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Abstract—This paper proposes a new methodology for detecting
and diagnosing faults found in heavy-duty diesel engines based
upon spectrometric analysis of lubrication samples and is com-
pared against a conventional method, the redline limits, which is
utilized in a number of major laboratories in the U.K. and across
Europe. The proposed method applies computational power to a
well-known maintenance technique and consists of an improved
method of preprocessing to form a derivative tuple, which extracts
further information from the measured elemental concentrations.
To identify incipient faults, the distance in vector space is cal-
culated using a Gaussian contour, generated from prior data, as
the zero crossing, which enables novel samples to be classified
as normal or abnormal. This information is utilized as the input
to a probabilistic directed acyclic graph in the form of a belief
network. This network provides a prognosis for the mechanism
as well as suggesting possible actions that could be taken to rectify
the diagnosed problem, supported with confidence probabilities.
The proposed method is evaluated for both accuracy in detecting
a fault as well as the duration of time that is provided before
the event occurs, with significant improvements in both metrics
demonstrated over the conventional method.

Index Terms—Bayesian belief network, diagnosis, diesel en-
gines, fault detection, Gaussian, incipient faults, one-class classi-
fication, spectrometry.

I. INTRODUCTION

R ESEARCH has suggested that the closer a computational
model reflects the condition of the engine, the better the

fault diagnosis and detection ability of the model [1]. Con-
versely, to form a detailed mathematical construct concerning
a complex thermodynamic system can be inhibitively costly or,
in some cases, impossible. As a result, it is necessary to find an
appropriately accurate model which can also be applied to other
systems without further significant work.

There are four primary methods of monitoring a mech-
anism’s condition which are vibration [2], thermography,
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acoustic emission [3], and oil analysis [4]–[9]. It is preferred
to utilize these methods in combination, an approach known as
sensor fusion [10]; however, it is too expensive to be employed
on large scale, hence, a method is selected based on the speed
of degradation that can be expected.

The former three can traditionally be considered as real-
time methods, which are more likely to be applied in gas
turbines (where the onset of a fault can be relatively fast)
[11], [12]. Oil analysis has also been achieved online, to
the extent of robustly detecting debris size and ferromagnetic
against nonferromagnetic particles in recent research [13], [14].
These approaches have also been successfully applied to diesel
engines, as in both [2] and [15] and a comparative study in [3],
where acoustic emission was concluded to be the optimal
method to detect pitting in spur gears. On the other hand, both
[7] and [16] conclude that the former three methods may not be
so appropriate for the detection of problems in larger engines
and, in fact, will not be able to provide a detailed diagnosis, as
the information that such sensors provide is localized.

The latter method, oil analysis, is generally based on samples
that are taken infrequently; on the other hand, the samples
have more information about the condition of the engine. The
process of “wear” cannot be observed directly; therefore, it is an
assumption that can be made by identifying the constituents of
the lubrication oil. Through this, the most active wear processes
occurring in the engine can be deduced, as of course, there are
many processes occurring at one given point in time. Normal
wear in an engine differs throughout the engine’s lifetime [8]
and could be monitored using the methods in [13] and [14],
although extra information from chemical analysis of the oil
may be required for a more detailed diagnosis.

A recently replaced component, for example, will experience
a period of higher wear known as running in until reaching a
suitable wearing pattern; under higher load conditions, wear
will also be higher, and wear will also increase when a com-
ponent is in contact with another component. There are many
factors which control the quantification of these reactions, such
as the reliability of measurements, operating conditions (for
example, temperature and humidity can also be a factor for
long-distance shipping), as well as consumption and compo-
sition of the lubricating oil. In larger engines, it may also be
necessary to adjust the measured concentrations according to
some known, or learnt, method as in [8] where the known wear
rate has been calculated from an extended statistical study on a
subset of engines. Alternatively, such parameters can be learnt
as in [17] and [18] which infer properties from a small number
of measurements.
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Utilizing a similar philosophy to [17], therefore, wear el-
ements transported in the lubrication oil can also be used to
indirectly observe the status of the engine. Not only can these
be used to infer the presence of a fault but the rate of wear and
type of element can also suggest both the location and extent of
a fault.

As it is necessary to monitor changes to normal wearing
patterns and to make inferences between the concentrations of
different elements in the lubrication oil measured in parts per
million (ppm), computational analysis is very appropriate for
the task, although it has not yet been employed extensively upon
the data obtained from elemental analysis. As noted in [6]:

As users increase oil-analysis programs, increase the
frequency of sampling, and add more sophisticated tests
to the analyses, the need to manage, organize, alert, and
diagnose automatically has never been greater. Thus, this
justifies the interest in this type of automatic diagnosis
tool.

