in a static scene. Therefore, the human visual system
interprets not only a static input scene but also a dynamic input
scene with the selective attention mechanism.

Most computational models [1–7] of visual attention are static
and are inspired by the concept of feature integration theory [8].
The most popular is the one proposed by L. Itti et al. [9] and
it has become a standard model of static visual attention, in
which salience according to primitive features such as intensity,
orientation and color are computed independently. There are also
many models [10–16] bringing dynamic salience to visual atten-
tion mechanism. Marat et al. [17] used an optical flow method
to compute the dynamic salience. The optical flow method does
not require any prior knowledge of scene to detect dynamic ob-
jects, and it can also deal with the instance of background motion.
However, the optical flow method relies on the assumption of lu-
minance constancy, so the result is easy to be affected by illumi-
nation and noise. Shi and Yang [18] proposed a model for motion
detection in a video, in which dynamic part is obtained by frame
difference. This model is very simple and it can obtain dynamic
saliency map quickly. However, the result is easy to be affected by
threshold and noise. Ban et al. [19] also proposed a dynamic vi-
sual selective attention model. Firstly, a static saliency map was
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obtained by a frame in a video. Secondly, an optimal scale was
calculated for each pixel location and for each static saliency map.
Thirdly, those optimal scales and static saliency maps were used
to calculate the entropy to form an entropy map for every frame.
At last, all the entropy maps were used to calculate a new entropy
map, which was called dynamic saliency map. However, when the
moving objects do not belong to the salient regions, Ban’s model
is very hard to attend the moving objects.

In order to address the above problem, we propose a dynamic
saliency attention model based on local complexity in this paper.
This model includes a dynamic attention phase and a static at-
tention phase. In the dynamic attention phase, low-level visual
features are extracted from current and some previous frames in
a short video. Every feature map is resized into some different
sizes. The feature maps in same size and same feature for all the
frames are used to calculate a local complexity map. These com-
plexity maps in same feature and different size are normalized and
are fused into a dynamic map. All the dynamic maps in different
feature are fused into a dynamic saliency map. In the static at-
tention phase, same features are extracted and form multi-scale
feature maps by center-surround differences in current frame, and
then those feature maps are transformed into conspicuity maps,
which are linearly combined into a static saliency map. Our pro-
posed model decides salient regions based on a final saliency map
which is generated by integration of the dynamic and the static
saliency map. At last, the sizes of each salient region are obtained
by maximizing entropy of the final saliency map. Our proposed
model is shown in Fig. 1. The contents in the gray boxes are dis-
cussed in this paper.

The remainder of this paper is organized as follows. Section two
presents the dynamic saliency model including feature extraction
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Fig. 1. Our model: Firstly, all the visual features are extracted from current and some
previous frames; every feature map is resized into some different sizes. Secondly, a
local complexity map is obtained by combining the feature maps in same size and
same feature; all the local complexity maps are normalized and are fused into a
dynamic saliency map. Thirdly, same features are extracted and form multi-scale
feature maps by center-surround differences in current frame, and then through
across-scale combinations, those feature maps are transformed into conspicuity
maps, which are linearly combined into a static saliency map. At last, dynamic and
static saliency map are fused into a final saliency map, which guides human visual
attention.

and dynamic saliency map. While attentional selection is described
in section three, this part introduces how to acquire static saliency
map, final saliency map and the size of salient region. Section four
shows experimental results, and section five concludes this paper.

2. Dynamic saliency model

Our proposed model is inspired by the human visual system
from the retina cells to the complex cells of the primary visual
cortex. The retina extracts two signals from each frame that corre-
sponding to the two main outputs of the retina [20]. Each signal is
then decomposed into elementary features by a bank of cortical-
like filters. These filters are used to extract both dynamic and static
information, according to their frequency selectivity, providing two
saliency maps: a dynamic and a static one. Both saliency maps are
combined to obtain a spatiotemporal saliency map [17]. Our model
decomposes the input short video into different frequency bands:
a lower spatial frequency one to simulate the dynamic output and
a high spatial frequency one to provide a static output.

In this part, basic visual features are extracted from every frame
in a short video. Every feature map is resized into some different
sizes, which are transformed into lower gray-scale level. The fea-
ture maps in same size and same feature for all the frames are
used to calculate local complexity map. All the local complexity
maps are normalized and fused into a dynamic saliency map.

