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Abstract: In order to address the control of an air-breathing hypersonic flight vehicle (AHFV)
with actuator saturation, a model reference adaptive switching control (MRASC) approach is
proposed. The design of the MRASC system is centred around a linearized longitudinal-motion
flexible model at a Mach 8, altitude of 10 000 ft, and dynamic pressure of 1017 lb/ft2 flight
condition. A switched reference system (SRS) is established to describe the desired dynamics of
the AHFV with/without actuator saturation, and correspondingly, a switched adaptive
controller (SAC) is constructed utilizing the hyperstability method. By switching between the
subsystems of the SRS and the corresponding subcontrollers of the SAC, the MRASC system
achieves the desired performance and is globally asymptotically stable under limited
disturbances, provided that a simple linear-matrix-inequality-based sufficient condition holds.
Although it is too early to say that the proposed scheme gives desired anti-saturation
performance with respect to large disturbances, within a large flight envelope, there are still
some advantages that will improve performance.

Keywords: hypersonic flight vehicles, actuator saturation, switched systems, adaptive control,
switching control

1 INTRODUCTION

The development of a hypersonic flight vehicle will

create new opportunities in low-orbit space flight,

high-speed civilian transportation, and military

operations [1–4]. However, after four decades of

research, there still exist many challenging and

interesting problems. One such issue is flight

controller design.

The complex dynamics of an air-breathing hyper-

sonic flight vehicle (AHFV) that are the result of high

dynamic pressures, high acceleration load, and

constantly changing flight environment, mean that

designing a reliable and effective controller is a

difficult task. Classical proportional–derivative (PD)

controllers with large time-varying gains may guar-

antee a satisfactory performance. However, large

gains would inevitably induce high noise amplifica-

tion and high cost of control [2]. Robust controllers

designed by the H‘ control or m synthesis methods

may achieve the desired performance when control-

ling the AHFV. However, the H‘ control method is

essentially an optimal control method for worst-case

situations, hence the controllers are deemed to be

conservative when compared with PD controllers [3,

4]. Although the m synthesis method may obtain less

conservative results, it is computationally infeasible

for high-order plants [2]. Thus, it is necessary to

investigate an alternative method for the control of

an AHFV.

The model reference adaptive control (MRAC)

strategy, whose controller parameters are adjusted

by means of minimizing the differences between the

reference model output and the plant output, is less

sensitive to changes in the environment, modelling

errors, and non-linearities within the system. There

has been considerable research effort in this area in

recent years and the number of applications using
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this methodology is steadily increasing. Mooij [2] has

shown that a classical MRAC scheme is a promising

control methodology for application to hypersonic

aircraft.

However, actuator saturation, which can occur in

many practical systems, must be considered because

it will lead to performance degradation and even

instability. Generally speaking, there are two ap-

proaches to addressing actuator saturation. One

approach is the use of the anti-windup scheme in

which an additional feedback is introduced to avoid

saturation. Most anti-windup-based schemes are

only applicable to open-loop stable systems. For

open-loop unstable systems (apparently, the AHFV

is strictly unstable at most operating points), few

results are available, especially for uncertain un-

stable systems [5]. The other possible approach to

addressing the saturation problem is to consider it to

be a constraint from the beginning of the design

process. Although this approach (the so-called direct

approach) is appealing, the designed controllers are

conservative because actuator saturation is encoun-

tered only rarely or temporarily in practice [6].

In this paper a model reference adaptive switching

control (MRASC) strategy, which is an extension of

the classical MRAC methodology, is proposed as an

approach to the design of a controller with actuator

saturation for an AHFV. A switched reference system

is established to describe the desired dynamics of

the AHFV with/without actuator saturation. Corre-

spondingly, based on the hyperstability method [7],

a switched adaptive controller composed of finite

adaptive controllers is designed. During the control

process, one subsystem in the switched reference

system and its corresponding adaptive controller are

activated together to prevent actuator saturation,

according to a switching signal generated by deci-

sion variables (such as the events that may induce

the actuator saturation). Considering that the

closed-loop system is a switched non-linear system

[8], stability analysis of the control scheme is proved

by the multiple Lyapunov functions method [9] and

the Lure–Postnikov Lyapunov function [10].

Main contributions of this study are as follows.

1. The proposed MRASC strategy is applied to

control the AHFV with actuator saturation. This

strategy can improve the performance, and

ensure globally asymptotical stability provided

that a linear matrix inequality (LMI)-based suffi-

cient condition is satisfied.