Expert systems have been utilized in the majority of fault-
diagnosis applications [6], [19], [20], which are often more
trusted in industrial applications; however, the approach has
been discounted in some domains due to the effort required to
collect such a detailed knowledge base. As stated by [6], expert
systems cannot respond “creatively” to unexpected circum-
stances, and it is difficult to determine when the input values
go outside a predefined range; for example, a question could
be posed as to whether it is preferable to receive a possibly
incorrect answer or no answer at all [21]. Due to the explicit
rule base, it has also been shown that such approaches become
intractable for more complex interactions [22].

Although the expert system should not be discounted as it is
invaluable to the diagnosis of faults, there has been some move
toward developing more “intelligent” algorithms to perform a
similar task, which generally take less effort to compile and,
as a result, are more efficient for industrial purposes, which
suggests the prevalence of two approaches.

The first are supervised approaches which typically use
“targets” for a subset of possible faults. For example, [23]
used a neural network to detect and diagnose a subset of faults
seen in an interior-permanent-magnet (IPM) motor drive. The
line currents of different faulted and normal conditions of the
IPM motor were preprocessed using a wavelet transform, which
were then trained on the generated subset of faults and validated
using a traditional feedforward neural network. The antithesis
of this is an “unsupervised” approach, which is more often
used in research into heavy-duty engines, as such engines are
too expensive to be actively damaged and, consequently, are
not so easy to validate. Hence, an assumption must be made
that the engine is running normally for the majority of time,
an assumption that [24] utilizes where a statistical model is
generated from the “normal” data obtained from trains running
in real life, which can then be diagnosed using an expert
system and which is a more practical approach for a large-scale
intelligent analysis of diesel engines.

It was found in [6] that an expert system, coupled with
elemental analysis, can provide more detailed feedback to the
user than systems that purely use an intelligent classifier or

extended statistical study [24], [25]. For example, [26] used
a Bayesian belief network to identify and diagnose problems
in a space-shuttle’s main engine, where a complete set of data
was available. The concept of a belief network has been used
in a number of different situations, in research by [27] for an
airplane engine and, in [21], a belief network was utilized for
diagnosis of faults in a gas turbine. The typical methodology
of fault diagnosis will be retained in this methodology, that of
a preprocessing module, a detection module, and subsequently,
a diagnosis module [28]. Consequently, the approach has been
validated in a number of previous applications.

To summarize, little research has been specifically conducted
on fault diagnosis and detection for diesel engines based on
elemental analysis even though this approach demonstrates a
good capability for providing a more complete understanding
of the processes occurring in an engine, for comparatively little
cost, when juxtaposed with real-time methods such as vibration
analysis, thermography, or acoustic-emission analysis. Further-
more, elemental analysis enables a diagnosis even when the oil
samples are taken from only one location. Due to the focus of
intelligent algorithms upon classification, there are also now a
number of ways that can be further explored for computational
analysis of the signals provided by elemental analysis which
would enable a significant added value for current oil-analysis
systems which, despite being used in many industries, signifi-
cantly in the train, automotive, and naval industries, is still not
taken advantage of to its fullest potential.

This paper is organized as follows: The methodology and
associated research is presented and summarized in Section II,
complemented by a pseudocode to clarify the core modules. A
number of evaluation metrics are presented in Section III, and,
subsequently, the methodology is compared for sensitivity with
redline limits, a commonly used industry standard. The results
are summarized, and this paper is concluded in Section IV.

II. FAULT DETECTION AND DIAGNOSIS METHODOLOGY

The aim of condition-based monitoring is to detect faults
and provide a diagnosis, or prognosis, of potential problems,
which can be systematically followed by an end user who may
have little understanding of the different elements and what
high or low concentrations may be indicative of. Therefore, it is
necessary to both define a system that combines both detection
and diagnosis and to demonstrate that this is an improvement
over the typical industry standard of redline limits for detect-
ing faults at an early stage (incipient faults) earlier than the
redline limits, and that the diagnosis provided is accurate when
compared with a ground truth. This section will introduce a
methodology that has been developed specifically for utilization
of data without targets, i.e., unsupervised, and consequently
requires historical data from the same mechanism; however,
it does not require detailed maintenance records which are
typically difficult to obtain because such records are often paper
based or commercially sensitive.

This section is organized as follows: Initially, redline limits
are explained, and it is demonstrated why, as a method for de-
tecting faults, these are not an optimal approach. Subsequently,
the methodology is introduced, formed of three subsections:
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Fig. 1. Output from a redline classification. Here, V can be seen to be
2 ppm out of specification, so the whole sample is considered “abnormal” even
though the remainder of the sample is considered within specification despite
the confidence interval of ±1 ppm. Taken from a fault-detection system in 2007,
which was being used in a large marine-engine fault detection.

