
This article was downloaded by: [UQ Library]
On: 04 November 2014, At: 01:06
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

New Review of Hypermedia and
Multimedia
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tham20

Guaranteeing QoS of media-based
applications in virtualized environment
Like Zhoua, Song Wua, Xuanhua Shia, Hai Jina & Jiangfu Zhoua

a Services Computing Technology and System Lab, Cluster and
Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, PR China
Published online: 14 Nov 2013.

To cite this article: Like Zhou, Song Wu, Xuanhua Shi, Hai Jin & Jiangfu Zhou (2013) Guaranteeing
QoS of media-based applications in virtualized environment, New Review of Hypermedia and
Multimedia, 19:3-4, 217-233, DOI: 10.1080/13614568.2013.834487

To link to this article: http://dx.doi.org/10.1080/13614568.2013.834487

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/tham20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13614568.2013.834487
http://dx.doi.org/10.1080/13614568.2013.834487
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Guaranteeing QoS of media-based
applications in virtualized

environment

LIKE ZHOU, SONG WU*, XUANHUA SHI, HAI JIN and
JIANGFU ZHOU

Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and Technology, Wuhan,

PR China

(Received 29 August 2012; final version received 10 August 2013)

With the rapid development of web technology and smart phone, multimedia contents
spread all over the Internet. The prevalence of virtualization technology enables
multimedia service providers to run media servers in virtualized servers or rented
virtual machines (VMs) in a cloud environment. Although server consolidation using
virtualization can substantially increase the efficient use of server resources, it
introduces resources competition among VMs running different applications. Recently,
hypervisors do not make any Quality of Service (QoS) guarantee for media-based
applications if they are consolidated with other network-intensive applications, which
leads to significant performance degradation. For example, Xen only offers a static
method to allocate network bandwidth. In this paper, we find that the performance of
media-based applications running in VMs degrades seriously when they are
consolidated with other VMs running network-intensive applications and argues that
dynamic network bandwidth allocation is essential to guarantee the QoS of media-
based applications. Then, we present a dynamic network bandwidth allocation system
in virtualized environment, which allocates network bandwidth dynamically and
effectively, and does not interrupt running services in VMs. The experiments show that
our system can not only guarantee the QoS of media-based applications well but also
maximize the system’s the overall performance while ensuring the QoS of media-based
applications.

Keywords: Multimedia; Network management; Virtualization

1. Introduction

In the traditional computing environment, operating systems run on the physical
hardware directly and manage all kinds of hardware resources. However, the

*Corresponding author. Email: wusong@hust.edu.cn

New Review of Hypermedia and Multimedia, 2013
Vol. 19, Nos. 3–4, 217–233, http://dx.doi.org/10.1080/13614568.2013.834487

© 2013 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

mailto:wusong@hust.edu.cn
http://dx.doi.org/10.1080/13614568.2013.834487

appearance of virtualization technology (Menascé 2005) changes many things.
Virtualization technology separates the physical hardware and the operating system
perfectly, which enables multiple operating systems to run on the same physical
machine simultaneously. Virtualization technology has quite awide usage, especially, in
data centers and large-scale cluster environments (Nathuji and Schwan2007,Hermenier
et al. 2009, Stillwell et al. 2009).With server consolidation in data centers, virtualization
technology improves the resource utilization rate, reduces the energy consumption, and
saves the cost on server management (Rosenblum and Garfinkel 2005, Padala et al.
2007, Wood et al. 2007).
With the rapid development of web technology and smart phone, multimedia

contents spread all over the Internet. Due to the advantages of virtualization,
multimedia service providers may run media servers in virtualized servers or
rented virtual machines (VMs) in cloud environment, such as Amazon’s Elastic
Compute Cloud (EC2). Because media-based applications (such as streaming
media server, VoIP) have strong demands on central processing unit (CPU) and
network resources (Patnaik et al. 2009, Barker and Shenoy 2010), and virtualization
introduces resources competition among VMs running different applications, the
virtual machine monitor (VMM), also called hypervisor, must provide enough
resources to the VMs running media-based applications to guarantee their Quality of
Service (QoS). However, recent studies (Chen et al. 2010, Lee et al. 2010, Kim et al.
2012) only focus on optimizing CPU scheduling or providing enough CPU resources
to the VMs to improve the performance of media-based applications. They only
address one aspect and do not solve the network bandwidth competition among
different VMs.
We find that the performance of media-based applications running in VMs

degrades seriously when they are consolidated with other VMs running network-
intensive applications. The competition on network resources is the key factor to
affect the QoS of media-based applications. If we want to guarantee the QoS of
media-based applications, we must provide enough network bandwidth to the
corresponding VMs. However, although Xen (Barham et al. 2003) allows users or
administrators to change memory size or virtual CPU resources when VMs are
running, it only offers a static method to allocate network bandwidth, which
cannot allocate network bandwidth when VMs are running and results in a waste
of network resources.
We argue that dynamic network bandwidth allocation is essential to guarantee

the QoS of media-based applications. The reasons are as follows: First, we cannot
decide how much network bandwidth should be allocated to a VM before starting
it. Second, the network bandwidth demands of media-based applications always
change as time goes on. Finally, if users or administrators know the network
bandwidth demands of media-based applications, they cannot allocate appropriate
network bandwidth to corresponding VMs on the fly in current hypervisors.
The aim of this paper is to guarantee the QoS of media-based applications in

virtualized environment from the aspect of network management. We conduct a
motivational experiment to demonstrate the importance of providing enough
network resources to a media-based application to guarantee its QoS. Then, we
design and implement a dynamic network bandwidth allocation system in the Xen