2. Contrary to most anti-windup schemes, the

proposed scheme does not need the precondition

of an open-loop system being stable and allows

systems to be disturbed to some extent. In

addition, because the subsystem of the switched

reference system and its corresponding adaptive

controller are activated only when saturation

arises or probably arises, a less conservative

controller is achieved as compared to direct

approaches.

The remainder of this paper is organized as

follows. Section 2 illustrates the linearized flexible

model of the AHFV and the architecture of the

MRASC scheme. Section 3 performs the stability

analysis. The proposed scheme is numerically

validated in section 4. Finally, conclusions are

presented in section 5.

Notation

The notation in this study is standard. <z denotes

the set of real numbers. <n stands for the set of real

vectors. The transpose and the inverse of a real

matrix M are MT and M{1, respectively. Mw0 M¢0ð Þ
indicates that the real matrix M is positive-definite

(semi-positive definite), and Mv0 M¡0ð Þ denotes a

negative-definite (semi-negative definite) matrix. I
denotes the identity matrix and diag(*) stands for a

diagonal matrix. For every p~ p1,p2, � � � ,pnð Þ [<n,

let pk k1~
Pn

i~1 pij j represent the 1-norm, pk k~
pTp
� �1=2

denote the Euclidean norm of p and

sgn pð Þ represent the signum function.

2 THE MRASC METHOD

2.1 Mathematical model of the AHFV

The hypersonic vehicle considered in this study is

the same as that of [11] where a generic hypersonic

vehicle that is similar to the X-30 is considered. In

the model, one elastic degree of freedom is included.

The linearized longitudinal dynamical model de-

scribed in the state space is given in equation (1),

referenced to a flight condition of Mach 8, an alti-

tude of 10 000 ft, and a dynamic pressure of 1017 lb/

ft2.

_xx tð Þ~Ax tð ÞzB u tð Þzd tð Þð Þ ð1Þ

where A and B are the system and input matrices,

respectively. Detailed expressions for them can be

found in [12] and hence they are omitted here. d tð Þ
represents disturbances, and is bounded by a known

function d tð Þ such that d tð Þk k¡d tð Þ.
The state variable x [<7 and the input u [<3

utilized in this model are given by
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x~ h ftð Þ V ft=sð Þ a radð Þ h radð Þ½
q rad=sð Þ g -ð Þ _gg 1=sð Þ �T

u~ de radð Þ Ad -ð Þ _mmf slug=sð Þ½ �T

where h stands for the altitude, V represents the
vehicle flight velocity, a is the angle of attack, h
denotes the pitch attitude, q is the pitch rate, g denotes
the generalized elastic coordinate, de is the pitch
control surface deflection, Ad represents the diffuser
area ratio, and _mmf denotes the fuel mass flowrate.

The input trim condition for the pitch control

surface deflection de and the diffuser area ratio Ad

are 0.52 rad and 0.1482, respectively.

In this work, the control inputs de and Ad are

constrained to vary within the range {1:14, 0:087½ �
and {0:148, 0:85½ �, respectively, because de should

remain within the range {0:61, 0:61½ � and Ad can

only vary within 0, 1½ � in practice.

2.2 Architecture of the MRASC scheme

The MRASC scheme for the AHFV is described in

Fig. 1. In the scheme, the switched reference system

describes the desired dynamics of the AHFV with/

without actuator saturation. One subsystem (denoted

by S1) of the switched reference system (SRS) des-

cribes the dynamics without actuator saturation,

whereas other subsystems (denoted by S2) specify

the desired dynamics for the case of actuator satura-

tion and the cases where the actuator is prone to

saturation. Correspondingly, a switched adaptive

controller is designed to make the system dynamics

track the desired dynamics. During the control

process, one subsystem in S2 and its corresponding

controller are activated together to prevent actuator

saturation, according to a switching signal generated

by decision variables (such as control input amplitude

or events that may induce the actuator saturation),

whereas at other times S1 and its corresponding

controller are active in the system.

The reference input of the SRS is generated by a

linear quadratic regulator. The regulator is used to

minimize the difference between xm tð Þ and the

command signal c tð Þ~ hc,Vc, ac, hc,qc, gc, _ggc½ �T. This

is similar to the approach of [13]. The detailed

structures of the SRS, switched adaptive controller

(SAC), and linear quadratic regulator are illustrated

in the following discussions.

