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This paper proposes a new approach to improve multiclass classi¯cation performance by
employing Stacked Generalization structure and One-Against-One decomposition strategy. The

proposed approach encodes the outputs of all pairwise classi¯ers by implicitly embedding two-

class discriminative information in a probabilistic manner. The encoded outputs, called Meta
Probability Codes (MPCs), are interpreted as the projections of the original features. It is

observed that MPC, compared to the original features, has more appropriate features for

clustering. Based on MPC, we introduce a cluster-based multiclass classi¯cation algorithm,

called MPC-Clustering. The MPC-Clustering algorithm uses the proposed approach to project
an original feature space to MPC, and then it employs a clustering scheme to cluster MPCs.

Subsequently, it trains individual multiclass classi¯ers on the produced clusters to complete the

procedure of multiclass classi¯er induction. The performance of the proposed algorithm is

extensively evaluated on 20 datasets from the UCI machine learning database repository. The
results imply that MPC-Clustering is quite e±cient with an improvement of 2.4% overall

classi¯cation rate compared to the state-of-the-art multiclass classi¯ers.

Keywords : Multiclass classi¯cation; classi¯er; stacked generalization; decomposition; one-

against-one; support vector machine; multilayer perceptron; clustering; self organizing map.

1. Introduction

Classi¯cation is the act of deciding the category of a given object based on a number

of attributes related to that object. Despite the long history of classi¯cation, the

research on this topic was limited in theory before 1960.31 Alongside the progress of

computers and due to new interest, automatic pattern classi¯cation has gained more

attention. Automatic pattern classi¯cation employs a machine learning algorithm to
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induce a classi¯er given a training data set. The induced classi¯er then should be able

to assign a prede¯ned class label for new data from the same domain.21

So far, a wide variety of machine learning algorithms have been proposed for

pattern classi¯cation.28 Most of these techniques essentially involve the discrimi-

nation of only two classes such as SVM,6 Perceptron algorithm,15 and RIPPER.9

However, real world applications are often not that simple and they demand the

construction of classi¯ers capable of distinguishing multiple patterns. To generalize

binary classi¯ers to multiclass classi¯cation problems, there are generally two tech-

niques: solving a single optimization problem by adapting internal operations of

binary classi¯ers,37,39 and decomposition. Due to the fact that inducing multiclass

classi¯ers by adapting internal operations of binary classi¯ers is not easy to

accomplish, and in some cases it is impractical,17,25 the decomposition technique has

become more popular within the community. In the following, we give a brief review

of two commonly used decomposition strategies, followed by short abstracts of the

well-known alternative decomposition approaches proposed in the literature.

1.1. Two major decomposition strategies

1.1.1. One-Against-All

Perhaps the most standard method for decomposition of a multiclass classi¯cation

problem into binary subproblems is the One-Against-All (OAA) strategy. In this

strategy, k di®erent binary classi¯ers are trained to classify k di®erent classes, each of

which separate a single class from the remaining. That is, the samples in one class are

considered positive examples and the remaining samples belonging to the other

classes are considered negative examples. Using the highest output value for an

unknown sample, OAA reveals the corresponding class of the sample. The main

disadvantage of OAA is that it may induce an inaccurate binary classi¯er for given

classes when the data is unbalanced,30 i.e. the number of positive examples is too low

compared to the number of negative examples and vice versa.

1.1.2. One-Against-One

Another common and popular decomposition strategy is the One-Against-One

(OAO). In this strategy, all possible pairs of di®erent classes are taken into account

and therefore kðk� 1Þ=2 binary classi¯ers are induced, each of which separate a pair

of classes. Then the ¯nal classi¯er is built by combining individual binary classi¯ers.

The main drawback of OAO is as follows: if the number of training samples is not

enough and the binary classi¯ers are not regularized carefully, the ¯nal classi¯er will

tend to over¯t.30 The training process of the binary classi¯ers in this approach is

simpli¯ed and needs less time compared to OAA. This is due to the fact that in OAO

for each binary classi¯er, only the samples of two classes are considered, while in

OAA all the samples are used for training binary classi¯ers. In this strategy, however,

the number of binary classi¯ers grows super linearly with the number of classes.
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1.2. Alternatives to decomposition strategies

The main issue in decomposition technique is the method of combining each binary

classi¯er's result to produce the ¯nal result. One simple and basic solution is to use

majority voting. In this solution, each of the classi¯ers has the same in°uence on the

¯nal result. To weight classi¯ers and de¯ne their degree of importance, one can use

arti¯cial neural networks.15

Stacked Generalization is a well-known technique, proposed by Wolpert,41 to

weight the outputs of the individual classi¯ers through a combination method rather

than using a voting scheme.32 In this technique, di®erent (non-identical) base lear-

ners are trained using a part of the training set. Subsequently, their outputs for the

remaining set of the training examples are generated. This stage is known as 1-level

and the generated outputs at this stage are called meta-features. In the next stage,

2-level, a multiclass classi¯er called meta-learner, is trained based on the meta-

features obtained from 1-level. The objective of this classi¯er is to learn the correct

output given a certain combination of the base learners' output.2 It has been shown

that Stacked Generalization has a good generalization performance compared with

individual classi¯ers. However, its performance decreases when the number of classes

and the dimension of the feature space increase.24

Another way of combining the results of individual binary classi¯ers is to use

Decision Directed Acyclic Graph (DDAG) architecture.26 This algorithm reduces a

multiclass problem to a set of two-class classi¯ers at each node by organizing them in

a tree structure. Thus, an unknown sample is evaluated at each node, and depending

on the result at each node, the sample traverses the tree until a solution is obtained.

