
[14:21 25/2/2012 Bioinformatics-bts001.tex] Page: 643 643–650

BIOINFORMATICS ORIGINAL PAPER Vol. 28 no. 5 2012, pages 643–650
doi:10.1093/bioinformatics/bts001

Sequence analysis Advance Access publication January 16, 2012

SNP calling using genotype model selection on high-throughput
sequencing data
Na You1,†, Gabriel Murillo2,†, Xiaoquan Su3, Xiaowei Zeng3, Jian Xu3, Kang Ning3,
Shoudong Zhang4, Jiankang Zhu4,5 and Xinping Cui2,6,∗
1Department of Statistical Science, School of Mathematics and Computational Science, Sun Yat-Sen University,
Guangzhou 510275, China, 2Department of Statistics, University of California, Riverside, CA 92521, USA, 3Qingdao
Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China, 4Plant
Stress Genomic and Technology Research Center, King Abdullah University of Science and Technology, Thuwal
23955-6900, Saudi Arabia, 5Department of Horticulture and Landscape Architecture, Purdue University, West
Lafayette, IN 47907,USA and 6Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of
California, Riverside, CA 92521, USA
Associate Editor: Alex Bateman

ABSTRACT

Motivation: A review of the available single nucleotide
polymorphism (SNP) calling procedures for Illumina high-throughput
sequencing (HTS) platform data reveals that most rely mainly on
base-calling and mapping qualities as sources of error when calling
SNPs. Thus, errors not involved in base-calling or alignment, such
as those in genomic sample preparation, are not accounted for.
Results: A novel method of consensus and SNP calling, Genotype
Model Selection (GeMS), is given which accounts for the errors that
occur during the preparation of the genomic sample. Simulations
and real data analyses indicate that GeMS has the best performance
balance of sensitivity and positive predictive value among the tested
SNP callers.
Availability: The GeMS package can be downloaded from https://
sites.google.com/a/bioinformatics.ucr.edu/xinping-cui/home/software
or http://computationalbioenergy.org/software.html
Contact: xinping.cui@ucr.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Within the last few years, advances in high-throughput sequencing
(HTS) technologies have garnered much attention (Metzker, 2009;
Snyder et al., 2010). These advances have necessitated more
efficient and more accurate data analysis tools. One area of recent
interest and development is that of single nucleotide polymorphism
(SNP) detection. Scientists have acknowledged and continue to
research the significant impact of SNPs in the development of
diseases (Chakravarti, 2001) as well as in pharmacogenomics
or personalized medicine (Meyer, 2004). Among SNP detection
tools, or ‘SNP callers’, that can be used for single-sample
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should be regarded as joint First Authors.

Illumina HTS platform data, popular procedures include those from
GATK (DePristo et al., 2011; McKenna et al., 2010), FreeBayes
(http://bioinformatics.bc.edu/marthlab/FreeBayes), SAMtools (Li
et al., 2009a), Atlas-SNP2 (Shen et al., 2010), SNVMix2 (Goya
et al., 2010), VarScan (Koboldt et al., 2009), SOAPsnp (Li et al.,
2009b) and MAQ (Li et al., 2008).

Upon closer examination, it becomes clear that the afore-
mentioned procedures rely mainly on base-calling and mapping
quality values as sources of error. Base-calling and mapping errors
can occur when converting raw intensity data into short read
sequences and when aligning these short read sequences to a
reference genome, respectively. However, they failed to account for
genomic sample preparation errors. These errors can occur during
the acquisition of the genomic sample, the random fragmentation
of the sample and the amplification of the fragments. In particular,
unaccounted amplification errors may have a significant negative
impact on HTS analyses (Kao et al., 2009).

In contrast to the above SNP callers, here we present Genotype
Model Selection (GeMS), our novel SNP detection procedure
which accounts for errors in the genomic sample preparation,
base-calling and alignment. At a given site, GeMS maximizes the
likelihood for each possible genotype with respect to the parameter
associated with the genomic sample preparation errors. The GeMS
consensus genotype is the one whose likelihood is the largest among
all genotype likelihoods. The Dixon outlier test is then used to
determine if a SNP should be called at the sites where the consensus
genotype differs from the reference genotype.

This article is organized as follows. Section 2 reviews a selection
of current SNP callers that can be used for single-sample Illumina
HTS platform data. Section 3 describes the GeMS procedure in
detail. Section 4 compares GeMS with its competitors through
a simulation study and real data analyses. Section 5 gives some
concluding remarks.