SRS

_xxm tð Þ~Ams
xm tð ÞzBms

r tð Þ ð2Þ

where xm [<7 is the reference state and r [<3 is the

reference input, s t,yð Þ : 0,z‘½ Þ6Y?V~ 1, 2, � � � ,f
Ng is the piecewise constant switching signal taking

value from a finite index set V, and is continuous

from the right everywhere. y [Y is the decision

variable and Y is the decision variable set. For any

i [V, (Ami
,Bmi

) is the subsystem of the SRS, that

Fig. 1 Architecture of the model reference adaptive switching control scheme
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satisfies the following condition of the Erzberger

perfect model so as to ensure the desired steady

accuracy [14], and Ami
is Hurwitz stable.

SAC

Define the state error as equation (3)

e tð Þ~xm tð Þ{x tð Þ ð3Þ

then the SAC can be written as

u tð Þ~r tð ÞzFs tð Þx tð ÞzGs tð Þr tð Þ
zd tð Þ sgn BTPe tð Þ� �

Fi tð Þ~

Ðt
0

KBTPe tð ÞxT tð ÞdtzaiB
TPe tð ÞxT tð ÞzFi t0i

� �
,

if s t,yð Þ~i

Ðt
0

KBTPe tð ÞxT tð ÞdtzFi t0i
� �

,

if s t,yð Þ=i

8>>>>>>>>><
>>>>>>>>>:

Gi tð Þ~

Ðt
0

LBTPe tð ÞrT tð ÞdtzbiB
TPe tð ÞrT tð ÞzGi t0i

� �
,

if s t,yð Þ~i

Ðt
0

LBTPe tð ÞrT tð ÞdtzGi t0i
� �

,

if s t,yð Þ=i

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where Fi tð Þ and Gi tð Þ are the feedback controller and

the feedforward controller, respectively, Pw0 satisfies

an LMI condition for stability of the MRASC scheme,

which is stated in section 3 in detail, t0i represents the

time at which the ith subsystem is activated for the

first time, ai¢0, bi¢0 are arbitrary appropriately

dimensional semi-positive definite matrices, Kw0,

Lw0 are arbitrary appropriately dimensional positive-

definite matrices, and Fi t0i
� �

, Gi t0i
� �

are the initial

gains satisfying Ami
2A5BFi(t

0
i), Bmi

2B5BGi(t
0
i ).

Remark 1

In equation (4), the proportion parts in Fi tð Þ and

Gi tð Þ are set to zero when s t,yð Þ=i (i.e. when the ith

subsystem and the ith controller are ‘switched off’),

whereas the integral parts are still updated by certain

system signals. The proportion parts in Fi tð Þ and

Gi tð Þ are readjusted when the ith subsystem and the

corresponding ith controller are ‘switched on’. A

generic evolution, taking the feedback adaptive

controller Fi tð Þ for example, is depicted in Fig. 2.

Remark 2

In the SAC, a non-smooth non-linear term

d tð Þ sgn BTPe tð Þ� �
is introduced to attenuate the

disturbances d tð Þ. This idea goes back to the early

work on controlling linear uncertain unstable plants

with actuator saturation reported in [5], where a

satisfactory performance was achieved by choice of a

suitable time-varying sliding surface.

Remark 3

It is worth noting that the SAC is designed with

respect to a known disturbance bound. This may

predictably affect the performance when the actual

disturbance is noticeably lower in magnitude than

the bound. Hence, an accurate disturbance bound

will be of great benefit to a satisfactory performance.

Linear quadratic regulator

The reference input r tð Þ is generated by the linear

quadratic regulator as follows

r tð Þ~{�RR{1BT
m

�KKxm tð Þ{ �KKBm
�RR{1BT

m{AT
m

� �{1 �QQc tð Þ
h i

,

�QQ, �RRw0 ð5Þ

Fig. 2 A generic adaptive controller evolution
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where Am, Bm correspond to the subsystem S1 of the

SRS and �KK is the solution of the algebraic Riccati

equation

AT
m
�KKz�KKAm{�KKBm

�RR{1BT
m
�KKz�QQ~0 ð6Þ

This reference input r tð Þ can minimize the following

performance index [15]

J~
1

2

ðt

0

c tð Þ{xm tð Þð ÞT �QQ c tð Þ{xm tð Þð ÞzrT tð Þ�RRr tð Þ
h i

dt

ð7Þ

The closed-loop switched system for the MRASC

scheme can be obtained using equations (1) to (4) in

the form of

_ee(t)~Ams
e(t)z½Ams

{A{BFs(t)�x(t)
z½Bms

{B{BGs(t)�r(t){Bd(t)

{d tð ÞBsgn BTPe tð Þ� � ð8Þ

In the rest of this study, it will be shown that if the

closed-loop switched system satisfies a sufficient

condition, then globally asymptotical stability as

well as a satisfactory performance will be guaranteed

in the presence of actuator saturation.