TABLE I
REDLINE LIMITS FOR A HEAVY-DUTY DIESEL ENGINE

preprocessing, detection, and diagnosis. The section is then
concluded with a summary of the proposed methods and high-
lighted with a pseudocode.

A. Redline Limits

Redline limits are a set of maximum concentrations speci-
fied by either the engine or oil manufacturer concerning the
maximum (and sometimes minimum) concentration in ppm that
can be observed in oil samples, as can be seen in Fig. 1. The
specifications used in this paper can be seen in Table I. These
specifications are quite commonly used in industry where any
diesel engine is being examined to analyze when an engine
can be considered “out of specification” or running abnormally
and can be thought of as the more traditional approach to fault
detection. The limits used vary depending upon the engine type
and the manufacturer, so they are unique to a subset of engine
models.

The concept behind these rules can be reformulated as a
question concerning the method of representation, reflecting
both common sense and expert knowledge. For example, there
is a significant amount of confidence placed upon the specifica-
tion when a question such as the following is presented, which
is gleaned from [6]

IF iron ppm > 125 THEN engine overhaul

where an action is presented as engine overhaul which should
be carried out if the condition “iron ppm” is greater than 125,
referring back to Table I for the specification. This IF statement,
in effect, states that at 125 ppm, the action engine overhaul
should not be carried out; although if the iron content of
the oil increases by 1 ppm, the action should be carried out.
This statement is an accurate representation of one particular
redline limit combined with expert knowledge (although as
an exaggeration, an engine would unlikely be overhauled if
it was over the specification). On the other hand, the 1 ppm
increase would not reflect a large state change in the status
of the engine, and yet, an action is triggered because of it. If

questioning human experts upon the change, they themselves
would unlikely state that such a small change would require any
significant action, so it seems inappropriate to use a knowledge
representation that fits the expert knowledge into such a rigid
framework. On the other hand, more flexible representations
are rarely requested in industrial applications as the company
wants to ensure trust in the algorithm and consistency, and,
above all, that they can easily read the rules and copy rules from
existing algorithms or specifications; conversely, maintaining
and building this type of fault tree may result in illegibility and
duplication of rules. Despite the simplicity of the if–then rules,
it forces the human expert to perform an extremely difficult
reasoning process, explicit declaration of all faults satisfying a
given set of conditions. Using top–down reasoning, the human
expert is required to define poorly known relations explicitly
and force a number of unknown relations into the same frame-
work as well-known relationships. Therefore, not only does this
type of representation cause problems for those experts who
have to define them but also they are a poor representation of
the engine.

There is a more effective approach to detecting and diagnos-
ing problems with an engine, which is now demonstrated and
evaluated. This is based upon extracting more information from
the available data sets which takes the form of a preprocessing
module in Section II-B followed by the interpretation of the
data utilizing a classifier in Section II-C and finally, provide a
suitable diagnosis in Section II-D, based upon the output from
the classifier.

B. Preprocessing

Assuming that the elements are measured in ppm, there
is much information present that needs to be extracted from
a time series. Diagnosis and classification systems can be
considered sensitive to outliers, so there is a requirement for
the time series to be properly filtered before applying the data
to further classification or diagnostic techniques [29], [30].
More notably, in aperiodic sampling systems whether online or
offline, the frequency of samples should be normalized over a
certain period. This is a more significant step in offline fault-
diagnosis systems, as samples could be taken once per day,
per month, or over even longer durations. For that reason,
subsequent methods for processing the time series may assume
a consistent duration between samples, which can be achieved
using interpolation, whether linear or cubic. Here, linear is used
as the cubic interpolation is seen to introduce anomalies that are
not present in the original time series.

The majority of research that have used preprocessing sys-
tems, such as Pevzner et al. [19] or Macian et al. [6], [31], [32],
used single values to represent the condition of an engine at a
point in time. For example, [19] utilized a rate of change over
two windows of time, one window covering a shorter duration
and the second window a longer duration. These were then
averaged to provide a scalar, to detect faults with a short and
fast onset as well as those that may have a slower onset. The
work in [6] normalized measured concentrations to bring the
values into a smaller predefined range to allow fuzzy sets to be
applied. Further work in [33] used ratios to analyze when one
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element may be diverging more quickly than would normally
be expected.

In the current work, it is proposed that a combination of these
into a descriptive tuple is more appropriate, and, as a result,
both the rate of change and normalized measured concentra-
tion form

xt = 〈rn
t ,mn

t 〉 (1)

where n refers to each element, t is the current position in
the time series, m is the measured concentration, and r is the
calculated rate of change.