218 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

hypervisor, named DNBA, which enables administrators to allocate network
bandwidth dynamically when VMs are running. All the operations are transparent
to services and do not interrupt the running services. Our experiments show that
DNBA can allocate network bandwidth dynamically and effectively and guarantee
the QoS of media-based applications very well. Besides, DNBA can maximize the
overall performance of the system while ensuring the QoS of media-based
applications.
The main contributions of this paper are as follows:

. We identify the network competition problem that network competition affects
media-based applications running in VMs seriously, and argue that dynamic
network bandwidth allocation is essential to guarantee the QoS of media-based
applications.

. We present a dynamic network bandwidth allocation system to address the
network competition problem, which is not solved by the current hypervisors,
and we conduct various experiments to validate the effectiveness of the
system. The experimental results show that allocating enough network
bandwidth to media-based applications is the key factor to guarantee the
QoS of these applications.

The rest of the paper is organized as follows: Section 2 provides an overview of
background information and related work. Then we present a motivational
example to illustrate the drawback of current network virtualization in Section 3.
Section 4 describes the design and the implementation of the dynamic network
bandwidth allocation system. Section 5 presents performance evaluation. In
Section 6, conclusions summarize results and future work.

2. Background and related work

2.1. Network virtualization

Xen uses split-driver model to virtualize input/output (I/O) devices. A device driver
is split into a front-end driver and a back-end driver. The front-end driver is running
in a guest domain or DomainU, and the back-end driver is running in an Isolated
Driver Domain (IDD) or Domain0. All the requests and replies of the front-end
driver are processed by the back-end driver. However, the split-driver model needs
to modify the kernel of the guest operating systems (guest OSes), which is adopted
by para-virtualization. Xen uses Qemu (Bellard 2005) to emulate devices in full
virtualization.
The network architecture of Xen is shown in Figure 1. DomainU uses the

netfront (or network front-end driver) as its network device driver, which sends
packets to the netback (or network back-end driver) in Domain0. The packets then
go through the Linux software bridge and, finally, go to the network via Linux’s
native network driver. The process of receiving packets is reverse.
System administrators always need to set up VMs’ network, including limiting

their maximum network bandwidth. However, Xen only provides a static method
to limit the maximum network bandwidth, which specifies the bandwidth rate in

Guaranteeing QoS of media-based applications 219

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

the domain-specific configuration file:
vif ¼ 0type ¼ netfront, bridge ¼ xenbr0, rate ¼ xMB/s0½ �

When users create a VM using the configuration file, the rate parameter is stored
in XenStore, which is an information storage space shared between domains. The
maximum network bandwidth of the VM is limited to xMB/s permanently.
When a VM is created, the network back-end driver reads the bandwidth

parameter from XenStore and allocates a certain number of credits to the VM.
When the VM is running, the network back-end driver ensures that in a defined
time, T, the credit consumption of the VM will not exceed C (the value of C is
calculated according to the bandwidth parameter and T).
When the VM sends/receives data via network, it consumes corresponding

amount of credits. When the VM drains the credits, the network back-end driver
checks whether the time exceeds T. If the time does not exceed T, the rest of the
credits cannot support a complete network operation. The virtual network
interface of the VM will “sleep” for a while, until the system reallocates credits
at the end of time T; otherwise, the network front-end driver still can send/
receive data.
From the above discussion, we can come to the conclusion that there is still

some work we can do in network bandwidth allocation, which is used to
guarantee the QoS of media-based applications. First, various applications have
different demands on network resources. Users cannot know the exact network
bandwidth demands of applications in advance, and they always change as time
goes on. Second, Xen provides tools to adjust memory size and virtual CPU
resources of a VM when it is running. However, there is no tool in Xen that can
change the network bandwidth on the fly. Finally, dynamic network bandwidth
allocation is the base of adaptive network bandwidth allocation, which can adjust
network bandwidth automatically according to the demands of applications.
Therefore, it is urgent to design and implement a dynamic network bandwidth
allocation system.

Figure 1. Network architecture of Xen.