3 STABILITY ANALYSIS

In this section, the stability of the closed-loop

switched system (8) will be proved based on the

multiple Lyapunov functions method. Before per-

forming the stability analysis, some preliminaries are

given for the sake of clarity.

Lemma 1 [9]

Consider a family of globally asymptotically stable

systems _xx tð Þ~hp x tð Þð Þ, where hp, p [P are functions

from <n to <n and assumed to be sufficiently regular

(at least locally Lipschitz), where P is a finite index

set. Let Vp, p [P be a family of corresponding radially

unbounded Lyapunov functions. Suppose that there

exists a family of positive-definite continuous func-

tions Mp, p [P satisfying that for every pair of

switching times ti, tj
� �

, ivj such that s tið Þ~s tj
� �

~

p [P and s tkð Þ=p for tivtkvtj, Vp x tj
� �� �

{

Vp x tið Þð Þ¡{Mp x tið Þð Þ holds. Then, the switched sys-

tem _xx tð Þ~hp x tð Þð Þ is globally asymptotically stable.

Lemma 2 [9]

Suppose that the pth subsystem is consecutively

activated at the time ti, tj and is active during time

intervals ti, tiz1½ Þ and tj, tjz1

� �
, s tkð Þ=p for any

tk [ ti, tj
� �

, Vp x tj
� �� �

{Vp x t{iz1

� �� �
¡{Mp x t{iz1

� �� �
holds. Then, the switched system _xx tð Þ~hp x tð Þð Þ is

globally asymptotically stable.

In this paper, Lemma 2, an extended result of Lemma

1, is used to prove the stability of the closed-loop

switched system. It is easy to conclude that Lemma 2 is

a special case of Lemma1, i.e. the value of the Lyapunov

function Vp when the pth subsystem is reactivated is no

larger than that at which the pth subsystem was

inactivated last time, which is also depicted in Fig. 3.

In the following, the stability analysis of the

closed-loop switched system will be performed.

Theorem 1

If there exist positive-definite matrices P, Z such that

the LMI

AT
mi
PzPAmi

zZv0 ð9Þ

hold for every i [V, then under arbitrary switching

law, the closed-loop switched system (8) is globally

asymptotically stable for any bounded piecewise

continuous reference input.

Proof

The proof is performed in two steps.

Fig. 3 Multiple Lyapunov functions method (a) for Lemma 1 and (b) for Lemma 2 (solid lines
correspond to V1, dashed lines to V2)
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First, a candidate Lure–Postnikov Lyapunov func-

tion is constructed for the closed-loop switched

system, and then the globally asymptotical stability

is proved for every subsystem of the closed-loop

switched system. Second, the globally asymptotical

stability of the closed-loop switched system is

proved based on Lemma 2.

Step 1: For Vi [V, the following Lure–Postnikov

Lyapunov function is taken for the subsystem of

the closed-loop switched system

Vi~eT tð ÞPe tð Þ

z2

ðt

0

BTPe t ’ð Þ� �T ðt’

0

KBTPe tð ÞxT tð Þdt
0
@

1
Ax t’ð Þdt 0

z2

ð
=(t0

i
, ts

i
, t)

BTPe t ’ð Þ� �T
aiB

TPe t’ð ÞxT t ’ð Þx t’ð Þdt 0

z2

ðt

0

BTPe t ’ð Þ� �T ðt

0

LBTPe tð ÞrT tð Þdt
0
@

1
Ar t ’ð Þdt 0

z2

ð
=(t0

i
, ts

i
, t)

BTPe t ’ð Þ� �T
biB

TPe t’ð ÞrT t ’ð Þr t’ð Þdt 0

ð10Þ

where t0i , t
s
i , t

� � ¼D t0i , t
1
i

� �
| t2i , t

3
i

� �
| � � �| tsi , t

� �
re-

presents the active time interval of the ith subsystem

with the first and the latest being activated at t0i and tsi ,

respectively; t2i , t
4
i , � � � denote the discrete instances

when the ith subsystem is reactivated; t1i , t
3
i , � � �

denote the discrete instances when the ith subsystem

is inactivated and another subsystem is activated.