This approach has some disadvantages that were pointed out by Kijsirikul and

Ussivakul.19 The result of the ¯nal classi¯er in DDAG depends on the sequence of the

binary classi¯ers in the nodes of the graph. Therefore, di®erent permutations of the

nodes may produce di®erent results a®ecting the reliability of the ¯nal classi¯er.

Additionally, the number of evaluations depends on the position of the true class in

the graph, which in turn increases the cumulative error.19

Dietterich and Bakiri11 introduced the Error Correcting Output Coding (ECOC)

approach to combine the output of binary classi¯ers. They proposed employing k binary

classi¯ers to produce a binary pattern of length k, so called code-word, and applying an

exhaustive method to ¯nd optimal code-words to assign to each class. For a given

unknown sample, its code-word is generated ¯rst and then is compared with the preas-

signed code-words. The closest preassigned code-word to the sample's code-word, in

terms of Hamming distance, reveals the sample's class. In this approach, to possess a good

error-correction capability, preassigned code-words should be well separated from each

other. Additionally, there should be no correlation between any two bits in a column.14

While this method has demonstrated a good performance in pattern recognition pro-

blems, it has been pointed out in Ref. 18 that this approach is an NP-complete problem.

Although decomposition techniques and their alternatives have been very pro-

minent in the literature, there are some heuristic and interesting methods proposed
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to improve the classi¯cation accuracy and overcome the aforementioned dis-

advantages (see Refs. 29 and 38 and references therein). Recently, Mehrotra et al.22

have introduced the idea of classi¯cation based on clustering. In their method, which

is typically well suited for problems with a large feature set, the training samples

are clustered ¯rst based on the selected features among the available features.36

Then, individual multiclass classi¯ers are trained on each cluster. For a given sample,

its cluster is determined ¯rst and then the corresponding classi¯er is used to

classify it.

Cluster-based classi¯cation approach can improve the classi¯cation performance

by squeezing out the last drop.22 However, we believe that there are yet more drops

that can be squeezed by improving the clustering step of the cluster-based classi¯-

cation. In this paper, we propose a new approach to improve multiclass classi¯cation

performance by employing Stacked Generalization structure and OAO decompo-

sition strategy. The proposed approach encodes the outputs of all the pairwise

classi¯ers by implicitly embedding two-class discriminative information in a prob-

abilistic manner. The encoded outputs are interpreted as the projections of the

original features. The motivation behind our approach is to search an optimal

transformed feature space that can outperform the original feature space in terms of

clustering and improve the multiclass classi¯cation performance.

The performance of our proposed algorithm is evaluated by applying it on 20

di®erent datasets from the UCI machine learning database repository.35 It is shown

that our algorithm improves the classi¯cation rate by almost 2.4% on average.

Moreover, the performance of the projected features is also evaluated without

applying a clustering step. That is, a known multiclass classi¯er is trained directly on

the projected samples. It is shown that the classi¯cation accuracy of SVM and kNN

trained on the projected features improved by 0.99% and 3.62%, respectively.

The rest of this paper is organized as follows. Section 2 introduces our approach

for projecting the original feature's space to a new feature space; Sec. 3 presents

an algorithm for multiclass classi¯er induction based on the proposed projection;

experimental results are given in Sec. 4; and Sec. 5 is the conclusion.

2. Meta Probability Code

In this section, we aim to introduce a novel approach to project the original feature

space to a new feature space. The basic idea of the proposed approach is established

based on Stacked Generalization structure. Therefore, there are base learners from

Stacked Generalization in our approach as well. To make the proposed projection

approach compact, the base learners in our scheme are chosen to be identical;

whereas in the original idea of Stacked Generalization, the base learners were not

identical.

Given k classes fCi; i ¼ 1; . . . ; kg, and a training sample set X ¼ fðxi; yiÞ; i ¼
1; . . . ; lg, where xi 2 RN is the ith sample, yi 2 f1; . . . ; kg is the class label of the ith

sample, and l is the number of samples, K ¼ kðk� 1Þ=2 pairwise binary classi¯ers
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(i.e. base learners) are trained according to the OAO strategy:

hB
r;sðxiÞ ¼

1 if xi 2 Cr

0 if xi 2 Cs

�
for r ¼ 1; . . . ; k� 1; and s ¼ rþ 1; . . . ; k; ð1Þ

where the superscript B indicates that hB is a binary classi¯er.