220 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

2.2. Related work

In order to increase the performance of media-based applications, most studies
(Chen et al. 2010, Lee et al. 2010, Kim et al. 2012) optimize the CPU scheduler
of VMM. This is because of the fact that CPU resource is the most important one
in the whole system, and the CPU scheduler can affect I/O performance in
virtualized environment. Lee et al. (2010) introduce laxity to denote the
emergency of a VM. The VM with low laxity means that it is desirable to run.
Kim et al. (2012) modify Xen’s Credit scheduler to reallocate credits for the VM
running multimedia applications adaptively. If the quality of multimedia applica-
tions does not meet the expectation, the system allocates more credits to the target
VM; otherwise, it decreases credits that the VM can get. Chen et al. (2010)
introduce real-time priority and dynamic time-slice to credit scheduler. They use
feedback control to adjust the real-time priority of the VM running audio
applications to meet their quality adaptively. As applications running in VMs are
always associated with a service level agreement (SLA), Zhong et al. (2012)
investigate the performance implications of the nonuniform virtual central
processing unit (VCPU)—physical central processing unit (PCPU) mappings in
virtualized environment.
Media-based applications always have a lot of I/O operations. The performance

of I/O virtualization affects the quality of such applications directly. There is a lot
of work to improve the performance of network virtualization. VMM-bypass I/O
(Liu et al. 2006) is a new device virtualization model. VMM-bypass allows time-
critical I/O operations to be carried out directly in the guest VMs without
involvement of the VMM and/or a privileged VM. Ram et al. (2009) use
multiqueue network card to eliminate the software overhead of demultiplexing
and copying and reuse a grant to reduce memory protection overheads. With the
number of cores growing in modern architectures, using a dedicated core to
improve the performance of networking becomes feasible (Liu and Abali 2009,
Shalev et al. 2010). Besides, there is also some work to improve the performance
of I/O virtualization from the aspect of CPU scheduling (Govindan et al. 2007,
Ongaro et al. 2008, Kim et al. 2009, Hu et al. 2010). VM placement may affect
the performance of media-based applications. Liao et al. (2010) present an optimized
resource distribution policy to increase the resource utilization of virtual cluster and
shorten the response time. Besides, QoS can be improved from the aspect of
workflow (Cao et al. 2010).
There are also some studies related with multimedia in traditional environment.

Elmisery and Botvich (2011) present a framework for a private internet protocol
television (IPTV) recommender service based on Enhanced Middleware for
Collaborative Privacy (EMCP), which not only protects the user’s privacy but
can also maintain the accuracy of the recommendations. Vakili and Gregoire (2011)
present a method based on packet scheduling to improve the performance of video
streaming over noisy channels. Bhattacharya et al. (2012) introduce an affect-based
methodology of Quality of Experience (QoE) evaluation in voice communication.
Luo and Shyu (2011) survey the QoS provision in mobile multimedia at different
network layers and cross-layer design and provide some thoughts about the
challenges and the directions for future research.

Guaranteeing QoS of media-based applications 221

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

3. Motivational example

In this section, we conduct a test to illustrate the drawbacks of existing network
virtualization in Xen and to demonstrate the importance of network bandwidth
allocation to guarantee the QoS of media-based applications. The test environment
is described in Section 5. We use two VMs to conduct this test. They run Darwin
Streaming Server (DSS) and a file transfer protocol (FTP) server, respectively. We
run 80 and 50 concurrent streams to generate loads to DSS, respectively, and use
wget to download 1 GB file from the FTP server. We conduct this test in two
configurations: dedicated configuration and shared configuration. The dedicated
configuration means that there is no background interference. The shared
configuration means that both VMs are running on the same physical machine
simultaneously, and we generate loads to DSS and the FTP server at the same time.
Thus, these VMs compete for network bandwidth with each other. We are interested
in two primary metrics: the average bit rate per stream (the metric of DSS) and the
total file transfer time (the metric of the FTP server). The test results are shown in
Table 1 and Figure 2.
As shown in Figure 2, we can see that the performance of DSS degrades

seriously in the shared configuration. Table 1 shows an interesting phenomenon.
The file transfer time is 94 s in the dedicated configuration, but it is 106 s and

Table 1. File transfer time in different configurations.

Shared

Configurations Dedicated 80 streams 50 streams

File transfer time (s) 94 106 105

Figure 2. Average bit rate over 80 or 50 concurrent streams in different configurations.

222 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

105 s in the shared configuration under the 80 and the 50 concurrent streams tests,
respectively. The file transfer time in the shared configuration shows almost no
difference despite the different loads to DSS and increases slightly compared to
the file transfer time in the dedicated configuration. We observe that the VM
running the FTP server can use 80% of network bandwidth of the network card
even if we generate different number of concurrent streams. The VM running the
FTP server is allocated more network bandwidth than the VM running DSS.
Moreover, we run DSS and the FTP server in the same VM and the native
operating system (OS; CentOS 5.3), respectively. We observe that DSS and the
FTP server share the network bandwidth fairly in both scenarios. Therefore, the
network bandwidth distribution between these VMs is unfair in virtualized
environment, and the performance of DSS degrades seriously.
We summarize the motivational example as follows. First, Xen does not

guarantee adequate network isolation. A VM can use more network bandwidth
than the other. Second, the performance of the streaming media server is not
guaranteed when network-intensive applications running in other VMs compete
for network resources. If we want to allocate more network bandwidth to a VM
according to the application’s requirement, Xen does not provide tools to do this.
Thus, in order to guarantee the QoS of media-based applications, we need to
design and implement a system to allocate enough network bandwidth to
corresponding VMs.