2.1. Feature extraction

For every frame in a short video, ten low-level visual features
including two color contrast features, two intensity contrast fea-
tures, four orientation features and two texture features are ex-
tracted in this passage. Let r, g and b are three color channels of
input image, four broadly-tuned color channels are created: R =
r − (g + b)/2 for red, G = g − (r + b)/2 for green, B = b − (r + g)/2
for blue, and Y = (r + g)/2 − |r − g|/2 − b for yellow (negative val-
ues are set to zero). RG = |R −G| is red/green contrast; BY = |B −Y |
is blue/yellow contrast. Therefore, color features are divided into
Fig. 2. The LBP operator.

red/green contrast and blue/yellow contrast two parties. Inten-
sity feature includes intensity on (light-on-dark) and intensity off
(dark-on-light). We convert the color object image into gray-scale
image to obtain an intensity image and let center/surround con-
trast be intensity on, surround/center contrast be intensity off. The
reason is that the ganglion cells in the visual receptive fields of the
human visual system are divided into two types: on-center cells
respond excitatory to light at the center and inhibitory to light at
the surround, whereas off-center cells respond inhibitory to light
at the center and excitatory to light at the surround [21]. There
are four orientations in our model: 0◦ , 45◦ , 90◦ and 135◦ . The ori-
entations are computed by Gabor filters detecting bar-like features
according to a specified orientation. Gabor filters, which are the
product of a symmetric Gaussian with an oriented sinusoid, sim-
ulate the receptive field structure of orientation-selective neurons
in primary visual cortex [21]. A Gabor filter centered at the 2-D
frequency coordinates (U , V ) has the general form of

h(x, y) = g
(
x′, y′)exp

(
2π i

(
U x′ + V y′)), (1)

where

(
x′, y′) = (

x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)
)
, (2)

g(x, y) = 1

2πσxσy
exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
. (3)

σx and σy are the scale parameter. In this paper, let σx = 3.8274,
σy = 5.8279 and φ equal to 0◦ , 45◦ , 90◦ and 135◦ , respectively. For
texture feature, we consider Local Binary Pattern (LBP) [22], which
describes the local spatial structure of an image and has been
widely used in explaining human perception of textures. Ojala et
al. [23] first introduced this operator and showed its high discrim-
inative power for texture classification. At a given pixel position
(xc, yc), LBP is defined as an ordered set of binary comparisons of
pixel intensities between the center pixel and its eight surround-
ing pixels (Fig. 2). The decimal form of the resulting 8-bit word
(LBP code) can be expressed as follows:

LBP(xc, yc) =
7∑

n=0

s(in − ic)2n (4)

where ic corresponds to the gray value of the center pixel (xc, yc),
in to the gray values of the 8 surrounding pixels, and function s(x)
is defined as:

s(x) =
{

1 x � 0,

0 x < 0.
(5)

Two LBP operators are used in this paper, one is original LBP
operator and the other is extended LBP operator with a circular
neighborhood of different radius size. The extended LBP operator
can keep size and rotation invariance and its pixel values are in-
terpolated for points which are not in the center of a pixel. The
two LBP operators are illustrated in Fig. 3. Therefore, ten features
are considered in this paper.
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2.2. Dynamic saliency map

For every frame in the video, ten feature maps are extracted
above. For i-th feature map Si , we create a Gaussian pyramid
of Si,s , where s ∈ {1,2,3,4}. In this way, each feature map has
four different sizes, which equal to one second, one fourth, one
eighth and one sixteenth respectively of the size of the feature
map Si . In order to reduce the time of computation, we work
with 256 gray level feature maps for each size and transform
them into a lower number of gray levels. Generally, good results
are usually obtained with eight levels in normal illumination in-
door and outdoor scenes. A higher value rarely gives better results,
whilst lower values (say, two or four) may be used for night vi-
sion [24].