2 CURRENT HTS SNP CALLERS
The general premise in detecting variants in Illumina platform
HTS data is as follows. First, a genomic sample, containing many
complete copies of the sample’s genome, is obtained from a
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sample organism. These complete genome copies are then randomly
fragmented, attached to a flow cell and amplified. Then the
Illumina sequencing-by-synthesis, image analysis and base-calling
procedures are used to obtain the short read sequence information
and base-calling quality values. These short reads are then aligned
to the reference genome of the sample organism and the alignment
(mapping) quality values are determined. At each site along the
reference genome, a SNP is called if there are a sufficient number
of high-quality alleles to indicate a difference between the reference
genome and the sample genome.

Many of the available SNP calling procedures use some form of
the basic Bayes’ theorem,

P(Ei|D)= P(D|Ei)P(Ei)

P(D)
= P(D|Ei)P(Ei)∑

j P(D|Ej)P(Ej)
, (1)

where P(Ei|D) is the posterior probability of event Ei given the
observed data D, the prior probabilities P(Ei) and the conditional
probabilities P(D|Ei). The posterior probability is then used to
determine if there is a SNP at a given site.

A large difference between the SNP callers, however, is just how
the partition of events (the Ei) in Bayes’ theorem is structured. The
current version of SAMtools/BCFtools (http://www.broadinstitute
.org/gsa/wiki/images/1/10/Samtools.pdf) and SNVMix2 partition
over the genotype categories homozygous reference, heterozygous
reference and non-reference. GATK and SOAPsnp partition over all
the possible genotypes (GATK only considers the diploid scenario1

while SOAPsnp considers both haploid and diploid scenarios).
FreeBayes is based on GigaBayes (http://bioinformatics.bc.edu/
marthlab/GigaBayes) and PolyBayes (Marth et al., 1999) and
available documentation indicates that PolyBayes partitions over all
the possible true alleles aligned to a particular site. Atlas-SNP2 from
the Atlas2 variant analysis suite partitions over the possibilities of
a SNP being present or absent. The MAQ model partitions over the
three possible genotypes when considering the two most frequently
aligned alleles.

As the event partitions of the above SNP callers differ, it
is difficult to objectively compare their prior and conditional
probabilities. Further, there are also SNP callers that do not employ a
Bayesian approach such as the heuristic VarScan method (Koboldt
et al., 2009), which essentially reports all variant alleles at each
genomic site that meet certain criteria. Despite lacking the ability
to objectively compare the theoretical nature of each SNP caller,
it can be discerned that none of the aforementioned SNP callers
explicitly take genomic sample preparation errors into account. In
Section 3, we will show how the GeMS procedure utilizes this
information.

1The current GATK Unified Genotyper website has an image that
states that the L(G|D) likelihood is computed for 10 genotypes (http://
www.broadinstitute.org/gsa/wiki/index.php/Unified_genotyper). The GATK
paper (DePristo et al., 2011) indicates that given a specific alternative
allele, the GATK Unified Genotyper partitions over exactly three
genotypes: homozygous reference (AA), homozygous alternative (BB) and
heterozygous reference-alternative (AB) where the alternative, B, is fixed to
one nucleotide.

Table 1. GeMS model notation

Notation Explanation

s site index on a genome
ns number of aligned reads that cover site s
i∈{1,2,...,ns} index of a specific read covering site s

X (s)
i observed allele on read i at site s

M(s)
i mapping quality of read i covering site s

B(s)
i base-calling quality of the allele on read

i at site s

Y (s)
i true allele on read i at site s

The (s) superscript may be suppressed for convenience.

3 THE GEMS PROCEDURE
GeMS utilizes genotype likelihood maximization and Dixon’s
outlier test to detect SNPs. To introduce our new procedure, we
begin with a diploid organism and the notation in Table 1.

For every genomic site s, notate the pileup of the aligned
allele information as D. GeMS calls argmaxG1G2

P(G1G2|D) to
be the sample consensus genotype at site s, where G1G2 represents
the 10 possible genotypes given G1,G2 ∈{A,C,G,T}. Ideally, all
the observed alleles aligned to site s, Xi, should be one of the
haplotypes given by the true sample genotype. However, this is not
true in general because of errors in genomic sample preparation,
base-calling and alignment.

Assuming genotype G1G2, let Yi be defined as the original
allele, that is, the allele introduced before base-calling, of read i
aligned to site s. Ideally, Yi would be either G1 or G2. However, as
mentioned earlier, Yi is subject to the variability which originates
from the acquisition, fragmentation and amplification steps of the
genomic sample preparation. Therefore, Yi is a latent random
variable and, as given by Table 2, is assumed to follow a discreet four
point distribution [Categorical(pG1G2 )] with parameter p, the small
probability that Yi equals an allele different from the haplotypes of
the assumed genotype. For example, there is a small probability p
that Yi will equal each allele other than A if the assumed genotype is
AA. Likewise, there is a small probability p that Yi will equal each
allele other than C or T if the true genotype is CT.