Figure 3. System architecture.

Guaranteeing QoS of media-based applications 223

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

4. Design and implementation

As described in Section 2, Xen uses the configuration file to specify the maximum
limit of network bandwidth. With server consolidation, VMs running different
applications are running on the same physical machine simultaneously. The
network bandwidth demands of these VMs are different and always change as
time goes on. Therefore, the static method, which lacks flexibility, is not perfect in
virtualized environment and cannot guarantee the QoS of media-based applica-
tions properly. Taking into account the above reasons, we design and implement a
dynamic network bandwidth allocation system in virtualized environment, named
DNBA. The goals of DNBA are as follows: First, it is compatible with the
management of virtual device in Xen, which is accepted by most users, and has
high scalability. Second, a friendly interface must be provided to users. Finally,
users can adjust VMs’ maximum limit of network bandwidth when VMs are
running, and the operation is transparent to guest OSes and applications, namely,
the dynamic network bandwidth allocation does not interrupt running services.
The system architecture is shown in Figure 3. On one hand, we add a bandwidth

allocation command to the user’s console and provide application programming
interfaces (APIs) to programmers, which enable cloud providers to design and
deploy their network bandwidth allocation strategies. On the other hand, we add the
device state and the bandwidth allocation method in the network back-end driver.
The procedure of dynamic network bandwidth allocation is as follows: The system
accepts user’s bandwidth allocation command from the console, analyzes
parameters, and then generates a trigger to the bandwidth allocation module. The
bandwidth allocation module in the back-end driver responds to the trigger and
executes transparent bandwidth allocation.
System administrators can use DNBA to configure the maximum limit of

network bandwidth as follows:
xm config <domid> <vifid> <new-rate>

domid is the ID of a VM, vifid is the ID of virtual network interface, and new-rate
specifies the maximum limit of network bandwidth. If a VM has many virtual
network interfaces, DNBA can set the network bandwidth limit for each virtual
network interface.
We also provide APIs to programmers and implement a Web UI to monitor and

allocate network bandwidth based on the APIs. Cloud providers can also use the
APIs to design and to implement their own network bandwidth allocation
strategies.
DNBA mainly includes two modules: bandwidth allocation management

module and driver layer bandwidth allocation module.
Bandwidth allocation management module is the bridge of DNBA. It plays an

important role in connecting users and driver layer bandwidth allocation module.
It specifically includes user interface module, device find-update module, and
bandwidth allocation trigger module. All of them are located in the management
layer of Xen.
In bandwidth allocation management module, the system accepts users’

bandwidth allocation requests from the console and analyzes parameters to
extract the device information (includes the VM’s ID and the ID of virtual

224 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

network interface) and a new bandwidth value. The system searches the network
virtual interface in the hypervisor according to the device information. When the
interface is found, it uses the new bandwidth value to update the bandwidth
parameter of the virtual network interface, which is stored in XenStore.
When a VM is created successfully, the state of the front-end device and the

back-end device is XenbusStateConnected. We add a new status—XenbusSta-
teUpdating to denote that network bandwidth limit needs to update. When users
use DNBA to reconfigure network bandwidth limit, the system changes the state
of the back-end device from XenbusStateConnected to XenbusStateUpdating,
which triggers driver layer bandwidth allocation module to complete network
bandwidth allocation. At last, bandwidth allocation management module receives
the result of bandwidth allocation from the driver layer and displays it on the
console. The result tells users whether the allocation is successful.
Driver layer bandwidth allocation module is the core of DNBA, which, indeed,

takes charge of the bandwidth allocation operation. It specifically includes
bandwidth allocation module and device state recovery module. It works based
on the following principles:

(1) There is a device state monitoring mechanism in the split-device driver
model.

Both the front-end driver and the back-end driver have a monitor in the
split device driver model. Each monitor probes the state of the other side device
(more precisely, it is XenBus state of a device; here we generally use device state
to take place of it). That is, to say, the front-end driver probes the state of the
back-end device, and the back-end driver probes the state of the front-end device.

(1) There is an interactive device parameter updating process in the split device
driver model.

The front-end driver is located in DomainU, and the back-end driver is
located in the IDD or Domain0. Both of them can only modify their own device
parameter and state. The state of change of one of side the device can trigger the
other side to execute corresponding operations based on the state of the
monitoring mechanism of the split device driver model. So our system contains
a complete front-end and back-end device interactive process in order to finish the
device parameter update.
In driver layer bandwidth allocation module, the front-end driver probes the

state of change of the back-end device and invokes the update callback function
of the front-end device, which changes the state of the front-end device from
XenbusStateConnected to XenbusStateUpdating. Then, the back-end driver probes
this change and invokes the update callback function of the back-end device,
which reads the new bandwidth value from XenStore, and writes it to the back-
end driver to complete the bandwidth allocation operation. After the bandwidth
allocation operation is completed, the state of the front-end device and the back-
end device needs to be recovered to XenbusStateConnected to ensure their normal

Guaranteeing QoS of media-based applications 225

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

state change in their original life cycle. At last, this module returns the result of
bandwidth allocation to bandwidth allocation management module.
Figure 4 shows the system workflow that describes the whole operations

of DNBA.