For Vi [V

_VV i tð Þ~ _eeT tð ÞPe tð ÞzeT tð ÞP _ee tð Þ

z2 BTPe tð Þ� �T ðt

0

KBTPe tð ÞxT tð Þdt
2
4

3
5x tð Þ

z2 BTPe tð Þ� �T
aiB

TPe tð ÞxT tð Þx tð Þ

z2 BTPe tð Þ� �T ðt

0

LBTPe tð ÞrT tð Þdt
2
4

3
5r tð Þ

z2 BTPe tð Þ� �T
biB

TPe tð ÞrT tð Þr tð Þ ð11Þ

Substitute equation (8) into equation (11) and then
by equation (9), the following equation (12) holds,
i.e. each subsystem is globally asymptotically stable

_VV i~eT tð Þ AT
mi
PzPAmi

� �
e tð Þ{2eT tð ÞPBd tð Þ

{2d tð ÞeT tð ÞPB sgn BTPe tð Þ� �
v{eT tð ÞZe tð Þ{2eT tð ÞPBd tð Þ

{2d tð ÞeT tð ÞPB sgn BTPe tð Þ� �
v{rmin Zð Þ e tð Þk k2z2d tð Þ BTPe tð Þ�� ��{2d tð Þ BTPe tð Þ�� ��

1

v{rmin Zð Þ e tð Þk k2z2d tð Þ BTPe tð Þ�� ��{2d tð Þ BTPe tð Þ�� ��
v0 ð12Þ

Step 2: In what follows the globally asymptotical

stability of the closed-loop switched system is proved.

Denote

ðt

0

C e, x, rð Þdt’

~2

ðt

0

BTPe t’ð Þ� �T ðt’

0

KBTPe tð ÞxT tð Þdt
0
@

1
Ax t ’ð Þdt’

z2

ðt

0

BTPe t ’ð Þ� �T ðt

0

LBTPe tð ÞrT tð Þdt
0
@

1
Ar t ’ð Þdt’

ð13Þ
ð

=(t0
i
, ts

i
, t)

W e, x, rð Þdt’

~2

ð
=(t0

i
, ts

i
, t)

BTPe t’ð Þ� �T
aiB

TPe t ’ð ÞxT t’ð Þx t ’ð Þdt’

z2

ð
=(t0

i
, ts

i
, t)

BTPe t ’ð Þ� �T
biB

TPe t’ð ÞrT t’ð Þr t ’ð Þdt’

ð14Þ
Then, equation (10) can be rewritten as

Vi~eT tð ÞPe tð Þz
ðt

0

C e, x, rð Þdt’z
ð

=(t0
i
, ts

i
, t)

W e, x, rð Þdt ’

ð15Þ
and it is easy to verify thatð

=(t0
i
, ts

i
, t)

W e, x, rð Þdt’w0

and
d

dt

ð
=(t0

i
, ts

i
, t)

W e, x, rð Þdt ’

0
B@

1
CAw0

Let t
p
m and t

q
m denote the times at which the mth

subsystem is consecutively activated. Without loss of
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generality, suppose that the condition q~pz2

holds, i.e. an unknown nth subsystem is activated

at the time trn [ t
p
m, t

q
m

� �
and remains active during the

time interval trn, t
q{
m

� �
.

Considering t [ trn, t
q{
m

� �
, _VVnv0, hence

Vn trn
� �

wVn tq{m
� �

[eT trn
� �

Pe trn
� �

z

ðtrn
0

C e, x, rð Þdt ’

z

ð
=(t0n, trn, trn)

W e, x, rð Þdt ’weT tq{m
� �

Pe tq{m
� �

z

ðtq{m
0

C e, x, rð Þdt ’z
ð

=(t0n, trn, tq{m )

W e, x, rð Þdt’

[eT trn
� �

Pe trn
� �

z

ðtrn
0

C e, x, rð Þdt ’weT tq{m
� �

Pe tq{m
� �

z

ðtq{m
0

C e, x, rð Þdt ’

ð16Þ

Because x tð Þ and xm tð Þ are continuous at each

switching, the error e tð Þ~xm tð Þ{x tð Þ is continuous

such that

eT trn
� �

Pe trn
� �

z

ðtrn
0

C e, x, rð Þdt ’weT tq{m
� �

Pe tq{m
� �

z

ðtq{m
0

C e, x, rð Þdt’

[eT tr{n
� �

Pe tr{n
� �

z

ðtr{n
0

C e, x, rð Þdt’weT tqm
� �

Pe tqm
� �

z

ðtqm
0

C e, x, rð Þdt’

ð17Þ

Furthermore, since =(t0m, tqm, tqm)~=(t0m, tpm, tr{n )

| t
q
m

	 

, it holds that

ð
=(t0m, t

p
m, tr{n )

W e, x, rð Þdt’~
ð

=(t0m, t
q
m, t

q
m)

W e, x, rð Þdt’

Therefore, by equation (17), it can be obtained that

eT tr{n
� �

Pe tr{n
� �

z

ðtr{n
0

C e, x, rð Þdt’

z

ð
=(t0m, t

p
m, tr{n )