All the binary base learners can be trained using the training set. Our goal is to

train the base learners and build a projection function accordingly. The outputs of

the base learners are concatenated in order to form a new feature vector t:

t ¼ fðxÞ;
fðxÞ ¼ �hB

r;sðxÞ; f : RN ! QK ;
ð2Þ

where N and K are the dimensions of the original data space and the projected data

space, respectively.

The output of hBs can either be the class probability (real-valued output) or the

class prediction (binary-valued output). Since the class probability produces a

smoother con¯dence measure compared to the class prediction,33 in the proposed

approach we consider the class probabilities for hBs as our primary choice, which is

indicated by hBp. Nevertheless, the class prediction (hBb), is also considered in our

work and its performance is evaluated. We call tMeta Probability Code (MPC) if the

base learners are considered to be hBp, and Meta Binary Code (MBC) if the base

learners are considered to be hBb. That is:

MPCðxÞ ¼ �hBp
r;sðxÞ where hBp

r;sðxÞ ¼ pðrjxÞ; ð3Þ

MBCðxÞ ¼ �hBb
r;sðxÞ where hBb

r;sðxÞ ¼
1 if x 2 Cr

0 if x 2 Cs:

(
ð4Þ

It should be noted that to generate MPCs, we only use the probability of being a

member of class r, pðrjxÞ, rather than using both of the probabilities.

3. MPC-Based Algorithm

In this section a cluster-based multiclass classi¯cation algorithm based on MPC is

introduced.

3.1. MPC-Clustering overview

In the MPC-Clustering (MPCC) algorithm, both the training and testing procedures

consist of three steps.

3.1.1. Training

The ¯rst step deals with projecting original samples to MPCs [Eq. (3)]. The second

step clusters the MPCs, and the ¯nal step trains individual multiclass classi¯ers on

the produced clusters, i.e. the classi¯cation task is localized and limited on each

cluster.
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Let us assume that for a given projected samples' set fðti; yiÞ; i ¼ 1; . . . ; lg, where
ti 2 QK is the ith projected sample, S clusters (partitions) L ¼ SS

s¼1 ‘s are produced

(the elements of ‘s are pairwise disjoint). An optimal multiclass classi¯er hM
s is

trained on cluster ‘s ¼ fðtj; yjÞ; j 2 N sg, where N s is the set of samples' indexes in

cluster ‘s, such that:

hM
s ðtjÞ ¼ yj: ð5Þ

The superscript M indicates that hM is a multiclass classi¯er. In the next subsection,

we will describe a criterion that should be taken into account for clustering.

3.1.2. Testing

Given an unknown sample, its MPC is generated ¯rst. Then, the cluster the MPC

belongs to is determined. Finally, the class label of the sample is obtained using the

multiclass classi¯er of the corresponding cluster.

Figures 1(a) and 1(b) show the training and the testing procedures of MPCC

algorithm, respectively.

3.2. Cluster post-processing

It is obvious that in a given dataset, if the samples of some categories are very similar

or the number of clusters is considered to be large, any clustering scheme may

produce some clusters which contain only samples of one category, called mono-

cluster. Since in the last step of the proposed algorithm individual multiclass

classi¯ers, hMs, are trained on the produced clusters, we should be aware of mono-

clusters, otherwise the algorithm will face di±culty when it is trying to train hMs.

Therefore, to avoid having mono-clusters, we should consider a criterion in the

clustering step of the proposed algorithm:

8 ‘i 2 L;  ð‘iÞ > 1; ð6Þ
where  ð:Þ is the number of di®erent categories (classes) of the elements (samples) in

a given set.

The criterion proposed in (6) is implemented via an aggregating procedure where

all the produced mono-clusters are joined to their closest clusters. Note that even

after joining a mono-cluster to its closest cluster, we may have another bigger mono-

cluster. Thus, we repeat the procedure until no mono-clusters exist. This procedure is

called cluster post processing and is shown in Fig. 2.

3.3. Toy example

To demonstrate how MPCC works, we employ a toy dataset containing 51 samples

of three classes; A, B and C. The 2D scatterplot of the dataset is shown in Fig. 3.

The ¯rst step in MPCC is to project the original feature vectors to MPCs. To this

end, three pairwise binary classi¯ers, hA;B, hA;C and hB;C , are induced according to
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Eq. (1).a Following Eq. (3), we feed each of the base learners with every sample in the

toy dataset. Hence, for a given sample in the dataset, the real-valued outputs (class

probabilities) of hA;B, hA;C and hB;C together produce a new three-dimensional fea-

ture vector (MPC). Figure 4 shows a 3D scatterplot of the MPCs. It indicates that

the MPCs are linearly separable while the original features, as can be seen from

Fig. 3, are not.