In this paper, we transform every feature map into eight gray
levels. Let the maximal saliency value of all feature maps is M .
There are n frames in the short video. For each coordinate (x, y) at
successive k (k ∈ {1,2, . . . ,n}) frames for i-th feature and the s-th
scale, we normal this saliency maps Si,s(x, y,k) divided by M to
a fixed range [0,1]. After dividing the [0,1] range into some eight
equal parts, we let the values in different parts be different inte-
gers, whose range is [0,7]. Those integers are defined by Eq. (7).
Fig. 4 shows an example of transforming a feature map (a) into
eight gray level bands (b) and four gray level bands (c).

f i,s(x, y,k) = Si,s(x, y,k)/M, (6)

gi,s(x, y,k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 0 � f i,s(x, y,k) � 1/8,

1 1/8 < f i,s(x, y,k) � 1/4,

. . . . . .

7 7/8 < f i,s(x, y,k) � 1.

(7)

For the feature maps of the i-th feature and s-th scale for all
frames, we calculate the local complexity [25]. Let L(x, y) be a
local round region whose center is (x, y) and radius is s. The
local round region histogram hi,s(.) (i denotes the i-th feature
andsdenotes scale) is calculated by Eq. (8).

hi,s(x, y, l) =
∑

(x′,y′)∈L(x,y)

∑
k∈{1,2,...,n}

δ
(
l − gi,s

(
x′, y′,k

))
, (8)

where

(
x′, y′) ∈ L(x, y) (9)

Fig. 3. (a) The original LBP operator; (b) The extended LBP operator.
l ∈ {0,1, . . . ,7} and δ(.) is unit impulse function:

δ(x) =
{

1 x = 0,

0 x �= 0.
(10)

In order to avoid calculating the same pixel in gray level, we define
the sign function signi,s(.) as:

signi,s(x, y, l) =
{

1 hi,s(x, y, l) �= 0,

0 hi,s(x, y, l) = 0.
(11)

The local complexity map of the i-th feature and s-th scale in co-
ordinate (x, y) is:

Ci,s(x, y) =
7∑

l=0

signi,s(x, y, l). (12)

Let N(.) be normalization operator and ⊕ be point-by-point ad-
dition. The feature response map is formed by combining response
map of different spatial scales and the same feature:

Ci(x, y) =
4⊕

s=1

N
(
Ci,s(x, y)

)
. (13)

We use spatial competition function f to combine all features to
form a dynamic saliency map. For details regarding implementa-
tion of this feature combination strategy, please see Section 2.4 in
[26]

Md(x, y) = f

(∑
i

N
(
Ci(x, y)

))
. (14)

3. Attentional selection

In this part, dynamic and static saliency maps are fused into a
final saliency map and the sizes of each salient region are obtained
by maximizing entropy of the final saliency map.

3.1. Static saliency map and final saliency map

A static saliency map indicates how conspicuous every spatial
location based merely on image itself. The static saliency map part
in our proposed model is an extension of the model proposed by
Itti et al. [9] since our model considers texture feature.

In order to be consistent with dynamic salience map, we still
use color contrast, intensity contrast, orientation, and texture fea-
tures. Ten feature maps are implemented, sensitive to color con-
trast (red/green and blue/yellow), intensity contrast (light-on-dark
and dark-on-light), orientation (0◦ , 45◦ , 90◦ , 135◦) and two texture
features, as previously described. The extent to which the low-level
features used here attract attention in humans has been previ-
ously investigated in details [27]. Center and surround scales are
obtained using Gaussian pyramids with nine scales (from scale 0,
Fig. 4. (a) A feature map; (b) Eight gray level bands; (c) Four gray level bands.
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the original image, to scale 8, the image reduced by a factor
256). Center-surround differences are then computed as point-
wise differences across pyramid scales, for combinations of three
center scales (c ∈ {2,3,4}) and two center-surround scale differ-
ences (δ ∈ {3,4}); thus, six maps are computed for each of the
ten features, yielding a total of sixty feature maps. Each feature
map is endowed with internal dynamics that operate a strong
spatial within-feature and within-scale competition for activity,
followed by within-feature, across-scale competition and linear
combinations. The feature maps are fused step by step, thereby
strengthening important aspects and ignoring others. Resultingly,
initially possibly very noisy feature maps are reduced to sparse
representations of only those locations which strongly stand out
from their surroundings and form conspicuity maps. All con-
spicuity maps are then linearly combined into a static saliency
map Ms .