Furthermore, a heuristic is defined to only consider positive
rates of change. Negative gradients are filtered out and replaced
with an average value, moderately distorted by random noise.
The heuristic, therefore, is more domain dependent and may
not be implemented in other domains. In engine diagnosis,
however, it is usual that a quicker than usual drop in elemental
concentrations toward the average suggests that the engine is
returning to a normal state as it may have been repaired.

This provides a 2-D vector, where one axis refers to the rate
of change and the other, to the measured concentration. As
such, a vector that converges toward one could be considered
as abnormal and a vector that converges toward zero may be
considered normal. On the other hand, it would be rare for there
to be no fluctuation in the concentrations of different elements,
and, as a result, it is more optimal to identify these distributions
by utilizing a classifier that will take outliers into consideration.

C. Classification and Model Selection

The aim of classifying data points before applying the data
into a diagnosis module is to perform a comparative statistical
analysis across the available historical data for a similar engine
model. In this sense, the novel data is compared with past data
to enable subsequent processes to understand whether the novel
data represents a sample that could be considered normal or
abnormal, depending on previous experience of a component
in a specific environment. This increases the flexibility of the
thresholds utilized and also enables a learning characteristic
where novel data are added to the distribution to shift the
classification boundaries. Ideally, this will allow the method to
improve over time.

To correctly characterize the distribution provided by the
tuple defined for each measured elemental concentration, it is
necessary to generate a model to correctly classify the majority
of normal data at the same time as not overgeneralizing the
model to incorrect cases. The most simple, and one that should
be used initially, is the Gaussian model, which, as seen in Fig. 4,
is usually appropriate for fault-diagnosis data. If utilizing the
measure of, for example, the rate of change as one descriptive
vector of the time series, it is fair to assume that the density
can be modeled using a Gaussian. This is because a normal
distribution will typically arise around zero, where there is no
rate of change, primarily because there are few abnormal occur-
rences causing significant change in elemental concentrations
in an engine, as can be seen in Fig. 4. As an example, the
classifier uses the Mahalanobis distance estimator where the

Fig. 2. Preprocessed silicon content measured from the sump of a heavy-duty
diesel engine where those points inside the Gaussian are considered “normal”
and those outside are “abnormal.”

target class is defined as a Gaussian distribution. The classifier
therefore is defined as in (2), where θ is a user-defined fraction
of the training samples that should be included in the Gaussian
and normal and abnormal represent qualitative labels applied
to each of the two classes target and outlier, respectively, and μ
refers to the mean and Σ the covariance, representing respective
sample estimates. x therefore refers to the descriptive tuple.

h(x) =
{

normal, if f(x) ≤ θ
abnormal, if f(x) > θ.

(2)

An example of the Gaussian classifier is shown in Fig. 2.
With such sparse data sets, the decision was made to use simple
classifiers that will not overfit the data, as it cannot be guaran-
teed that the training samples taken accurately reflect normal
running at other times. As can be seen, the Gaussian model is
affected by outliers and so does not optimally characterize the
normal data. For that reason, the computation of μ and Σ are
altered. The outliers are reweighted according to their proximity
to the mean where candidate outliers are down weighted so that
a more optimal characterization is found, and the result can be
seen in Fig. 3.

It was also decided to observe how a better fitted model
would improve or reduce the accuracy of the model. Therefore,
a mixture of Gaussians (MOG) was utilized which can be
defined as follows. Gaussian mixture models are, as the title
suggests, a mixture of a number of Gaussian distributions
that are used to quantify the vector space. Such models can
approximate a wide variety of probability-density functions and
are consequently good solutions for situations where a singular
normal distribution fails. While bearing this in mind, it is also
common for the mixtures to be built out of one predefined basic
distribution type, such as the Gaussian normal distribution. In
multivariate analysis, the majority of inference problems are
developed under the assumption of normal distribution. There-
fore, if there is no specific knowledge regarding the probability
density, only a general model can be used, and the Gaussian
distribution is a reasonable choice.
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Fig. 3. Preprocessed silicon content measured from the sump of a heavy-duty
diesel engine where the classifier used here is the robust Gaussian.

The algorithm works by first choosing the component
(the Gaussian distribution) at random with probability P (ωi).
The algorithm subsequently samples a point in the vector
space N(μi, σ

2I). Supposing the variables x1, x2, . . . , xN

and P (ω1), . . . , P (∅, ωK), σ, the likelihood of the sample
P (x|ωi, μ1, μ2, . . . , μK) can be obtained, while trying to max-
imize P (x|μ1, μ2, . . . , μK) which refers to the probability of a
single datum given the centers of the Gaussians μK and which
can be defined as in

P (x|μi) =
∑

i

P (ωi)P (x|ωi, μ1, μ2, . . . , μK) (3)

which can be expanded over all the data as in

P (data|μi) =
N∏

i=1

∑
i

P (ωi)P (x|ωi, μ1, μ2, . . . , μK) (4)

where the maximum likelihood should be maximized by calcu-
lating ∂L/∂μi = 0. This, however, is nontrivial, and as such,
there are methods such as the expectation-maximization algo-
rithm which can solve this.