The second step is to cluster the projected samples. Here, for simplicity, we use

k-means clustering scheme where the value of k is set to 2. The produced clusters

are also shown in Fig. 4 and are indicated by black ellipses. Applying the cluster

post-processing procedure, the ¯nal clusters are produced. Since there are no

Fig. 1. MPC-Clustering algorithm. (a) Training procedure, (b) testing procedure.

aThe base learners are chosen to be Support Vector Machine. For more detailed information see Sec. 4.2.
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Fig. 3. 2D scatterplot of the toy dataset.

Fig. 2. Cluster post-processing procedure.
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mono-clusters produced, the cluster post-processing procedure will not change any of

the clusters.

To ¯nalize MPCC, any known multiclass classi¯cation algorithm can be used to

induce hMs [Eq. (5)].

4. Experiments and Results

4.1. Datasets

To investigate the performance of the proposed algorithm for multiclass classi¯-

cation, we conducted experiments on 20 datasets from UCI.35 Table 1 shows a brief

description of these datasets. The chosen datasets are from di®erent categories with

di®erent levels of di±culty, which represent a wide range of domains and data

characteristics. Meanwhile, we choose those datasets that have more than two types

of patterns to be classi¯ed (k > 2). The entries that contain missing values are not

considered in our experiments.

4.2. Employed classi¯ers and clustering schemes

To induce binary and multiclass classi¯ers in the experiments, we employ three

classi¯ers from di®erent categories: SVM,6 Multi-Layer Perceptron,8,15 and k-Nearest

Fig. 4. 3D scatterplot of the toy dataset after projecting its features to MPC. Final clusters are indicated
by black ellipses.
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Neighbor. For clustering purposes, two clustering schemes, SOM20 and k-means, are

tested. In the following, a brief description of each of the classi¯ers and clustering

schemes, along with their properties used in our experiments, are presented.

4.2.1. Support vector machine

Given a set of training sample pairs ðxi; yiÞ where xi 2 RN and y 2 f�1;þ1g, the
solution of the following optimization problem is required in SVM:

min
w;b;�

1

2
wTwþ C

Xl

i¼1

�i

subject to yiðwT�ðxiÞ þ bÞ � 1� �i;

ð7Þ

where l is the number of samples, C is the penalty parameter and � is a kernel

function. The kernel function maps training vectors to a higher dimension with the

hope that there will be a linear separating hyperplane with the maximal margin. The

radial basis function, also known as Gaussian function, is a commonly used kernel

function and is as follows:

Kðxi;xjÞ ¼ expð��jjxi � xjjj2Þ; � > 0; ð8Þ

where � is the kernel parameter.

Table 1. Description of the datasets used in the experiments.

No. of Instances

No. Dataset

No. of

Classes

No. of

Features

Missing

Value Min Max Total

No. of

Train

No. of

Test

1 Abalone 3 8 NO — — 4177 3133 1044

2 Car 4 6 NO 65 1210 1728 — —

3 Chess (King vs. King) 18 6 NO 27 4553 28056 — —

4 Dermatology 6 34 YES 20 112 358 — —

5 Glass 6 9 NO 9 76 214 — —

6 Heart Disease Cleveland 5 13 YES 13 160 297 — —

7 Iris 3 4 NO 50 50 150 — —

8 Letter Recognition 26 16 NO 734 813 20000 — —

9 Mfeat.FOU 10 76 NO 200 200 20000 — —

10 Mfeat.MOR 10 6 NO 200 200 20000 — —

11 Mfeat.ZER 10 47 NO 200 200 20000 — —

12 Nursery 5 8 NO 2 4320 12960 — —

13 Page Blocks 5 10 NO 28 4913 5473 — —

14 Pen Digits 10 16 NO 719 780 7494 7494 3498
15 Sat Image 6 36 NO 215 1038 4435 4435 2000

16 Segment 7 19 NO 30 30 210 210 2100

17 Soybean 15 35 YES 10 40 291 291 341

18 Vehicle 4 18 NO 199 218 946 — —

19 Wine 3 13 NO 48 71 178 — —

20 Yeast 10 8 NO 5 463 1484 — —
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Once the optimization problem in Eq. (7) is solved, the class of a given unknown

sample x is determined with the following decision function:

class of x � arg max
i2f�1;þ1g

ððw iÞT�ðxÞ þ biÞ: ð9Þ

In this paper, for SVMs' kernels, Gaussian function is chosen and the parameter

selection is done based on grid optimization strategy.16 That is, for a given problem,

the generalization accuracy using di®erent kernel parameters � ¼ ½2�5; 2�4; . . . ; 25�,
and cost parameters C ¼ ½2�5; 2�4; . . . ; 210� are estimated. Thus, 11� 16 ¼ 176

combinations are tried to ¯nd the optimum parameters. Note that the parameter

optimization is only done on the training samples via ¯ve-fold cross validation. The

publicly available implementation of SVM, libsvm,7 is employed. To produce the

probability outputs, we also use the provided routines in libsvm. The routines have

been implemented based on the work proposed by Wu et al.42

The second step in MPCC algorithm partitions all the given training samples into

clusters. These clusters obviously will contain only a fraction of the classes and

samples. Therefore, to simplify MPCC algorithm we consider the use of single

machine approach for induction of hMs. To this end, an implementation of the work

proposed in Ref. 10 (multiclass SVM), bsvm,5 is used in our experiments.