Table 2. The 10 possible pG1G2 for Yi ∼Categorical(pG1G2 )

Model G1G2 pG1G2
A pG1G2

C pG1G2
G pG1G2

T

1 AA 1−3p p p p

2 CC p 1−3p p p

3 GG p p 1−3p p

4 TT p p p 1−3p

5 AC 1−2p
2

1−2p
2 p p

6 AG 1−2p
2 p 1−2p

2 p

7 AT 1−2p
2 p p 1−2p

2

8 CG p 1−2p
2

1−2p
2 p

9 CT p 1−2p
2 p 1−2p

2

10 GT p p 1−2p
2

1−2p
2
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Fig. 1. The relationship between the p and wi parameters.

Further, the GeMS model utilizes the Phred-scaled base-calling
quality values,2 Bi, and alignment (mapping) quality values, Mi,
for each observed allele, Xi, on read i covering site s. The
base-calling quality, Bi, is associated with the probability of a
base-call being incorrect and the alignment quality, Mi, is associated
with the probability of a short read being misaligned. Explicitly,
P(Incorrect Base-Call)=10−0.1Bi and P(Incorrect Alignment)=
10−0.1Mi .

We then define the accuracy or weight of an aligned allele, wi, in
the following way:

wi =min{P(Correct Base-Call),P(Correct Alignment)}
=1−10−0.1min{Bi,Mi}. (2)

Given a correct base-call and alignment, we can assume that
Xi =Yi. We therefore propose the following probability distribution
for Xi:

P(Xi =Yi|Yi)=wi,

P(Xi �=Yi|Yi)=1−wi and

P(Xi �=Yi,Xi =k|Yi)= 1−wi

3
for k ∈{A,C,G,T}. (3)

Figure 1 summarizes the relationship between the p and wi
parameters which are assumed to be independent under the GeMS
model. For simplicity, the pileup of the aligned allele data,
{(X1,M1,B1),(X2,M2,B2),...,(Xns ,Mns ,Bns )}, is denoted as D.
From Equation (3) and assuming that the reads, and thus the Xi,
are independent, we have:

L(pG1G2 )=P(D|G1G2)=
ns∏

i=1

P(Xi)

=
ns∏

i=1

∑
k∈{A,C,G,T}

[P(Xi|Yi =k)]P(Yi =k)

=
ns∏

i=1

∑
k∈{A,C,G,T}

[
wI(Xi=k)

i

(
1−wi

3

)I(Xi �=k)
]

pG1G2
k . (4)

Since the likelihood depends on each genotype G1G2, for each of
the 10 G1G2 models, we can determine L(p̂G1G2 ) by maximizing the
likelihood over p∈ (0,0.25]. The range for p is chosen based on the
observation that the p=0.25 case implies that all alleles are equally
likely. Furthermore, p>0.25 indicates the problematic assumption

2Prior to version 1.3, the Solexa pipeline did not utilize the Phred-scaled
base-calling quality encoding scheme.

Table 3. The four possible pG1 for the Yi ∼Categorical(pG1 )

Model G1 pG1
A pG1

C pG1
G pG1

T

1 A 1−3p p p p
2 C p 1−3p p p
3 G p p 1−3p p
4 T p p p 1−3p

that the alleles from the assumed genotype would less likely be
observed than those not from the assumed genotype.

By default, the GeMS model implicitly uses non-informative
genotype prior probabilities to call the consensus genotype. The
user, however, may use informative genotype priors when prior
information is available. Given the prior pG1G2

, the consensus
genotype is based on the posterior probability and is called to
be argmaxG1G2

P(G1G2|D)=argmaxG1G2
L(p̂G1G2 )pG1G2

. Denote
the 10 ordered posterior probabilities P(G1G2|D) with the
following order statistics P(1) =minG1G2

P(G1G2|D)≤P(2) ≤ ...≤
P(9) ≤P(10) =maxG1G2

P(G1G2|D). To call a SNP at a given site
where the consensus genotype differs from the reference genotype,
we need to show that P(10) is significantly larger than the other
posterior probabilities. In this article, we propose to use Dixon’s
Q test (Dixon, 1950) which was originally developed for detecting
outliers. Since each site would have a sample size of 10 posterior
probability values, the appropriate Q test statistic is:

Q= P(10) −P(9)

P(10) −P(2)
. (5)

This Q statistic essentially examines the ratio of the gap, between
the largest estimated posterior probability and the second largest,
to the range of estimated posterior probabilities (for a sample size
of 10 the more robust range statistic of P(10) −P(2) is used in the
computational implementation of Dixon’s Q test). One can control
how conservative this test is by changing their predefined α level.