W e, x, rð Þdt ’weT tqm
� �

Pe tqm
� �

z

ðtqm
0

C e, x, rð Þdt ’z
ð

=(t0m, t
q
m, t

q
m)

W e, x, rð Þdt ’

[Vm tr{n
� �

wVm tqm
� � ð18Þ

This means that when the mth subsystem is

reactivated at t
q
m, the value of the Lyapunov function

is monotonically decreasing when compared with

that at tr{n when the mth subsystem is inactivated

last time, which is also depicted in Fig. 4. By Lemma

2, it can be concluded that the closed-loop switched

system is globally asymptotically stable.

Considering the inequality (9), the autonomous

switched reference system _xxm tð Þ~Ams
xm tð Þ shares a

common Lyapunov function ~VV~xTm tð ÞPxm tð Þ, there-
fore the system (2) is input-to-state stable [9], i.e.

xm tð Þ must be bounded for any bounded input r tð Þ.
Therefore, the state x tð Þ~xm tð Þ{e tð Þ of the system

(1) must be bounded under arbitrary switchings.

Remark 4

If ai, bi are set to be positive constant matrices a, b,

just as K and L, a common Lyapunov function can

be achieved for the closed-loop switched system

(this result is easy to obtain from equation (10)),

hence the globally asymptotical stability is directly

ensured [9]. Additionally, the proportion parts of the

feedback and feedforward controllers do not need to

be zero when the corresponding subsystem and the

controller are ‘switched off’, whereas they can be

continuously adjusted. The price to be paid for such

a scheme is that the desired performance may be

hard to achieve, because all the adaptive gains are

constant, i.e. the controller gains corresponding to

S1 are the same as the gains corresponding to all

subcontrollers of S2. In order to alleviate this

problem, the MRASC scheme presented in this study

achieves the better performance trade-off by allow-

ing ai, bi to be set arbitrarily, and the proportion

parts in the feedforward and feedback controllers are

set to be zero when the controller is ‘switched off’.
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Remark 5

The loss of effectiveness failure of actuator probably

makes the actuator saturate. For this situation, the

MRASC scheme is also valid. Stability of the closed-

loop switched system and a desired performance can

be ensured, provided that the adaptive gains

K, L, ai, bi are all diagonal matrices and reset to be

K’, L’, a’i, b’i according to the degree of loss effec-

tiveness when the actuator fault occurs. Suppose

that L~diag l1, l2, l3ð Þ, lj [ 0, 1ð Þ, j~1, 2, 3 specifies

the degree of loss of effectiveness for the inputs, the

non-smooth non-linear term d tð Þ sgn BTPe tð Þ� �
should be changed to d tð Þ sgn ð BLð ÞTPe tð ÞÞ and

K, L, ai, bi, Fi t0i
� �

, Gi t0i
� �

should be reset to be

K’, L’, a’i, b’i, F’i t0i
� �

, G’i t0i
� �

, respectively,

K’~K L{1
� �2

, L’~L L{1
� �2

, a’i~ai L{1
� �2

,

b’i~bi L{1
� �2

Ami
{A~BLFi’ t0i

� �
, Bmi

{BL~BLGi’ t0i
� �

ð19Þ

such that

ðt

0

BLð ÞTPe t’ð Þ
� �T

ðt’

0

K’ BLð ÞTPe tð ÞxT tð Þdt
0
@

1
Ax t ’ð Þdt’

~

ðt

0

BTPe t’ð Þ� �T ðt’
0

KBTPe tð ÞxT tð Þdt
� �

x t’ð Þdt ’

ð
=(t0

i
, ts

i
, t)

BLð ÞTPe t’ð Þ
� �T

a’i BLð ÞTPe t ’ð ÞxT t’ð Þx t ’ð Þdt’

~

ð
=(t0

i
, ts

i
, t)

BTPe t’ð Þ� �T
aiB

TPe t’ð ÞxT t’ð Þx t’ð Þdt’

ð20Þ

and similar integral equations also hold for the gains

L’, L and b’i, bi.
Thus, the candidate Lyapunov function in equa-

tion (10) is still valid for the subsystems of the

closed-loop switched system when faults occur. The

rest of the proof for stability is similar to that of

Theorem 1 and hence is omitted here. The anti-

saturation performance of the MRASC scheme with

the occurrence of actuator fault will be validated by

the simulation in section 4.

4 SIMULATION

4.1 Simulation Description

To validate the MRASC scheme derived in the

previous sections, simulations have been performed

using the AHFV model presented in section 1.