4.2.2. Multi-layer perceptron

The Multi-Layer Perceptron (MLP)8,15 is an arti¯cial neural network which consists

of more than one layer. The outputs of each layer are connected to one or more of the

inputs of the next layer. The technique which MLP employs for training the network

is called back-propagation.23 Two main activation functions in this network are both

sigmoid and are as follows:

�ðyiÞ ¼ tanhðviÞ; ð10Þ
�ðyiÞ ¼ ð1þ e�viÞ�1; ð11Þ

where yi is the output of the ith node and vi is the weighted sum of the input nodes.

The ¯rst function [Eq. (10)] ranges from �1 to þ1 and is a tangent hyperbolic.

The second function [Eq. (11)] is called logistic sigmoid and ranges from 0 to 1. The

logistic sigmoid function, which is equal in shape with the tangent hyperbolic, allows

the outputs of MLP to be interpreted as an estimated probability of the form

pðtarget ¼ 1jxÞ.4
In this paper, we use a three layer MLP. The second layer (hidden layer) uses

tangent sigmoid and the last layer (output layer) uses logistic sigmoid in order to

serve probability outputs of the base learners [Eq. (3)]. The initial weights are given

according to the Nguyen�Widrow algorithm and the training is done based on the

Levenberg�Marquardt Conjugate back-propagation algorithm. The number of

hidden layer nodes is tuned and done by varying it from a tenth to a half of the

number of features in steps of ¯fths.
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4.2.3. k-nearest neighbor

The k-Nearest Neighbor (kNN) algorithm is one of the simplest classi¯cation

algorithms in pattern recognition. In this algorithm, the label of an unknown sample

is assigned by a majority vote of its neighbors. In other words, the class which is the

most common class among the k nearest neighbors of a given sample's neighborhood

is determined as the sample's class.

In our work, for kNN algorithm, Euclidean measure is used for distances, and

tuning the value of k is done with values ranging from 1 to 10.

4.2.4. Self organizing map

One of the most popular neural network models is the Self-Organizing Map (SOM)20

which belongs to the category of competitive learning networks. The training pro-

cedure in this network is unsupervised. Therefore, SOM is very suitable for clustering

the data of which a little information about its characteristics is available.

In this paper, a two-dimensional structure for SOM is used, i.e. any feature vector

from a high dimensional space is mapped to a 2D space. The size of the SOM network

is chosen to be 200� 200, and the Euclidean distance is used as a distance measure.

4.2.5. k-means

The k-means is a well-known clustering scheme in which it partitions samples into

one of k groups. The partitioning procedure is iterative and it tries to minimize the

overall within-cluster scatter by reallocating clusters' members. The value of k is

chosen prior to the partitioning procedure. In this study, the proper number of

partitions, k, is selected by cross validation.

4.3. E®ectiveness of the proposed approach

Cluster-based multiclass classi¯cation algorithm tries to localize the classi¯cation

task by furthering a clustering step and training individual multiclass classi¯ers

based on the produced clusters. Therefore, as it should, the clustering step plays the

most important role in this algorithm. The e®ectiveness of this step can be examined

from two aspects: (1) the e®ectiveness of the clustering scheme itself, and (2) the

e®ectiveness of the features being clustered. The former aspect was discovered by the

study of Abbas1 where k-means clustering, Hierarchal clustering, Self Organizing

Map, and Expectation Maximization (EM) clustering schemes were compared from

di®erent points of view. However, in the original idea of cluster-based classi¯cation,22

the authors used k-means. They mentioned that the classi¯cation results obtained

employing k-means and SOM were similar, and the only reason that they selected

k-means was due to its simplicity. Nevertheless, the e®ectiveness of these two clus-

tering schemes for MPCC is examined and presented in Sec. 4.4.

In this section, our hope is to evaluate the e®ectiveness of the projected features

MBCs and MPCs (Eqs. (3) and (4)), and compare them with the original features in
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order to study the second aspect. The technique which we use to evaluate the pro-

duced clusters is the classes-to-clusters technique.40 In this technique, after clustering

with a clustering scheme, the majority class in each cluster is determined and its label

is assigned to that cluster with the constraint that the label of a class can only be

assigned to one cluster. Subsequently, all the instances are mapped to the labeled

clusters and the number of correctly mapped instances is recorded.

In order to generalize and to fairly compare the performance of the features of

interest for clustering, it is important to choose a proper number of clusters for a

given problem. One solution is to run cross validation on a randomly drawn fraction

of the dataset and ¯nd a proper number of clusters ¯rst, and then use it for the

remaining (testing) samples.12 To this end, in our experiment, the samples of every

class are divided into two parts in a random manner. Subsequently, the ¯rst parts are

collected as the training set, and the second parts are left for the evaluation purpose.