5. Performance evaluation

In this section, we evaluate the feasibility and the effectiveness of DNBA and
show that DNBA guarantees the QoS of media-based applications well. We first
describe the experimental environment and then present the experimental results,
including the effectiveness of dynamic bandwidth allocation and ensuring the
QoS of media-based applications.
In our experiment, the physical machine has a dual-core Intel CPU (2.6 GHz),

2 GB memory, 500 GB SATA disk, and 100 Mbps Ethernet card. We use Xen-
3.4.1 as the hypervisor and CentOS 5.3 distribution with the Linux-2.6.18.8 as the
OS. All the configurations of VMs are as follows: 2VCPUs, 384 MB memory,
and 20 GB virtual disk.

5.1. General test

Since it is a network bandwidth test, we adopt a widely used network performance
analysis tool – IxChariot (IxChariot – Official website), and use two VMs to
conduct this experiment. For simplicity, we call them as VM1 and VM2. Both of
them install an IxChariot’s endpoint. IxChariot shows many network test results
such as real-time bandwidth curves and bandwidth statistics information including
maximum, minimum, average bandwidth, etc. In order to get accurate test results,
we set the data to be transferred as 1 GB. We chose the real-time network
bandwidth curve and the average bandwidth as our test results.

Figure 4. System workflow.

226 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

5.1.1. Bandwidth allocation

This test shows the comparison of specified and measured network bandwidth.
We use DNBA to limit the maximum network bandwidth of VM1 and VM2 to 20
and 30 Mbps, respectively.
From the test results, we observe that the average bandwidth of VM1 and VM2

is 20.322 and 30.776 Mbps, respectively. The measured network bandwidth is
close to the specified value. The real-time bandwidth curve is shown in Figure 5.
The results show that DNBA works well.

5.1.2. Dynamic bandwidth allocation

This test shows the effectiveness of DNBA. With the original network bandwidth
allocation scheme of Xen, when a VM is running, users cannot change the
maximum network bandwidth limit of the VM. However, DNBA can do this well.
When the VM is running, users can adjust the maximum network bandwidth limit
of the VM dynamically according to the demands of services.

Figure 5. The curve of bandwidth allocation under general test.

Figure 6. The curve of dynamic bandwidth allocation under general test.

Guaranteeing QoS of media-based applications 227

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

When the test starts, we limit the maximum network bandwidth of VM1 and
VM2 to 20 and 30 Mbps, respectively. We adjust the maximum network
bandwidth limit of VM1 to 40 Mbps in the process of data transferring.
From the test results, we can see that the average bandwidth of VM2 is 30.744

Mbps and the minimum and maximum bandwidth of VM1 is 20.090 and 42.239
Mbps, respectively.
The real-time bandwidth curve is shown in Figure 6. From the curve, we can

see that our bandwidth allocation is transparent to the service, which has no sign
of interrupt.

5.2. Performance test

DNBA introduces some additional operations, which brings extra overhead costs.
This test tells us how much extra costs are introduced by DNBA.
First of all, we launch a VM to test the total bandwidth of the system without

any bandwidth allocation. The result is 93.716 Mbps. We use rate′ to indicate the
measured total network bandwidth in the following tests, and rate to represent the
total bandwidth (i.e. 93.716 Mbps). We choose absolute error Δ and relative error
δ as the performance metrics.

D ¼ jrate0 � ratej ð1Þ

d ¼ j rate0 � ratej
rate

� 100% ð2Þ
5.2.1. Bandwidth allocation

We use four VMs to conduct this experiment. All of them are running IxChariot’s
endpoint. For simplicity, we call them VM1, VM2, VM3, and VM4, respectively.
We use DNBA to limit the maximum network bandwidth of VM1, VM2, and
VM3 to 10, 20, and 30 Mbps, respectively. The network bandwidth of VM4 is not
limited. It can use the rest of network bandwidth.
From the test results, we can see that the average network bandwidth of VM1,

VM2, VM3, and VM4 is 9.850, 19.871, 29.213, and 35.056 Mbps, respectively.

Figure 7. The curve of bandwidth allocation under performance test.

228 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

The total network bandwidth of these VMs is 93.596 Mbps (rate′). Therefore, Δ is
0.12 Mbps and δ is 0.128% according to (1) and (2). The performance loss is not
obvious. The real-time bandwidth curve is shown in Figure 7.