Suppose that the loss of effectiveness failure of the

actuator takes place at a certain time, which is likely

to induce an actuator saturation event. When this

fault occurs, a switching action arises and an

appropriate subsystem of the SRS and correspond-

ing controller of the SAC are selected to control the

AHFV. Note that it is assumed that the fault

detection and diagnosis mechanisms are perfect

and thus the actuator fault and switching action

arise simultaneously.

The plant of the AHFV is described by

_xx tð Þ~Ax tð ÞzBL u tð Þzd tð Þð Þ, L~diag l1, l2, l3ð Þ
x 0ð Þ~ 0, 0, 0, 0, 0, 0, 0ð ÞT

ð21Þ

where L is utilized to describe the loss effectiveness

failure of the actuator and li is an unknown

parameter that specifies the degree of loss effective-

ness

Fig. 4 A generic evolution of the Lyapunov function associated with the closed-loop switched
system

296 C Dong, Y Hou, Y Zhang, and Q Wang

Proc. IMechE Vol. 224 Part I: J. Systems and Control Engineering JSCE829



0vliv1,

if the ith control input fails, i~1, 2, 3

li~1,

if the ith control input does not fail, i~1, 2, 3

8>>><
>>>:

The disturbance D tð Þ~BLd tð Þ is composed of atmo-

spheric disturbance d1 tð Þ and pitch rate measure

disturbance d2 tð Þ

D tð Þ~d1 tð Þzd2 tð Þ
d1 tð Þ~BgVg tð Þ, Bg~ 0,a22,a32, 0,a52, 0, 0ð ÞT

d2 tð Þ~ 0, 0, 0, 0, 0:0087, 0, 0ð ÞT

where the elements in Bg are the corresponding

elements of the matrix A, Vg tð Þ is generated by

passing white noise through transfer function

Fu sð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0s2u

�
Lu

q .
szV0=Luð Þ, and V0~8976 ft=s,

su~6:006 ft=s, Lu~3135 ft [16, 17].

Supposing L5T, the upper bound d tð Þ for d tð Þ can
be selected as Bk k{1 D tð Þk k~2|10{5, where D tð Þk k~
0.0133. Note that the value for the disturbance d1 tð Þ is
evaluated by a simple simulation programmed by

MATLAB R2007 in advance, where the sample time for

the Gaussian Noise Generator Block is 0.02.

The switched reference system is given as

_xxm tð Þ~Ams
xm tð ÞzBms

r tð Þ, s t,yð Þ? 1, 2f g ð22Þ
where y denotes the occurrence of the fault, i.e.
s t,yð Þ~2 when the fault takes place, otherwise,
s t,yð Þ~1

with the desired eigenvalues {2:39+16:9jf
{1:6+2:5j {0:001+0:001j {0:005g.

The reference input

r tð Þ

~{�RR{1BT
m1

�KKxm tð Þ{ �KKBm1
�RR{1BT

m1
{AT

m1

h i{1
�QQc tð Þ

� �
,

�QQ, �RRw0

where

Am1
~Am2

~

0 0 {7924:8 7924:8 0 0 0

0:004 3991 {0:001 0132 {729:43 716:69 {6:6258 1:5351 0:487 48

{0:000 363 03 1:3927|10-5 38:067 {36:969 1:6104 {0:132 41 {0:041 481

0 0 0 0 1 0 0

0:018 978 {0:000 399 66 {2344:3 2287:5 {37:441 6:8457 2:5425

0 0 0 0 0 0 1

{0:099 724 0:009 1715 115 64 {112 66 100:05 {35:939 {8:612

2
666666666666664

3
777777777777775

Bm1
~B, Bm2

~BL

�QQ~ 1=400, 1=100, 1=0:017, 1=0:017, 1=0:017, 10, 10½ �T, �RR~ 1=0:017, 1, 1½ �T

�KK~

0:015 441 0:0018 {28:218 25:721 {0:520 91 0:192 42 {0:002 1212

0:0018 0:001 7886 {18:19 17:076 {0:345 71 0:101 83 {0:001 9396

{28:218 {18:19 3:7173|105 {3:5512|105 6006 {1496:3 18:671

25:721 17:076 {3:5512|105 3:397|105 {5690:2 1394:4 {17:233

{0:520 91 {0:345 71 6006 {5690:2 106:34 {28:528 0:417 86

0:192 42 0:101 83 {1496:3 1394:4 {28:528 19:757 {0:098 345

{0:002 1212 {0:001 9396 18:671 {17:233 0:417 86 {0:098 345 0:034 383

2
666666666666664

3
777777777777775
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The altitude and flight velocity commands are

illustrated in Fig. 5 and the other commands are all

set to be zero.