During the experiments, however, we observed that setting the number of clusters

equal to the number of classes is an optimal choice for classes-to-clusters evaluation

technique. Since for our case, in particular, the categories of instances for a given

problem are known, we take this advantage and set the number of clusters equal to the

number of classes for simplicity. In this experiment, the base learners and clustering

scheme are chosen to be SVM and k-means respectively. Table 2 shows the results.

Table 2. Percentage of correctly mapped samples

in the classes-to-clusters evaluation technique for

the original and the projected features.

Dataset Original Features MPC MBC

Abalone 52.36 65.87 68.40

Car 47.52 97.40 87.79

Chess 41.12 75.16 49.13

Dermatology 73.76 77.94 71.79
Glass 47.45 65.12 53.49

HDC 45.11 44.19 43.78

Iris 88.67 96.67 97.34

LR 72.64 76.11 81.41
Mfeat.FOU 54.65 68.45 69.35

Mfeat.MOR 62.36 66.55 58.82

Mfeat.ZER 62.20 68.05 56.00
Nursery 26.91 71.02 60.09

Page Blocks 39.14 41.79 49.36

Pen Digits 67.58 74.14 68.09

Sat Image 66.84 70.81 73.87
Segment 57.62 61.91 51.91

Soybean 60.69 78.97 68.28

Vehicle 34.99 75.89 74.34

Wine 94.39 97.73 94.39
Yeast 38.19 35.05 36.39

Average 56.71 70.44 65.55
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As can be seen from Table 2, the percentage of the correctly clustered instances

based on MPC 13.73% on average is higher than the original features. The e®ec-

tiveness of MPC can be explained as follows: the MPC contains between-class dis-

criminant information in which each of its components represents the probability of

the corresponding sample being a member of a given pair. Therefore, it is more likely

that the outputs of the pairwise binary classi¯ers (base learners) for all samples of a

class are similar. As a result, the generated MPCs of a given class can be clustered

well.

Table 2 also shows that the results obtained using the original features for two

datasets, HDC and Yeast, are slightly better than MPCs, and for Page Block dataset

the results are almost the same. We think that this is due to very few numbers of

samples available for some classes in these datasets (see Table 1 and the datasets'

descriptions from Ref. 35). Therefore, the base learners may not be trained accu-

rately, and, as a consequence, the derived features based on them may not be

appropriate enough for clustering as we had hoped for. However the number of

samples for one of the classes in Nursery dataset is 2, the evaluation result based on

MPC is 44.11% higher than the original features in this dataset. This is not

in contrary to what we have concluded. As this class forms only 0.01% of the dataset,

thus, its e®ect either in clustering or classi¯cation is obviously very low and

negligible.b

In the following section the e®ectiveness of MPC and MBC is compared and

discussed.

4.3.1. MPC versus MBC

As Table 2 indicates, the average evaluation result based on MBC is 8.84% higher

than the original features and is close to MPC. It seems that projecting features using

MBC, which consists of 1s and 0s, generates more distinguishable patterns compared

to the original features. However, we cannot expect that using MBC will increase the

classi¯cation accuracy more than the original features and probably more than MPC.

This is due to the fact that the projected samples (MBCs) from di®erent classes may

overlap very closely. To demonstrate this problem, we use Wine dataset, which

contains three di®erent classes (k ¼ 3). The proposed approach projects the original

feature space from dimension N ¼ 13 to dimension K ¼ 3� ð3� 1Þ=2. Hence, we

can plot a 3D scatter of the projected samples and illustrate how MPCs and MBCs

perform the projection. Figure 5 shows 3D scatter plots of the MPCs and MBCs. The

demonstrated plots data are drawn from a complete run of 10-fold cross validation.

From Fig. 5(a) it can be seen that some of the MBCs of class B are exactly

overlapped with the MBCs of class C. On one hand, we can take advantage of this

projection and produce very isolated clusters. On the other hand, we may face a

serious problem while training hMs [Eq. (5)]. That is, the multiclass classi¯er in the

bThe Nursery dataset consists of ¯ve di®erent classes, each of which contain 4320, 2, 328, 4266 and 4044

samples respectively (see Ref. 35).
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last step of the algorithm will not be able to distinguish these samples as two di®erent

samples in either the training procedure or the testing procedure. Therefore, the

classi¯cation rate may drop considerably. As Fig. 5(b) shows, there are no exact

overlaps among the samples of the di®erent classes for MPCs. Moreover, as can be

seen, the projected samples are very easy to be clustered and for this dataset, in

particular, are linearly separable.

4.4. Classi¯cation results

4.4.1. Experimental framework and protocol

To evaluate the performance of MPCC algorithm, SVM and MLP are used for the

induction of the base learners. For the clustering step, SOMand k-means are employed.