5.2.2. Dynamic bandwidth allocation

We still choose VM1, VM2, VM3, and VM4 as testing VMs. At the beginning,
we limit the maximum network bandwidth of VM1, VM2, and VM3 to 10, 20,
and 30 Mbps, respectively. The network bandwidth of VM4 is not limited. It can
use the rest of network bandwidth. Then, we start the test. In the process of data
transferring, we change the maximum bandwidth of VM1, VM2, and VM3 three
times. We first set the maximum network bandwidth of VM1, VM2, and VM3 to
20, 30, and 10 Mbps, respectively. After a while, we set the maximum network
bandwidth of VM1, VM2, and VM3 to 30, 10, and 20 Mbps, respectively. Finally,
we set the maximum network bandwidth of VM1, VM2, and VM3 to 10, 20, and
30 Mbps, respectively, a moment later.
The real-time bandwidth curve is shown in Figure 8. The total network

bandwidth of these VMs is 93.456 Mbps (rate’). Therefore, Δ is 0.26 Mbps and
δ is 0.277% according to Equations (1) and (2). This test introduces more
operations, which results in more overhead. Although the overhead cost is higher
than the previous test, the performance loss is still not obvious.

5.3. Streaming media server test

In order to guarantee the quality of video or audio services, the streaming media
server must continuously transmit data across the network to the client. In this
section, we test the quality of the streaming media server. We use Apple’s open-
source DSS as the streaming media server. DSS provides a tool named
StreamingLoadTool to generate artificial client loads on the server, which greatly
simplifies testing.
We use two VMs to conduct this test. One VM, named VM_DSS, runs DSS.

The other, named VM_FTP, runs an FTP server. Moreover, we use two other
machines as the clients. Both the servers and the clients are in the same LAN. We

Figure 8. The curve of dynamic bandwidth allocation under performance test.

Guaranteeing QoS of media-based applications 229

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

run StreamingLoadTool and wget on different clients to generate loads to DSS and
the FTP server. We are interested in two primary metrics: the average bit rate per
stream (the metric of DSS) and the total file transfer time (the metric of the FTP
server) of downloading 1 GB file from the FTP server. To evaluate the average bit
rate per stream, we start up several 1 Mbps streams of a movie file and run them
for 60 seconds. In order to get the file transfer time, we use wget to download
1 GB file from the FTP server. We use four different configurations to conduct
this test: dedicated, shared (default), shared (static), and shared (dynamic).
The dedicated configuration means that there is no background interference.
The shared configuration means that both VMs are running on the same server
simultaneously, and we generate loads to DSS and the FTP server at the same
time. The content in the bracket represents different bandwidth allocation policies

Figure 9. Average bit rate over 80 and 50 concurrent streams in a variety of configurations.

Figure 10. File transfer time under different DSS load with a variety of bandwidth allocation
policies.

230 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

adopted in the test that are no bandwidth allocation, static bandwidth allocation,
and dynamic bandwidth allocation, respectively.
Because the maximum bandwidth of the NIC is 100 Mbps, if two VMs with

maximum network loads share the total network bandwidth, each can get 50
Mbps bandwidth ideally. Therefore, we run 50 concurrent streams to fully use the
half of NIC’s bandwidth. Besides, we run 80 concurrent streams as the high load
to test the function of DNBA. In the static configuration, if we run 80 concurrent
streams, we limit the maximum network bandwidth of VM_DSS and VM_FTP to
80 and 20 Mbps, respectively. Accordingly, if we run 50 concurrent streams, we
limit the maximum network bandwidth of VM_DSS and VM_FTP to 50 and 50
Mbps, respectively. The maximum network bandwidth cannot be changed in the
static configuration when the VMs are running. In the dynamic configuration, we
allocate the same bandwidth before the starting of the test. We set the maximum
network bandwidth of VM_FTP to 100 Mbps after the DSS test completion. We
conduct each test three times and use the average value as the metrics. The test
results are shown in Figures 9 and 10.
From the test results, we can see that both static and dynamic bandwidth

allocation guarantee the QoS of the streaming media server well. However, the
static method impairs the performance of other applications seriously. These
applications cannot use extra network bandwidth even if there is a lot of network
bandwidth available in the static configuration. Besides, if the network require-
ments of media servers are changed, users cannot adjust the maximum limit of
network bandwidth on the fly. It means that the static bandwidth allocation cannot
guarantee the QoS of media servers anymore. In this test, the file transfer time
under the load of 80 concurrent streams in the static and dynamic bandwidth
allocation is 440s and 147s, respectively. Therefore, DNBA is better and more
flexible. It can maximize the system’s overall performance while ensuring the
QoS of media-based applications.
In summary, the experimental results show that the proposed solution in this

paper can guarantee the QoS of media-based applications well and maximize the
system’s overall performance.