Here, μ has two members or clusters to represent the two
different distributions that could potentially be seen within an
element (for both the x- and y-axis), a concept shown in Fig. 4,
where both the rate of change and the normalized measured
value are stored in a vector.

The output from both the Gaussian and MOG classifiers is
binary, e.g., h(x) ∈ {0, 1} which, despite adequately represent-
ing the membership of a point in time to a particular class, does
not provide much information regarding the severity of a fault.
To avoid the concept of thresholds, as used in redline limits, it is
proposed that this should also be reflected in the classification
process, where it would be naïve to present those points inside
the model as 0% fault likelihood and those outside as having a
100% fault likelihood. Consequently, the classification model
has been further developed to return information regarding
distance from the model, as in (5), where the distance can be

Fig. 4. Two distributions for the same element where the left bar chart shows
the distribution of the rate of change over all elements, and the right chart shows
the normalized measured value from the elemental concentrations.

thought of as the comparative extremum distance between the
maximum and the minimum data, i.e.,

h(x) =
{

d(x)− α, if f(x) ≤ θ
d(x) + α, if f(x) > θ

d(x) = abs
(

e(x)/max (∀e(x))
2

− α

)
(5)

where e is a distance function, such as Euclidean distance, and
α = [0, 1] is a penalty term to determine the bias applied to
values that are outside or inside the model, where the default
is 0.2, and P = [0, 1] is the severity of the data point x being a
fault condition.

To conclude here, it can be seen that the robust Gaussian
model reasonably characterizes the data accurately while not
fitting it exactly. This is advantageous, as it cannot be consid-
ered that the data in the training set will exactly fit the current
testing data or, in fact, will be similar to the future testing
data. For that matter, it was seen that adding random noise to
the training data would also improve the generated model. On
the other hand, an additional noise added to the training data
would have a more significant effect if the model used was
an MOG, support vector machine, or a self-organizing map,
as these classification techniques fit the input data much more
closely. Consequently, the model that best separates the high
density distribution from the lower density data is the most
optimal model, assuming that future distributions also reflect
this separation.

D. Accurate Diagnosis Under Uncertainty

Once there is an access to a set of floating-point distances1,
the severity of each individual element should contribute to
a lesser or greater extent against the eventual diagnosis. It
is the varying degrees with which each element reflects a
particular diagnosis as suggested in [4] which is significant,
and hence suggests a hierarchical graph where nodes represent
the relationships between four different types of situation; the

1Where these values represent the distance the element at a given time t lies
from the statistical expected norm.
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Fig. 5. Belief network defined for a subset of inputs, symptoms, fault conditions, and possible actions in a diesel engine, where the binary nodes are connected
with probabilistic relationships determining the strength of association.

observations, the symptoms, the actions, and the tasks that
should be implemented by the user. The observations consist
of the output from the classifier, a single scalar representing
the distance of the tuple from the statistical norm provided
by historical data. As opposed to using a fixed derivative to
represent the interactions between the elements, a more flexible
method is to represent these interactions as a probabilistic
relationship conjoining the different states, which could be
altered depending upon the feedback from the user. That is
to say, the accuracy of the diagnosis could be improved with
exposure to new instances over time.

The so-called belief network, as shown in Fig. 5, is a graph-
ical representation of an underlying probabilistic relationship.
To most accurately reflect these circumstances, the selection of
parameters, as mentioned in [21], is an important consideration
which can be considered useful for reasoning under both igno-
rance and uncertainty. On the other hand, the main disadvantage
of the belief network is the lack of conviction in results; for
example, if a user is provided with many possible faults with
similar percentages, which fault is the most likely, and is a
maximum-likelihood solution the optimal method to select for
the correct diagnosis.

The different layers of the network can be observed in the
following.

1) Input nodes are shown in Fig. 5 as those nodes toward
the top of the belief network, typically those with two or
three letters, and represent the elemental inputs. These are
the percentages obtained from the classifier.

2) Output: Symptom nodes are those nodes entitled with
“symptoms.” These are not the cause of the prob-
lem; they are the resulting outcome, such as “top-end
wear,” “bottom-end wear,” “bearings” (referring to bear-
ing wear), and “additives.”

3) Output: Fault nodes are nodes entitled “silica contami-
nation” and “overheating.” These refer to the underlying
problem.