For the haploid organism, the general theory discussed above
holds except that there are only four possible genotypes, represented
by G1, and thus we have only four models to consider for the model
selection. See Table 3 for the pG1 associated with each of the four
possible genotypes of a haploid organism.

4 VALIDATION OF THE GEMS PROCEDURE

4.1 Simulation study
To validate the GeMS method, we ran extensive simulations
demonstrating that GeMS has the best balance of sensitivity and
positive predictive value among other popular competing SNP
callers. The simulated short read data was generated based on
the reference genome and Illumina Genome Analyzer short read
data from the haploid bacterial species Thermoanaerobacter sp.
X514 (Supplementary Table S1 displays simulation details). We
used the MAQ (Li et al., 2008) simulation tools simutrain
and simulate to produce diploid FASTQ format short read data
with differing amounts of reads. These read amounts were chosen
such that the resulting alignment files would have approximate
coverage levels of 5, 10, 20, 50, 100, 200, 500, 1000 and 2000
(the higher simulated coverage levels are representative of current
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microbial sequencing data). MAQ simutrain ensured that the
simulated base-calling qualities were reflective of the real data.
MAQ simulate allowed us to control the frequency of single
nucleotide variants, which was set at 0.1% (10% of these variants
being indels), introduced into the simulated short read data when
compared with the reference genome. Though this simulation study
cannot completely represent the complexities of real biological
processes, we feel that this simulation is sufficient to evaluate the
SNP callers in a controlled manner.

After generating the short read data, we aligned the data with the
short read aligner BWA (Li and Durbin, 2010). We then compared
the results of the following SNP detection procedures3: GeMS,
SAMtools mpileup and BCFtools, the SAMtools implementation of
the original MAQ model, FreeBayes, the GATK Unified Genotyper,
the SAMtools implementation of SOAPsnp, Atlas-SNP2, VarScan
and SNVMix2. In both the alignment and SNP calling procedures,
we used the default options unless the default options were not
applicable. A summary of the options used in the simulation study
are recorded in Supplementary Table S1.

The criteria that we used for evaluation are sensitivity (identical
to recall) which is the fraction of ‘true called SNPs’ to ‘true SNPs’
and positive predictive value (PPV, identical to precision) which is
the fraction of ‘true called SNPs’ to ‘called SNPs’. The results are
displayed in Table 4.

Since our evaluation criteria are equivalent to precision and recall,
it is natural that we plot our results onto a precision–recall (PR) chart.
Similar in functionality to a receiver-operating characteristic (ROC)
curve chart, a PR chart has precision on the y-axis and recall on the
x-axis (Supplementary Figs 1 and 2 display the simulation results
on a PR plot). Thus, the SNP callers with the best performance will
have the shortest Euclidean distances to the (1,1) point of optimal
PR classification. These SNP caller performance distances, averaged
over the nine coverage levels, are listed in Table 5. Another way to
measure the balance of sensitivity and PPV for each SNP caller is
to average these two values as seen in Supplementary Table S2.

We first notice, from Table 5 and Supplementary Table S2,
that the GeMS procedure has the best performance balance of the
tested SNP callers. FreeBayes, as well as SAMtools and the MAQ
procedure which it is based on, offer the next best performance
levels. However, appealing to Table 4, we see that at every coverage
level, SAMtools is less sensitive than GeMS and FreeBayes and
MAQ offer less PPV when compared with GeMS.

A large difference between GeMS and SAMtools is that, as
noted above in Section 2, SAMtools only considers three consensus
genotype models. To directly determine how the 3 model approach of
SAMtools compares with the 10 model approach of GeMS, we ran a
version of GeMS, which like SAMtools, only considers the genotype

3Though there are more than eight SNP callers currently available for use,
the chosen SNP callers provided the most straightforward way to maximize
the impartiality of the comparison. Other SNP callers were considered, but
those not included in the testing usually were not compatible with all the
specifications of the comparison as given in Supplementary Table S1. For
example, SNP callers such as QCALL (Le and Durbin, 2011) that were
intentionally designed for multiple sample SNP calling were not included in
this single sample setup. Additionally, SNP callers such as Slider II (Malhis
and Jones, 2010) that were designed to use their own alignment methods
were also not included.