The dynamic saliency map and static saliency map are de-
scribed above. The final saliency map is their weighted sum. Both
maps compete for salience: the dynamic saliency map emphasizing
its temporal salience; the static salient map showing regions that
are salient because of its spatial conspicuities. To make the maps
comparable, Md is normalized in advance to the same range as Ms .
When fusing the maps, it is possible to determine the degree to
which each map contributes to the sum. This is done by weighting
the maps with a dynamic saliency map factor t (0 � t � 1)

M = t × N(Md) + (1 − t) × N(Ms). (15)

After the computation of the final saliency map, the most
salient region is determined and the focus of attention is directed
there. Thus, we obtain salient regions, and then, we obtain salient
sizes by maximizing entropy.

3.2. The size of salient region

In order to acquire the size of salient target object, we maxi-
mize the entropy of salient region. The entropy maximum is con-
sidered to analyze the sizes of salient regions [28]. The most ap-
propriate scale xs for each salient region centered at location x in
the final saliency map is obtained by Eq. (16) which aims to con-
sider spatial dynamics at this location:

xs = arg max
s

{
H D(s, x) × W D(s, x)

}
, (16)

where D is the set of all descriptor values which consist of the
intensity values corresponding the histogram distribution in a local
region with size s around an attended location x in final saliency
map, H D(s, x) is the entropy defined by Eq. (17) and W D(s, x) is
the inter-scale measure defined by Eq. (18).

H D(s, x) = −
∑
d∈D

pd,s,x log2 pd,s,x, (17)

W D(s, x) = s2

2s − 1

∑
d∈D

|pd,s,x − pd,s−1,x| (18)

where pd,s,x is the probability mass function, which is obtained by
normalizing the histogram generated using all the pixel values in a
local region with a scale s at position x in the final saliency map,
and the descriptor value d is an element in a set of all descriptor
values D , which is the same set of all the pixel values in a local
region.

4. Experimental results

We apply four schemes of dynamic visual attention model such
as Marat’s approach [17], Shi’s approach [18], Ban’s approach [19]
Fig. 5. The experimental results of single object synthetic scene, (a) Marat’s model,
the object is found in the 4th time; (b) Shi’s model, the object is found in the
2nd time; (c) Ban’s model, the object is not found within the first 5 times; (d) Our
proposed model, the object is found in the 1st time.

Fig. 6. The experimental results of multi-object synthetic scene, (a) Marat’s model,
two objects are found in the 3rd time and 5th time, respectively; (b) Shi’s model,
two objects are found in the 2nd time and 5th time, respectively; (c) Ban’s model,
one object is found in the 2nd time, but the other object is not found within the
first 5 times; (d) Our proposed model, two objects are found in the 2nd time and
4th time, respectively.
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Fig. 7. The experimental results of single object nature scene, (a) Marat’s model, the red car is found in the 4th time; (b) Shi’s model, the red car is found in the 5th time; (c)
Ban’s model, the red car is found in the 3rd time; (d) Our proposed model, the red car is found in the 4th time. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. The experimental results of multi-object nature scene. There are three motion objects in the scene, but the left pedestrian is not found within the first 5 times in all
those four models, (a) Marat’s model, two objects are found in the 1st time and 2nd time, respectively; (b) Shi’s model, two objects are found in the 1st time and 5th time,
respectively; (c) Ban’s model, two objects are found in the 1st time and 4th time, respectively; (d) Our proposed model, two objects are found in the 1st time and 2nd time,
respectively.
and our proposed approach on same short video sequences. Each
video sequence includes one or more motion objects. We have
done 50 group experiments and each group experiment is done
by these four approaches. Those 50 experiment scenes are di-
vided into 30 nature scenes and 20 synthetic scenes. The 30 na-
ture scenes include 15 single object scenes and 15 multi-object
scenes; the 20 synthetic scenes also include 10 single object scenes
and 10 multi-object scenes. Each single object scene just contains
one motion object, while each multi-object scene contains two
or more motion objects. According to the different motion object,
the experimental scenes are divided into single object synthetic
scenes, multi-object synthetic scenes, single object nature scenes
and multi-object nature scenes four part. We compare the four dy-
namic visual attention approaches in each part, respectively.

Fig. 5 provides the experimental results of single object syn-
thetic scene. There are five red dots in the green background, just
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Fig. 9. All object scenes experimental results of four models (x-axis expresses the how many times the target object is found; y-axis expresses the total number of emerged
in this time).