6. Conclusion

In this paper, we identify the network competition problem when VMs running
media-based applications are consolidated with other VMs running network-
intensive applications. And then, we present a dynamic network bandwidth
allocation system in virtualized environment to address the problem, which allows
administrators to allocate network bandwidth according to the network demands
of applications when VMs are running. The system provides a user interface to
administrators and APIs to programmers. Cloud providers can use the APIs to
design and implement their own network bandwidth allocation strategies. Besides,
the system is transparent to services running in VMs and does not interrupt the
running services. This system can not only be used to guarantee the QoS of
media-based applications but also be used to meet the quality of any applications
that their performance has strong relationship with network bandwidth. The

Guaranteeing QoS of media-based applications 231

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

experiment results show that our system can allocate network bandwidth among
VMs flexibly and effectively and guarantee the QoS of streaming media servers
well. Besides, our system can maximize overall performance of the system while
ensuring the QoS of media-based applications.
In the future, we will design and implement some bandwidth allocation

strategies to do dynamic adaptive bandwidth allocation by using our system,
which can allocate network bandwidth automatically according to the historic
bandwidth usage and some inferred policies.

Acknowledgment
The research is supported by National Science Foundation of China under grant Nos.61073024 and
61232008. It is also supported by National 863 Hi-Tech Research and Development Program under
grant Nos.2013AA01A213 and 2013AA01A208, Outstanding Youth Foundation of Hubei Province
under grant No.2011CDA086S, and Guangzhou Science and Technology Program under grant
No. 2012Y2-00040.

References

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield, “Xen and
the art of virtualization”, in Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP’03), Bolton Landing, NY, USA, 19–22 October 2003, New York, NY, USA: ACM, pp. 164–177, 2003.
S.K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive application performance in the cloud”,
in Proceedings of the First Annual ACM SIGMM Conference on Multimedia Systems (MMSys’10),
Phoenix, AZ, USA, 22–23 February 2010, New York, NY, USA: ACM, pp. 35–46, 2010.
F. Bellard, “QEMU, a fast and portable dynamic translator”, in Proceedings of the Annual Conference on
USENIX Annual Technical Conference (ATC’05), Anaheim, CA, USA, 10–15 April, 2005, Berkeley, CA, USA:
USENIX Association, pp. 41–46, 2005.
A. Bhattacharya, W. Wu and Z. Yang, “Quality of experience evaluation of voice communication: An affect-
based approach”, Human-centric Computing and Information Sciences, 2(7), pp. 1–18, 2012.
H. Cao, H. Jin, X. Wu and S. Wu, “Service flow: QoS-based hybrid service-oriented grid workflow system”,
Journal of Supercomputing, 53(3), pp. 371–393, 2010.
H. Chen, H. Jin, K. Hu and M. Yuan, “Adaptive audio-aware scheduling in Xen virtual environment”, in
Proceedings of 2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA’10),
Hammamet, Tunisia, 16–19 May 2010, Washington, DC, USA:IEEE Computer Society, pp. 1–8, 2010.
Credit Scheduler [Online]. Available online at http://wiki.xensource.com/xenwiki/CreditScheduler (Accessed 15
July 2012).
A. M. Elmisery and D. Botvich, “Enhanced middleware for collaborative privacy in IPTV recommender
services”, Journal of Convergence, 2(2), pp. 33–42, 2011.
S. Govindan, A. Nath, A. Das and B. Urgaonkar, “Xen and Co.: Communication-aware CPU scheduling for
consolidated Xen-based hosting platforms”, in Proceedings of the 3rd International Conference on Virtual
Execution Environments (VEE’07), San Diego, CA, USA, 13–15 June 2007, New York, NY, USA: ACM,
pp. 126–136, 2007.
F. Hermenier, X. Lorca, J. M. Menaud, G. Muller and J. Lawall, “Entropy: A consolidation manager for
clusters”, in Proceedings of the ACM/Usenix International Conference on Virtual Execution Environments
(VEE’09), Washington, DC, USA, 11–13 March 2009, New York, NY, USA: ACM, pp. 41–50, 2009.
Y. Hu, X. Long, J. Zhang, J. He and L. Xia, “I/O scheduling model of virtual machine based on multi-core
dynamic partitioning”, in Proceedings of the 19th ACM International Symposium on High Performance Distributed
Computing (HPDC’10), Chicago, IL, USA, 21–25 June 2010, New York, NY, USA: ACM, pp. 142–154, 2010.
IxChariot – Official Website [Online]. Available online at http://www.ixchariot.com/ (accessed 15 July 2012).
H. Kim, J. Jeong, J. Hwang, J. Lee and S. Maeng, “Scheduler support for video-oriented multimedia on client-
side virtualization”, in Proceedings of the 3rd Multimedia Systems Conference (MMsys’12), Chapel Hill, NC,
USA, 22–24 February 2012, New York, NY, USA: ACM, pp. 65–76, 2012.