4) Output: Action nodes are those nodes entitled with
words toward the bottom of the figure, such as “breather”
and “induction system.” These are possible actions that
can be taken in the case of a fault node being triggered.
If these action nodes are triggered, textual descriptions
can be associated with the node to suggest a probable

next-step action, e.g., “Silica contamination is high (90%)
as is top-end wear (80%); it is suggested that the next-
step action should be to check the air induction system
(70%).”

It is hoped that a more complete version of Fig. 5 would be of
use for future work in developing algorithms that reflect expert
knowledge.

E. Core Functions

Taking the previous literature into consideration, the method-
ology can be summarized here. An overview of the approach is
presented in Algorithms 1, 2, 3, and 4. These can be thought
of as functions or modules, where the algorithms presented
in 2 and 3 are the core modules that are called. Initially, the
function INIT-FAULT-PROG() is called, which generates a set of
models G for each of the elements in the training matrix E.
Subsequently, the function NEW-INSTANCE-FAULT-PROG() is
called with a testing set of elements in the matrix E, although
containing a subset of data unseen by the training algorithm.
This uses the trained models from INIT-FAULT-PROG() to cal-
culate distance scores between the model gi and the datapoints
in X , whereupon, depending on whether the value is inside or
outside the generated model, where 0 refers to the contour, the
value assigned to the belief network is penalized or given a
bonus with the value of α.

Algorithm 1 Function CALL-FAULT-PROG

Ensure: E0 the training data, for example, 40% of the entire
data set.

Ensure: E1 the testing data, for example, 60% of the
data set.

1: G← INIT-FAULT-PROG(E0)
2: D ← NEW-INSTANCE-PROG(E1, G)
3: for all t such that 1 ≤ t ≤ SIZE(D) do
4: for all l such that 1 ≤ l ≤ SIZE(Dt) do
5: if Dt,l �= NULL then
6: print: Dt,l

7: end if
8: end for
9: end for



3528 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 10, OCTOBER 2010

Algorithm 2 Function INIT-FAULT-PROG

Ensure: et,i ∈ E
Ensure: gi ∈ G
1: X ← GENERATE-TUPLE (E)
2: for all i such that 1 ≤ i ≤ SIZE(ELEMENTS) do
3: μ← MEAN(Xi), Σ← COV(Xi)
4: gi ← GAUSSIAN(Xi, μ,Σ)
5: end for
6: return: G

Algorithm 3 Function NEW-INSTANCE-FAULT-PROG

Ensure: et,i ∈ E
Ensure: gi ∈ G
Ensure: b1,i ∈ Y the input nodes (BBN)
Ensure: bl,i ∈ Y the nodes (BBN)
Ensure: Y F is the MAP fault node for a sample t
Ensure: α ∈ [0, 1]
Ensure: θ ∈ [0, 1]
Ensure: dt,l ∈ D a list of diagnoses
1: X ← GENERATE-TUPLE(E)
2: for all t such that 1 ≤ t ≤ SIZE(E) do
3: for all i such that 1 ≤ i ≤ SIZE(ELEMENTS) do
4: h(x)←(MAHAL(gi,Xt,i)/max(MAHAL(gi,Xi))/2)
5: if h(x) > 0 then
6: b1,i ← h(x) + α
7: else
8: b1,i ← h(x)− α
9: end if
10: end for
11: for all l such that 2 ≤ l ≤ SIZE(NODELAYERS) do
12: Y F ← arg maxbl,k∈Y

∏
k=1 P (bl,k|Parents(bl,k))

13: if Y F > θ then
14: dt,l ← Y F

15: else
16: Dt,l ← NULL
17: end if
18: end for
19: end for
20: return: D

Algorithm 4 Function GENERATE-TUPLE

Ensure: et,i ∈ E
Ensure: X ← ZEROS(SIZE(E))
1: for all i such that 1 ≤ i ≤ SIZE(ELEMENTS) do
2: for all t such that 1 ≤ t ≤ SIZE(E) do
3: m← (et,i −mini(Ei)/maxi(Ei)−mini(Ei))
4: end for
5: for all t such that 2 ≤ t ≤ n do
6: r ← et,i − et−1,i

7: end for
8: Xt,i = 〈m, r〉
9: end for
10: return: X

Fig. 6. Five primary elements used in the diagnosis of silica contamination
for data set engine1.

Subsequently, these distances are assigned to the input nodes
Y of the belief network. It is then possible to query the set of
output nodes Y for joint probabilities given the value of the
parents Y and from which the node with the highest maximum
likelihood is used. If it is over a threshold θ, governing sensi-
tivity, it is returned as a fault node; otherwise, it is ignored and
assumed to be normal.

The anticipated usage could take the form shown in
Algorithm 1 depicting the calling routine CALL-FAULT-PROG(),
where E would take the form shown in

E =

⎡
⎢⎣

e1,1 · · · et,1

...
. . .