Fig. 10. The comparison of average hit number and detection rate for four different models in all scenes.
a dot is moving in 5 successive frames and this dot is marked by
an arrow. Fig. 6 provides the experimental results of multi-object
synthetic scene. The experimental results of single object nature
scene and multi-object nature scene are shown by Fig. 7 and Fig. 8,
respectively. In experiment, we take t = 0.9 which expresses that
the dynamic map is more important than static map for the final
saliency map. In those four models, our model included scale in-
formation in salient region, which was represented by a scaled box
on the corresponding salient region; other models did not include
any scale information and the boxes just expressed the location of
salient region.

In order to evaluate the effect of each model, we introduce
three definitions: hit number, average hit number [29] and detec-
tion rate. The hit number on an image for one target is the rank of
the focus that hits the target in order of saliency. For example, if
the 2nd focus is on the target, the hit number is 2. The lower the
hit number, the better the search performance. If the hit number
is 1, the target is immediately detected. The average hit number
for an image set is the arithmetic mean of the hit numbers of all
images. For example, if an image set just has three images and
the hit number is 2, 3 and 5, respectively, then, the average hit
number is 3.33. If target object is found within first 5 attention
foci [30], then visual attention is regarded as a success. We define
detection rate as the percentage of the number of scenes that tar-
gets detected within the first 5 attention foci to all the number of
scenes.
Table 1
All object scenes average hit number and detection rate of four models.

Marat’s
model

Shi’s
model

Ban’s
model

Our model

Av. hit number 7.3646 8.1458 8.5729 5.3750
Detection rate (%) 43.7500 39.5833 29.1667 65.6250

All the scenes experimental results of four models are shown
in Fig. 9, corresponding average hit number and detection rate of
those models are calculated in Table 1. The comparison of aver-
age hit number and detection rate for four different models in all
scenes is expressed in Fig. 10.

According to above experimental results, synthetic scenes ex-
perimental results are better than nature scenes experimental re-
sults. The reason is that the backgrounds of synthetic scenes are
simple, but the backgrounds of nature scenes are easy to be in-
fluenced by others, such as noise, illumination and clutter. Multi-
object scenes experimental results are better than single object
scenes experimental results. There are more dynamic regions in
multi-object scenes, so there are more chances to be found within
first several attention foci. When there is noise among the frames
or there is change of illumination among the frames, our model is
excellent to Marat’s model and Shi’s model. When the moving ob-
jects do not belong to the static salient region, our model is better
than Ban’s model. The reason is that our model uses the dynamic
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information between feature maps while Ban’s model uses the dy-
namic information between static saliency maps.

5. Conclusion

This paper presents a dynamic saliency attention model based
on local complexity. The main process is described as following.
Firstly, low-level visual features are extracted from current and
some previous frames in a short video; every feature map is re-
sized into some different sizes. Secondly, the feature maps in same
size and same feature for all the frames are used to calculated the
local complexity map. All the local complexity maps are normal-
ized and are fused into a dynamic saliency map. Thirdly, same fea-
tures are extracted and form multi-scale feature maps by center-
surround differences in current frame, and then through across-
scale combinations, those feature maps are transformed into con-
spicuity maps, which are linearly combined into a static saliency
map; our proposed model decides salient regions based on a final
saliency map which is generated by integration of the dynamic and
the static saliency maps. At last, the sizes of each salient region are
obtained by maximizing entropy of the final saliency map. Experi-
mental results indicate that: when there is noise among the frames
or there is change of illumination among the frames, our model is
excellent to Marat’s model and Shi’s model; when the moving ob-
jects do not belong to the static salient regions, our model is better
than Ban’s model.

The key contribution of this paper is the local complexity
method is used to calculate dynamic salience for all feature maps
in a short video. Our proposed model for a dynamic scene can play
an important role as an initial vision process for a more human-
like robot system. This model presents a new approach for pre-
dicting the position of human gaze. There are lots of applications
for dynamic visual attention model. For example, It can be used
to direct foveated image and video compression [31–33] and levels
of detail in non-photorealistic rendering [34]. It can also be used
in advertising design, adaptive image display on small devices, or
seam carving [35]. In our future works, we will extend our dy-
namic visual attention model to work in top-down environment
by adding some prior knowledge [36].
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