232 L. Zhou et al.

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

http://wiki.xensource.com/xenwiki/CreditScheduler
http://wiki.xensource.com/xenwiki/CreditScheduler
http://www.ixchariot.com/

H. Kim, H. Lim, J. Jeong, H. Jo and J. Lee, “Task-aware virtual machine scheduling for I/O performance”, in
Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’09), Washington, DC, USA, 11–13 March 2009, New York, NY, USA: ACM, pp. 101–110, 2009.
M. Lee, A. Krishnakumar and P. Krishnan, “Supporting soft real-time tasks in the Xen hypervisor”, in
Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’10), Pittsburgh, PA, USA, 17–19 March 2010, New York, NY, USA: ACM, pp. 97–108, 2010.
X. Liao, H. Jin and X. Yuan, “Espm: An optimized resource distribution policy in virtual user environment”,
Future Generation Computer Systems, 26(8), pp. 1393–1402, 2010.
J. Liu and B. Abali, “Virtualization polling engine (VPE): Using dedicated CPU cores to accelerate I/O
virtualization”, in Proceedings of the 23rd International Conference on Supercomputing (ICS’09), Yorktown Heights,
NY, USA, 8–12 June 2009, New York, NY, USA: ACM, pp. 225–234, 2009.
J. Liu, W. Huang, B. Abali and D.K. Panda, “High performance VMM-bypass I/O in virtual machines”, in
Proceedings of the Annual Conference on USENIX’06 Annual Technical Conference (ATC’06), Boston, MA,
USA, 30 May – 3 June 2006, Berkeley, CA, USA: USENIX Association, pp. 29–42, 2006.
H. Luo and M. Shyu, “Quality of service provision in mobile multimedia – a survey”, Human-centric Computing
and Information Sciences, 1(5), pp. 1–15, 2011.
D. Menascé, “Virtualization: Concepts, applications, and performance”, in Proceedings of the Computer Measurement
Group’s 2005 International Conference (CMG’05), Orlando, FL, USA, pp. 407–414, 2005.
R. Nathuji and K. Schwan, “Virtual power: Coordinated power management in virtualized enterprise systems”, in
Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP’07), Stevenson, WA, USA,
14–17 October 2007, New York, NY, USA: ACM, pp. 265–278, 2007.
D. Ongaro, A.L. Cox and S. Rixner, “Scheduling I/O in virtual machine monitors”, in Proceedings of the Fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE’08), Seattle, WA, USA,
5–7 March 2008, New York, NY, USA: ACM, pp. 1–10, 2008.
P. Padala, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant and K. Salem, “Adaptive control of
virtualized resources in utility computing environments”, in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys’07), Lisbon, Portugal, 21–23 March 2007, New York, NY,
USA: ACM, pp. 289–302, 2007.
D. Patnaik, A.S. Krishnakumar, P. Krishnan, N. Singh and S. Yajnik, “Performance implications of hosting
enterprise telephony applications on virtualized multi-core platforms”, in Proceedings of the 3rd International
Conference on Principles, Systems and Applications of IP Telecommunications (IPTComm’09), Atlanta, GA,
USA 7–8 July 2009, New York, NY, USA: ACM, 2009.
K.K. Ram, J.R. Santos, Y. Turner, A.L. Cox and S. Rixner, “Achieving 10 Gb/s using safe and transparent
network interface virtualization”, in Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE’09), Washington, DC, USA, 11–13 March 2009, New York, NY, USA:
ACM, pp. 61–70, 2009.
M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current technology and future trends”, IEEE
Computer, pp. 39–47, 38(5), 2005.
L. Shalev, J. Satran and E. Borovik, “IsoStack: Highly efficient network processing on dedicated cores”, in
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference (ATC’10), Boston, MA,
USA, 23–25 June 2010, Berkeley, CA, USA: USENIX Association, 2010.
M. Stillwell, D. Schanzenbach, F. Vivien and H. Casanova, “Resource allocation using virtual clusters”, in
Proceedings of 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’09),
Shanghai, China, 18–21 May 2009, Washington, DC, USA: IEEE Computer Society, pp. 260–267, 2009.
A. Vakili and J. Gregoire, “Modelling the impact of the position of frame loss on transmitted video quality”,
Journal of Convergence, 2(2), 43–48, 2011.
T. Wood, P. Shenoy, A. Venkataramani and M. Yousif, “Black-box and gray-box strategies for virtual machine
migration”, in Proceedings of the 4th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’07), Cambridge, MA, USA, 11–13 April 2007, Berkeley, CA, USA: USENIX Association, pp. 229–
242, 2007.
A. Zhong, H. Jin, S. Wu, X. Shi and W. Gao, “Performance implications of non-uniform VCPU-PCPU mapping
in virtualization environment”, Cluster Computing, 16(3), pp. 347–358, 2013.

Guaranteeing QoS of media-based applications 233

D
ow

nl
oa

de
d

by
 [

U
Q

 L
ib

ra
ry

]
at

 0
1:

06
 0

4
N

ov
em

be
r

20
14

	Abstract
	1. Introduction
	2. Background and related work
	2.1. Network virtualization
	2.2. Related work

	3. Motivational example
	4. Design and implementation
	5. Performance evaluation
	5.1. General test
	5.1.1. Bandwidth allocation
	5.1.2. Dynamic bandwidth allocation

	5.2. Performance test
	5.2.1. Bandwidth allocation
	5.2.2. Dynamic bandwidth allocation

	5.3. Streaming media server test

	6. Conclusion
	Acknowledgment
	References