Hence, we conduct four experiments as follows: (1) base learners: SVM, clustering

scheme: SOM, (2) base learners: SVM, clustering scheme: k-means, (3) base learners:

MLP, clustering scheme: SOM, and (4) base learners: MLP, clustering scheme:

k-means. To evaluate MBC-Clustering (MBCC), we conduct only one experiment

where the base learners and clustering scheme are chosen to be SVM and SOM

respectively. Note that for hMs, as it is mentioned in Sec. 4.2, we use multiclass SVM.

To investigate the performance of MPC in terms of classi¯cation, we conduct

another experiment using the same datasets, where SVM and kNN are trained

directly on MPCs, i.e. no clustering step is applied. Hereafter, we refer to these

classi¯ers as MPC-Direct (MPCD).

In the experiments for the datasets in which the training and testing sets have

already been partitioned, we use them accordingly. For the other datasets in which

no training and testing sets have been provided, we use 10-fold cross validation. That

is, the entire given samples are randomly partitioned into ten subsets, which are as

(a) (b)

Fig. 5. 3D plots of the projected samples. (a) MBCs, (b) MPCs. NS: Number of samples, DE: Density of

the overlapped samples.
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closely as possible equally sized. Then we run the algorithm ten times in which at

each run nine subsets are used for training and one set is left for testing.

In order to decrease any random e®ects of one single run, all the demonstrated

results in this section are averages of ten runs of the proposed algorithms.

4.4.2. Results

Table 3 shows the classi¯cation results for MPCC, MBCC and MPCD algorithms on

20 di®erent datasets. The box-plot of the results is also provided and demonstrated

in Fig. 6.

As can be seen from Table 3, the average classi¯cation rate for the SVM:k-means

pair is 87.18%, which is less than the classi¯cation rate obtained by the SVM:SOM

pair (88.11%). Additionally, comparing the classi¯cation rates of MLP:SOM

(81.30%) and MLP:k-means (77.57%) pairs, we arrive at the conclusion that the

performance of SOM clustering scheme is better than k-means. We think that the

reason for the e®ectiveness of SOM is due to its totally unsupervised algorithm,

where for k-means one needs to adjust the number of clusters beforehand. From the

classi¯cation point of view, we can conclude that the performance of SVM is

cIn Fig. 7, CBC22 is not included due to the low number of its reported results.

Fig. 6. Box-plot of the classi¯cation rates obtained with MPCC and MPCD algorithms.
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obviously better than MLP, since the average classi¯cation rate obtained using the

MLP:SOM pair is 6.80% less than the SVM:SOM pair.

Table 3 also shows that the classi¯cation results obtained using MBCs, as it was

expected, are lower than those of MPCs, and on average are 4.7% below them.

4.5. Comparison with other multiclass classi¯ers

To compare the performance of our proposed algorithms with other multiclass

classi¯cation algorithms, we have collected the reported classi¯cation rates of

di®erent algorithms with our selected datasets. Table 4 shows the comparisons

between the proposed algorithms and other algorithms. The best rates are bold-

faced. The box-plot of the recognition rates is also shown in Fig. 7.c

The authors of cluster-based classi¯cation (CBC) provided their classi¯cation

accuracy on eight di®erent datasets, in which only three of them were multiclass

classi¯cation problems. Since in this work we put our emphasis on multiclass

classi¯cation problems, we can quote only results from their paper of Abalone, Letter

Recognition and Nursery datasets. The average classi¯cation rate on Abalone, Letter

Recognition and Nursery datasets for MPCC and CBC are 90.72% and 90.18%

respectively. This implies that our proposed algorithm outperforms CBC on these

three datasets.

Table 3. Classi¯cation rates (%) for MPC-Clustering, MBC-Clustering and MPC-Direct algorithms.

MPCC MBCC MPCD

Dataset SVM:SOM SVM:k-Means MLP:SOM MLP:k-Means SVM:SOM SVM kNN

Abalone 74.14 71.45 66.49 63.14 61.44 69.94 62.91
Car 99.65 99.07 95.14 91.10 94.28 99.61 99.47

Chess 90.63 89.52 81.45 62.19 85.91 88.01 86.12

Dermatology 97.56 97.51 92.11 87.12 95.94 97.52 98.33
Glass 73.39 73.12 61.98 51.19 68.73 72.51 73.16

HDC 58.29 58.46 51.19 45.74 53.46 59.37 57.37

Iris 96.67 96.66 94.00 93.33 96.00 96.21 95.33

LR 98.23 97.98 92.81 89.34 93.94 97.11 97.37
Mfeat.FOU 85.15 82.80 74.72 72.52 80.07 85.65 85.50

Mfeat.MOR 78.87 75.80 64.19 62.39 72.25 74.10 71.60

Mfeat.ZER 82.41 81.00 73.94 70.41 75.25 83.63 83.45

Nursery 99.81 98.62 91.59 87.37 94.81 99.80 99.90
Page Blocks 97.99 96.38 93.64 93.19 92.71 96.71 97.02