...
e1,i · · · et,i

⎤
⎥⎦ . (6)

III. CASE STUDY: DIAGNOSIS OF HEAVY-DUTY

DIESEL ENGINES

The methodology described in Section II was then applied
to three data sets from heavy-duty diesel engines of the same
model, where engine1 can be seen in Fig. 6, engine2 in Fig. 7,
and engine3 in Fig. 8, where both the MOG and a Gaussian
were used as classifiers from Section II-C and the output from
the Gaussian classifier was used as an input into the belief
network described in Section II-D.

There are two aims addressed in this section: the accuracy
of the proposed algorithm when compared against the redline
limits in Section III-A as well as the period of advance warning
that can be given of a potential fault, which again forms a
comparison between the proposed algorithm and redline limits,
otherwise referred to as sensitivity in Section III-B.

The first aim is addressed using a receiver operating charac-
teristic (ROC) curve as well as a diagnostic confusion matrix
(DCM). The ROC curve identifies the accuracy of the proposed
algorithm, where the true positive rate (TPR) is compared with
the false positive rate (FPR) for the proposed algorithm and
compared against the redline limits. The DCM then highlights
where a true positive was found, and whether the true positive
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Fig. 7. Five primary elements used in the diagnosis of silica contamination
for data set engine2.

Fig. 8. Five primary elements used in the diagnosis of silica contamination
for data set engine3.

correctly diagnosed the fault or whether an incorrect fault was
identified.

Subsequently, in Section III-B, four significant peaks were
located from the three time series, and the sensitivity of the
proposed algorithm was compared against a complex derivative
of the redline limits related to the known fault identified as
being silicon contamination. Consequently, the two metrics that
were addressed consisted of accuracy in Section III-A and
sensitivity in Section III-B.

A. Accuracy

Accuracy is defined as a tradeoff between false negatives,
false positives, true negatives, and true positives, which can be
quantified in part by using an ROC curve which characterizes
the better classification ability of both the proposed algorithm
as well as the conventional redline limits. An ROC curve can be
defined by FPR and TPR as x- and y-axis, respectively, which
depicts relative tradeoffs between true positive (benefits) and
false positives (costs) where a point in the top left corner of

Fig. 9. ROC curve showing a comparison between the proposed algorithm and
redline limits, where the diagonal dotted line represents “chance.” A data point
in the upper left-hand corner signifies a better tradeoff between true positives
(benefits) and false positives (costs).

the space can be considered optimal, as more true positives are
preferred.

The accuracy of the system was ascertained based upon a
ground truth which was obtained by a manual diagnosis of
the time series. For the proposed algorithm, the TPR and FPR
were established against all possible faults and the accurate
or inaccurate detection of these faults. Meanwhile, redline
limits were established for a subset of elements related to
silicon contamination, and in the event that the measured PPM
exceeded the redline limit, a fault was flagged; consequently,
the testing for the proposed algorithm was more rigorous than
for the redline limits. This evaluation can be observed in Fig. 9,
showing that the proposed algorithm is more optimal than the
redline limits in detecting faults than the conventional method.
Here, the mean value over the three data sets was taken.

To complement the ROC curve, the DCM defines the fault
conditions that were correctly (or incorrectly) classified as
shown in Fig. 10. The highest values (representing the highest
frequency of classification for a particular fault) should be on
the diagonal, where the x-axis represents the fault conditions
identified in the ground truth and the y-axis represents the type
of faults that the respective fault conditions were identified
as. The same process was repeated for the data sets engine2
and engine3. Results of these can be seen in Figs. 11 and 12.
These figures utilized the Gaussian classifier and demonstrates
very little inaccuracy in correctly identifying faults. Where
faults were identified using the MOG classifier, these were all
identified correctly.

B. Sensitivity

Sensitivity can be defined as the amount of prior warning
that the algorithm gives for a verified fault condition. This will
typically differ depending upon the type of system, for example,
an algorithm based upon an online system (where samples are
taken every second), the duration of the warning may be an
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Fig. 10. DCM for fault-detection evaluation for engine1 using a Gaussian
classifier.

Fig. 11. DCM for fault-detection evaluation for engine2 using a Gaussian
classifier.

hour, or even just a few minutes or a few seconds. However,
this duration of warning allows a prognosis to take place and
any problems to be fixed before the fault results in a failure
or downtime. Any period of time before a fault, therefore, is
preferable. In offline systems, because of the fewer samples
that are taken, failure can potentially be detected much further
in advance with the caveat that imminent onset failures cannot
be detected. Silica contamination would usually have a longer
period of onset, where a gradual build up may not be noticed
until too much wear has taken place; this will continue to build
until the source of the contamination has been found. Therefore,
the largest period of warning is preferable.