Table 4. SNP caller sensitivity and PPV

Sensitivity 5 10 20 50 100

VarScan 0.9261 0.9613 0.9643 0.9704 0.9749
SNVMix2 0.9261 0.9613 0.9643 0.9704 0.9749
FreeBayes 0.9216 0.9600 0.9621 0.9659 0.9712
MAQ 0.8353 0.9410 0.9630 0.9704 0.9749
GeMS 0.8264 0.9287 0.9607 0.9704 0.9749
SAMtools 0.7449 0.9045 0.9554 0.9672 0.9726
GATK 0.7070 0.9094 0.9594 0.9681 0.9735
Atlas-SNP2 0.6002 0.8720 0.9585 0.9690 0.9731
SOAPsnp 0.8353 0.9410 0.9630 0.9704 0.9735
Coverage Avg 0.8136 0.9310 0.9612 0.9691 0.9737

Sensitivity 200 500 1000 2000 Caller Avg

VarScan 0.9684 0.9751 0.9676 0.9733 0.9646
SNVMix2 0.9684 0.9751 0.9676 0.9733 0.9646
FreeBayes 0.9656 0.9697 0.9626 0.9707 0.9610
MAQ 0.9684 0.9751 0.9676 0.9725 0.9520
GeMS 0.9684 0.9751 0.9676 0.9733 0.9495
SAMtools 0.9679 0.9728 0.9653 0.9716 0.9358
GATK 0.9679 0.9737 0.9676 0.9729 0.9333
Atlas-SNP2 0.9679 0.9742 0.9676 0.9729 0.9173
SOAPsnp 0.6439 0.6486 0.9604 0.9672 0.8781
Coverage Avg 0.9319 0.9377 0.9660 0.9720 0.9396

PPV 5 10 20 50 100

SAMtools 1.0000 1.0000 1.0000 1.0000 1.0000
GeMS 0.9784 0.9828 0.9958 0.9991 0.9967
SOAPsnp 0.9740 0.9696 0.9682 0.9747 0.9695
MAQ 0.9740 0.9696 0.9673 0.9717 0.9611
FreeBayes 0.9637 0.9454 0.9370 0.9611 0.9640
GATK 0.9956 0.9899 0.9890 0.9863 0.9731
Atlas-SNP2 0.9656 0.9580 0.9251 0.8563 0.7471
VarScan 0.8836 0.8327 0.7489 0.6797 0.6374
SNVMix2 0.8855 0.8362 0.7525 0.6856 0.5737
Coverage Avg 0.9578 0.9427 0.9204 0.9016 0.8692

PPV 200 500 1000 2000 Caller Avg

SAMtools 1.0000 1.0000 1.0000 1.0000 1.0000
GeMS 0.9995 0.9968 0.9981 0.9991 0.9940
SOAPsnp 0.9674 0.9795 0.9912 0.9924 0.9763
MAQ 0.9725 0.9755 0.9777 0.9661 0.9706
FreeBayes 0.9665 0.9710 0.9771 0.9763 0.9625
GATK 0.9707 0.9467 0.8924 0.8499 0.9548
Atlas-SNP2 0.7049 0.7134 0.7237 0.7212 0.8128
VarScan 0.6373 0.6667 0.6871 0.6877 0.7179
SNVMix2 0.5183 0.4599 0.3579 0.2578 0.5919
Coverage Avg 0.8597 0.8566 0.8450 0.8278 0.8868

The first row indicates the simulated coverage values. The bottom row gives the column
averages at each coverage level. The remaining rows are sorted by the ‘Caller Avg’
column, which gives the average of the rows over all the coverage levels.

categories homozygous reference, heterozygous reference and non-
reference. The results of the three model GeMS analysis, contained
in the Supplementary Table S3, indicate that given the otherwise
unchanged GeMS procedure, considering only these three models
reduces the sensitivity at every coverage level when compared to
considering the 10 possible genotype models. This finding offers
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Table 5. Average of distance from (sensitivity,PPV) to (1,1) over all
coverage levels, listed in ascending order

SNP caller Distance

GeMS 0.0510
FreeBayes 0.0552
MAQ 0.0588
SAMtools 0.0642
GATK 0.0963
SOAPsnp 0.1272
Atlas-SNP2 0.2406
VarScan 0.2861
SNVMix2 0.4118

an explanation for the slightly lower sensitivity of SAMtools in
comparison with the regular GeMS method.

Finally, it is of interest to examine the simulated variants which
were not called by any SNP caller. There are 706 such false negative
sites across the 9 simulated datasets. In all, 604 of these sites were not
covered by any alleles and thus SNPs could not be called. In all, 94
of the 102 remaining sites were uniformly covered by the reference
allele (due to alignment errors) and thus again, SNPs could not be
called. Among the eight sites that were not uniformly covered by
the reference allele, all were covered with exactly one non-reference
allele with a low (<17) base-calling quality score. Since most of
the SNP callers did not even consider the one non-reference allele,
it is reasonable that these eight sites would not have been called.
Thus, accounting for the imperfect alignment of the simulated short
read data, the union of all the SNP caller calls did detect all the
simulated SNPs.