Pen Digits 98.89 98.99 97.83 94.19 93.29 97.82 98.25

Sat Image 91.45 91.10 85.75 84.95 89.25 90.75 91.75
Segment 98.41 97.80 93.19 92.04 96.24 93.23 93.14

Soybean 95.34 93.82 84.11 82.05 89.92 90.29 91.47

Vehicle 87.19 86.50 81.92 80.17 83.05 85.92 85.79

Wine 99.55 97.80 96.62 96.07 96.83 97.15 97.70
Yeast 58.48 59.25 53.43 52.98 55.39 59.16 59.59

Average 88.11 87.18 81.30 77.57 83.43 86.73 86.26

c In Fig. 7, CBC22 is not included due to the low number of its reported results.
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As Table 4 shows, classi¯cation rates for all the datasets are only available for

three algorithms; kNN,3 RM3 (for more information about RM see Ref. 34) and

SVM.3 The average classi¯cation rates for these algorithms are 82.64%, 79.72% and

85.73% respectively. Compared to MPCC, with an average classi¯cation rate of

88.11% on all datasets, we can see that MPCC algorithm outperforms these algor-

ithms and surpasses the classi¯cation rate by almost 2.4%.

According to Table 4, an interesting conclusion can be made by comparing the

results of MPCD(SVM) and MPCD(kNN) with SVM3 and kNN3; applying SVM and

kNN on the original features yield classi¯cation accuracies of 85.73% and 82.64%

respectively. By contrast, the classi¯cation rates on the projected features (MPCs)

for these algorithms are 86.72% and 86.26%. These results obviously show the

e®ectiveness of MPC compared to the original features with an improvement of

0.99% in SVM and 3.62% in kNN.

From Table 4 it is also observed, however, that MPCD is a single stage algorithm

compared to MPCC; its classi¯cation accuracy is close to MPCC, and, on average

MPCD(SVM) is 1.38% lower than MPCC(SVM:SOM). Furthermore, we can see

that MPCD(SVM), together with MPCD(kNN) outperforms MPCC(SVM:SOM) on

Fig. 7. Box-plot of the classi¯cation rates obtained with proposed algorithms and other algorithms.
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seven datasets: Dermatology, HDC, Mfeat.FOU, Mfeat.ZER, Nursery, Sat Image,

and Yeast.

If we compare the classi¯cation rates individually with each other, it can be seen

that MPCC algorithm obtains the best classi¯cation rates (except the results of

MPCD(SVM) and MPCD(kNN)) in 13 datasets. Collecting the best results among

the reported results for the remaining seven datasets (Glass: 73.80%, Iris: 96.79%,

Mfeat.ZER: 83.58%, Pen Digits: 99.61%, Sat Image: 92.24%, Vehicle: 87.47%, and

Yeast: 59.99%) and averaging them, we have an average accuracy of 84.78%. The

average accuracy of these datasets for MPCC is 84.12%. It implies that while we

collected the best rates among the available results, the di®erence between the

average of the collected results and the average of MPCC's results is not considerable

and is 0.66%.

5. Summary and Conclusion

The aim of our study was to ¯nd an optimal feature space for clustering and to

improve cluster-based multiclass classi¯cation performance. Therefore, we intro-

duced MPC as an optimal feature space and MPC-Clustering algorithm accordingly.

During the experiments, our interest rested in discovering how well MPC can out-

perform the original features in terms of classi¯cation. Thus, we introduced MPC-

Direct algorithm, where it trained a given classi¯er on MPCs. To investigate the

performance of the proposed algorithms, we conducted extensive experiments on 20

di®erent datasets from a wide range of domains. According to the results we

obtained, we summarized our conclusions as follows:

. We showed that projecting an original feature space to MPC and MBC out-

performed it in terms of clustering.

. We also showed that the classi¯cation performance of MPC-Clustering was

remarkably better than MBC-Clustering.

. It was shown that employing SVMs as the base learners together with SOM as the

clustering scheme in MPCC algorithm outperformed three other pairs: SVM:k-

means, MLP:SOM and MLP:k-means.

. Considering all the datasets used in the experiments, we showed that MPCC

improved the classi¯cation rate by almost 2.4%.

. It was shown that the classi¯cation performance of MPCD was comparable to that

of existing algorithms and in some datasets outperformed them including MPCC.

. And ¯nally, we conclude that the proposed approach for projecting original fea-

tures to a new feature space has advantages for both cluster-based classi¯cation

and direct classi¯cation.

Although in this paper the performances of the proposed algorithms were eval-

uated extensively, we would like to investigate their performance on the real world

applications such as Face Recognition (FR) and Facial Expression Recognition

(FER). Firstly, the problems mentioned are well-suited for pattern classi¯cation and
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secondly, a variety of datasets are available for them. Most importantly, the numbers

of samples per patterns (classes) in the datasets available for FR and FER are almost

equal. Therefore, the base learners, which are the core components of the proposed

approach, can be trained more accurately to yield a high classi¯cation rate. We

expect that applying the proposed algorithms on FR and FER problems will improve

the classi¯cation rates.
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