To clarify how these results were obtained, by selecting the
data set engine2 as in Fig. 7, the two most significant faults
were identified on October 26, 1998 and again on April 23,
2001. Although there is no information to suggest that these
points were at the highest severity of the fault (the fault may
have occurred earlier, and the concentrations observed are
byproducts or related to another fault), the sum of a complex
derivative was taken where the complex derivative consisted of
those elements related to silica contamination. Therefore, the

Fig. 12. DCM for fault-detection evaluation for engine3 using a Gaussian
classifier.

sum of these elements were highest at these two points. There
were smaller peaks at other times in the data set; however, these
did not result in a significant amount of wear material being
measured, possibly because the problem had been fixed before
it became too severe or that there were small changes in the
engine’s environment.

Therefore, the proposed method using both varieties of clas-
sification described in Section II-D and the same redline limits
(forming a complex derivative related to silicon contamination)
were queried to identify at what point prior to the fault were the
sequential faults diagnosed.

That is to state that if there was a break in the chain of
diagnosed faults, the faults before the break would not be con-
sidered related to the specific peak. The results can be seen in
Fig. 13. The fault chains have been seen to start on February 2,
1998 and July 3, 2000 for peaks 2 and 3. The percentages have
been calculated by observing the ideal start and the actual start
of the fault chains in months for both systems and then taking
these away from 100; therefore, the higher the values, the more
sensitive the algorithm; in peak 2, the time between the start of
the fault chain and the final peak was a period of nine months,
and in peak 3, the duration was ten months. This process was
repeated for the other two data sets, with one peak each for the
remainder. As can be seen in Fig. 13, the MOG has a lower
average than that of the redline limits, which can be explained
by referring to Fig. 8. The peak’s onset is at the beginning of
the data set, and hence, the number of days’ difference between
the three algorithms is small, as the amount of advance warning
that could be given is very little compared with the other peaks
in the other data sets, where the peaks typically appear toward
the end of the time series.

IV. CONCLUSION AND FUTURE WORK

To summarize, this paper has identified a method of
preprocessing the input data using a descriptive tuple in
Section II-B to represent the salient aspects of the input data,
which have subsequently been classified using a one-class
classifier and a novel distance calculation to separate normal
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Fig. 13. Sensitivity of the framework applied to all the data sets in comparison
with redline limits, expressed as a percentage. Peak 1 originates from engine1,
peaks 2 and 3 originate from engine2, and peak 4 originates from engine3.

and abnormal data in Section II-C. This was designed to detect
possible faults significantly earlier than the redline limits, as
can be seen in Fig. 13, in considering the metric of “sensitivity”
which is primarily because the rates of changes were charac-
terized by historical data from the same engine. Furthermore,
the method removes the concept of a given threshold, allowing
potential problems to be watched as they gradually become
more problematic. In most cases, it can be observed that the
problem was detected as soon as the trend moved away from
expected levels.

The output from the classification algorithm was diagnosed
using a belief network with a specifically designed structure
described in Section II-D. In Section III, a case study of three
train drives was introduced to highlight the comparison between
the redline limits and the proposed methods, assessed for both
sensitivity in Section III-B and accuracy in Section III-A. The
strengths of the proposed methods were seen in both identifying
possible faults prior to redline limits, seen in Fig. 13, as well
as in diagnosing faults more accurately, which can be seen in
Fig. 9.

These results demonstrate a much higher level of accuracy
and sensitivity than redline limits and perform well on correctly
detecting and diagnosing the four large faults at an incipient
level, in line with the ground truth and, as such, reflect the
opinions of human experts who provided the ground truth.

There are a number of improvements that can be addressed
in future work. The approach can be compared with other fault-
diagnosis frameworks or more traditional artificial intelligence
methods such as neural networks. Furthermore, it would be
interesting to apply the method to other engines to observe
the generalization ability of the model to classify faults. It is
suspected that it would generalize well with other situations,
ensuring that the expert knowledge is altered to the specific
domain. Using the threshold θ is not appropriate, and as such,
it may be possible to define a “No-Fault” node, where if this

node was selected as the highest likelihood, a fault would not
be reported, conforming to the principle of MAP.

To conclude, the proposed method is a modular approach
to the concept of fault detection and diagnosis, incorporating
a number of new developments from different domains which
show promising results for further work and demonstrating
significant improvements over the industry standard, the redline
limits, which are commonly used in fault-detection algorithms.
In some instances, a threshold is required by industry; however,
this paper has demonstrated the lack of warning that such an
approach provides. The amount of data available is sufficient to
base a detection and diagnosis system and successfully improve
upon older techniques and would only improve with application
of larger data sets. It is hoped that the methods developed in
this paper will assist in making the maintenance of complex
mechanisms more efficient.
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