4.2 Real data analysis
4.2.1 The Arabidopsis sup1ros1 dataset In this analysis of
real data, we compare the SNP calls of GeMS, SAMtools
and GATK on sequencing data from an Arabidopsis sup1ros1
ecotype (http://computationalbioenergy.org/snp.html). SAMtools
was chosen because of its competitive performance in the simulation
study and GATK was chosen because of its rising popularity. For
the region of interest, sites 24 218 085–26 019 264 on chromosome
5, GATK and SAMtools identified 5341 and 4577 putative SNPs,
respectively. We set α=0.005 in GeMS to get confident SNP calls
for this comparison analysis.

It is known that our dataset was sequenced from a highly
homozygous mutation. Among the 10 possible diploid genotypes,
GATK’s default prior probabilities assign the highest probability to
the homozygous reference genotype and lower probabilities to the
other homozygous and heterozygous genotypes. For a sufficiently
fair comparison, we ran GeMS with the same prior probabilities as
GATK (Section 5.2). The resulting Venn diagram of SNP calls using
these three methods are shown in Figure 2.

In total, GeMS called 4452 SNPs with 73 as heterozygous
SNP calls. All these 73 heterozygous GeMS SNP calls were also
called as heterozygous SNPs by GATK but only 63 were called as
heterozygous SNPs by SAMtools. In contrast to the low 1.6% of
GeMS heterozygous SNP calls, 6.8% of the GATK SNP calls are
heterozygous and 2.9% of the SAMtools SNP calls are heterozygous.
Further, the percentage of overlapping SNPs between GeMS and

Fig. 2. Venn diagram of the SNP calls by GeMS, GATK and SAMtools. The
GeMS prior probabilities were set to equal those of GATK.

GATK, and GeMS and SAMtools are 99.7 and 92.6% of the GeMS
SNP calls, respectively. This suggests that most of the GeMS SNP
calls are supported by the other two popular methods.

We also consider the 319 sites identified as SNPs by both
GeMS and GATK but not by SAMtools. For these sites, other
than 10 heterozygous GeMS SNP calls, which are also called as
heterozygous SNPs by GATK, the percentage of the most frequently
aligned non-reference allele is at least 83.3%. Further, 83.8% (259
out of 309) of them are uniformly covered by only one type of
non-reference allele with coverage values spanning from 8 to 50.
For the 10 heterozygous SNP calls, the percentage of the most
frequently aligned non-reference alleles range from 43% to 75%,
indicating non-negligible allele variations. From the short read data,
we can determine that most of these sites should have been called as
SNPs. We can thus conclude that the SAMtools procedure exhibits
relatively low sensitivity in this dataset.

Further details likewise suggest that GeMS exhibits superior
sensitivity and PPV in this real data analysis when compared with
SAMtools and GATK. First, let us consider the 424 sites identified as
SNPs by both GATK and SAMtools but excluded by GeMS. About
87.7% of these 424 sites have coverage levels ≤7. Although 94.9%
of them are uniformly covered by only one type of non-reference
allele, due to the insufficient information reflected by the low
coverage levels, the likelihoods corresponding to variant genotypes
are not significantly larger than the other genotype likelihoods.
As mentioned previously, we used the same prior probabilities as
GATK. Thus, given a prior distribution that assigns high probability
to the homozygous reference genotype, the posterior probability of
the homozygous non-reference genotypes are smaller than that of the
homozygous reference genotype. Therefore, the consensus calls are
estimated as homozygous reference genotypes and excluded from
the GeMS SNP calls. Here we use the GATK prior distribution for the
purposes of fair comparison. As indicated in Section 5.2, such priors
can reduce the procedure’s sensitivity, especially when the coverage
is low. In this case, the use of non-informative prior probabilities is
recommended.

Reevaluating these 424 sites (SNP calls by GATK and SAMtools
but not GeMS) with the non-informative prior probabilities, 98.9%
of the low coverage sites (coverage ≤7) are called as SNPs by
GeMS, including all the positions which are uniformly covered
by only one type of non-reference allele. For the remaining sites
whose coverage is >7, 98.1% and 92.3% are called as heterozygous
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SNPs by GATK and SAMtools, respectively. Recalling the highly
homozygous nature of our dataset, these SNPs seem suspect.

Second, let us consider the exclusive GATK and SAMtools
SNP calls. Among the 477 exclusively identified GATK SNPs,
73.8% have coverage levels ≤7 and 98.4% of the remaining
calls are indicated to be heterozygous. With non-informative prior
probabilities, GeMS calls 92.3% of the low coverage sites as SNPs.

In the default GeMS settings, sites whose allele pileup is over 5%
deletions are flagged as potential deletion polymorphisms and are
then excluded from further analysis. Among the 30 sites exclusively
identified as SNPs by SAMtools, 13 are excluded by GeMS as
potential deletions. Among the remaining 17 sites, 15 have coverage
≤7 and 2 are called as heterozygous by SAMtools.

Third, the 10 sites exclusively identified as SNPs by GeMS and
the 2 sites identified as SNPs by both GeMS and SAMtools but
not by GATK, show clear SNP characteristics. These 12 sites are
uniformly covered by only one type of non-reference allele, with
coverage ranging from 9 to 16, thus again demonstrating the superior
sensitivity of GeMS. It is noteworthy that the 10 GeMS exclusive
SNPs are grouped into two 5 bp multiple nucleotide polymorphisms
(MNPs). Either these MNPs were filtered out of the SAMtools
and GATK results or MNP calling is not facilitated under the
SAMtools and GATK options listed in Supplementary Table S4.
Documentation to remedy this situation was not readily available.

As in the simulated data, it is also of interest to vary the coverage
levels of this real data. This can be done by randomly and uniformly
removing short reads such that the average coverage levels become
approximately 20, 10 and 5. In comparison, the average coverage
level of the complete dataset is 33. This procedure is reasonable
because this data is single-end and because BWA aligns reads
independently (Homer and Nelson, 2010).

Sites called as SNPs by all three SNP callers are generally viewed
as exhibiting strong SNP characteristics. Likewise, SNP calls made
exclusively by just one SNP caller are generally viewed as exhibiting
limited SNP characteristics. Since the true SNP locations are not
known in this real dataset, we can compare the performance of the
SNP callers by considering the proportion of exclusive SNPs to total
SNPs (E/T) within each SNP caller. It is also of interest to consider
the proportion of the SNP calls in the three-way intersection (of the
GeMS, GATK and SAMtools SNP results) to the overall total unique
SNP calls of all the three SNP callers (I/OT). These SNP caller E/T
proportions and the I/OT proportion are listed for different coverage
levels in Table 6. We first notice that GeMS has a significantly
lower E/T proportion at every coverage level as compared with
GATK and SAMtools. This fact indicates that the GeMS results

Table 6. SNP call proportions listed at coverage levels 33, 20, 10 and 5 as
given in the header row

33 20 10 5

GeMS E/T 0.0022 0.0010 0.0000 0.0000
GATK E/T 0.0893 0.0799 0.0915 0.1325
SAMtools E/T 0.0066 0.0145 0.0139 0.0429
I/OT 0.7656 0.7342 0.5230 0.1029

E/T indicates the proportion of exclusive SNPs to total SNPs within each SNP caller.
I/OT indicates the proportion of the SNP calls in the three-way intersection of the SNP
caller results to the overall total unique SNP calls of all three SNP callers.

exhibit better PPV. Also, as demonstrated with the simulated data,
we urge readers to exercise caution when using any SNP calling
procedure at low coverage levels. This warning becomes clear as
we notice the rapid decrease in the I/OT proportion as the coverage
level decreases.

4.2.2 The Thermoanaerobacter sp. X514 Xw2010 dataset Our
other real data analysis considers the haploid bacteria species
Thermoanaerobacter sp. X514 which was sequenced in 2008 and
again in 2010 (Xw2010 dataset). The 2008 data is assumed to be
mostly consistent with the Thermoanaerobacter sp. X514 reference
genome. However, given the short life cycle of bacteria, it is assumed
that the Xw2010 data (http://computationalbioenergy.org/snp.html),
considered below, may exhibit some genomic variants.

We compared the SNP calling results of GeMS and FreeBayes
because among the competitive SNP callers used in the simulation
study, only FreeBayes offers the option for haploid genome analysis.
To reduce inconclusive SNP calls, we first filtered out those GeMS
and FreeBayes SNP calls with short read coverage <4. Given
α=0.05, GeMS called 45 SNPs. FreeBayes called 31 SNPs, 21
of which were in common with GeMS.

The aforementioned SNP calls generally exhibit only two major
alleles, the reference and an alternative. Among the 10 exclusive
FreeBayes SNP calls, 2 are characterized by a significant number
of deletions. The other eight have reference allele coverage rates
of 45–75%. Among the 24 exclusive GeMS SNP calls, one has
a reference allele coverage rate of 48% but the 23 others have
reference allele coverage rates of 12–44%. Thus, the data indicate
that the exclusive GeMS SNP calls are more certain than the
FreeBayes exclusive SNP calls. Also, the comparatively large
number of strong exclusive GeMS SNP calls demonstrates that
GeMS has greater sensitivity than FreeBayes.

4.3 Computational performance
In addition to sensitivity and PPV, processing time and memory
usage are also consequential to HTS analysis procedures. We used
the simulation study scheme of Section 4.1 to compare these criteria
for the nine SNP callers on the nine simulated datasets.

To ensure fair results, we ran each procedure on the same
computing setup without any other significant tasks being processed
during the testing. The computer specifications were CPU: Intel
Xeon E5420 2.50 GHz Quad Core, RAM: 16 GB DDR2 ECC and
HDD: NFS 7500 rpm. The criteria that we used for the computational
evaluation are the time in seconds to process completion and
the maximum memory usage in megabytes (MB). The results are
displayed in Supplementary Table S5. In addition, Supplementary
Table S6 gives the average memory usage during each process.
We note that the VarScan procedure was not able to be completed
for coverage levels 500, 1000 and 2000. These data analyses were
performed on a computing setup with greater specifications to
complete the simulation results.

Regarding time to process completion, GeMS performed
considerably faster than SAMtools (the successor to MAQ),
FreeBayes and GATK. Though SNVMix2, SOAPsnp and MAQ
were faster than GeMS, we recall from Table 5 and Supplementary
Table S2 that these SNP callers did not perform as well as GeMS
with respect to the balance of sensitivity and PPV criterion.
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Among the available data, the maximum memory usage during
the simulation study was 3136 MB, which occurred while the Atlas-
SNP2 procedure was processing the 2000 coverage dataset. Thus, it
is expected that most high-performance computers will be able to
handle all the SNP calling procedures as described in Section 4.1.

5 DISCUSSION

5.1 Dixon’s Q test
As explained in the above model specification, we call a SNP if
the consensus genotype differs from the reference genotype and
if the consensus genotype is found to be an outlier by Dixon’s Q
test. This is appropriate in our setting because, to call a SNP, we
would like to be confident that our largest posterior probability,
P(10) =maxG1G2

P(G1G2|D), is much larger than the other posterior
probability values. In other words, we would like to know if P(10)
is actually an outlier when compared with P(1),P(2),...,P(9). We
use Equation (5) as the appropriate test statistic for the diploid case
when the sample size is 10 and the following test statistic for the
haploid case when the sample size is 4 [note that the denominator
of Equation (6) is setup differently from Equation (5)].

Q= P(4) −P(3)

P(4) −P(1)
(6)

Both test statistics essentially examine the ratio of the gap,
between the largest posterior probability to the second largest,
to the range of the posterior probabilities. The P-value is then
computed [computation algorithm based on the R (http://www
.r-project.org/) outliers (http://cran.r-project.org/web/packages/
outliers/index.html) package] and a SNP is called if the P-value<α

and the consensus genotype differs from the reference genotype.

5.2 Prior probabilities
Intuitively, using prior probabilities that are consistent with the truth
will yield more accurate results. Conversely, misleading results can
arise from using unrealistic prior probabilities. Most SNP callers
assign the largest prior probability to the homozygous reference
genotype. For example, given ε=10−3, the priors assigned in the
GATK Unified Genotyper (http://www.broadinstitute.org/gsa/wiki/
index.php/Unified_genotyper) are,

P(heterozygous genotype)=ε,

P(homozygous non-reference genotype)= ε

2
and

P(homozygous reference genotype)=1− 3ε

2
. (7)

For the vast majority of sites which do not harbor SNPs, such a
prior probability arrangement can help to reduce false positive SNP
calls. However, for true SNP sites, such prior probabilities can reduce
the SNP caller’s sensitivity, especially when the coverage is low.
We thus recommend the use of non-informative prior probabilities
unless useful additional information is available.

5.3 Calling indels
GeMS does not have indel calling functionality at this time. Among
the SNP callers tested in the above simulation study, indel calling
procedures are provided by MAQ, VarScan, FreeBayes, SAMtools,

GATK and the Atlas2 variant analysis suite. Dindel (Albers et al.,
2011), a popular stand-alone indel caller, is also available. Based
on our informal testing, Dindel appears to have the best balance of
sensitivity and PPV among the aforementioned indel callers and can
be combined with GeMS for structural variant detection.

5.4 Future work
The GeMS software package currently supports the SAMtools
pileup alignment format (http://samtools.sourceforge.net/pileup
.shtml) and will soon support SAM/BAM alignment files (Li
et al., 2009a). For more information on pre-filtering undesirable
short reads4 from SAM/BAM alignment files before converting to
SAMtools pileup alignment files, please see the PDF document
‘Pre-Filtering Alignment Files’(https://sites.google.com/a/
bioinformatics.ucr.edu/xinping-cui/home/software/ngs-snp-calling).

Compared with many SNP callers, the main contribution of GeMS
is that it considers more variation when making SNP calls. Following
this framework, the GeMS model could be extended to the multiple
sample case, where there are multiple individuals in a mutation
library. The purpose of SNP calling would thus be to discover the
frequency that different SNPs occur in different individuals.
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