The adaptive gains of the SAC are given as follows

K1~L1~a1~b1~diag 0:01, 0:01, 0:01ð Þ
K2~L2~a2~b2~diag 0:01, 0:01, 0:01ð Þ L{1

� �2

Set Z~diag 10{17=4, 10{17, 10{13=1:7, 10{13=1:7,
�

10{13=1:7, 10{16, 10{16Þ, then there exists a Pw0

that satisfies the inequality (9) such that Theorem 1

holds. Namely, the closed-loop switched system

corresponding to the MRASC scheme is globally

asymptotically stable under the arbitrary switching

law

4.2 Evaluation

Suppose that the actuator fault happens at 220 s.

In the following, two cases, which describe

different degrees of the loss of effectiveness of the

actuator, will be simulated to investigate the anti-

saturation performance of the MRASC scheme. The

classical MRAC scheme (i.e. the adaptive controller

is without the switching actions and the non-smooth

non-linear term) is also adopted for each case, in

order to compare the performance with the pro-

posed MRASC scheme.

Case 1

In this case L~diag 0:9, 1, 1ð Þ, i.e. the pitch control

surface fails. The results are depicted in Figs 6 to 15.

From these figures it can be concluded that the

MRASC scheme achieves a satisfactory performance.

State trajectories controlled by the MRASC scheme

are much smoother than those controlled by the

MRAC scheme. It is more attractive that the control

inputs, including the pitch control surface deflec-

tion, the diffuser area ratio, and the fuel mass

flowrate, are much smoother as compared to those

obtained when the system is controlled by the MRAC

scheme, which is depicted in Figs 13 to 15. In

particular, the value of the diffuser area ratio under

the MRAC scheme exceeds the upper bound of 0.85,

whereas the value of the diffuser area ratio under the

MRASC scheme is much smaller and smoother.

Case 2

In this case L~diag 1, 0:75, 1ð Þ, i.e. the diffuser area

ratio fails. This case is more severe than Case 1,

because under the MRAC scheme all the states and

Fig. 5 Altitude command and flight velocity com-
mand

P~

1:0383|10{14 {2:3121|10-13 3:2920|10-12 {1:0307|10-11 {3:0904|10-13 3:3900|10{13 {8:0872|10-14

{2:3121|10{13 1:5416|10-11 {4:2377|10-10 5:7781|10-10 8:3007|10-13 {6:7354|10{12 2:3773|10-12

3:2920|10-12 {4:2377|10-10 0 0 2:6650|10-10 1:7284|10{10 {8:7432|10-11

{1:0307|10-11 5:7781|10-10 0 0 4:6618|10-11 {5:2087|10{10 1:7119|10-10

{3:0904|10-13 8:3007|10-13 2:6650|10-10 4:6618|10-11 2:0865|10-11 {1:5938|10-11 3:1050|10-12

3:3900|10{13 {6:7354|10{12 1:7284|10{10 {5:2087|10{10 {1:5938|10-11 1:7004|10-11 {3:9589|10-12

{8:0872|10-14 2:3773|10-12 {8:7432|10-11 1:7119|10-10 3:1050|10-12 {3:9589|10-12 1:0185|10-12

2
666666666664

3
777777777775

Fig. 6 Trajectories of the altitude for Case 1
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control inputs diverge quickly and the system is

unstable after the fault occurs. The trajectories of the

altitude and the diffuser area ratio are depicted in

Fig. 7 Trajectories of the flight velocity for Case 1

Fig. 8 Trajectories of the angle of attack for Case 1

Fig. 9 Trajectories of the pitch attitude for Case 1

Fig. 10 Trajectories of the pitch rate for Case 1

Fig. 11 Trajectories of the generalized elastic coordi-
nate for Case 1

Fig. 12 Trajectories of the derivate of the generalized
elastic coordinate for Case 1
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Figs 16 and 17 to show the phenomenon of the

instability. Even though, the same conclusion can be

achieved. The proposed MRASC scheme obtains a

satisfactory performance with smoother control

inputs, and all the inputs satisfy the constraints,

which is depicted in Figs 18 to 27.

In conclusion, simulation results demonstrate the

effectiveness of the MRASC scheme for controlling

the AHFV with actuator saturation. Additionally, the

proposed scheme performs much better than the

classical MRAC adaptive control scheme.

5 CONCLUSIONS

An MRASC scheme for the control of AHFVs with

actuator saturation is proposed. In contrast to most

Fig. 13 Trajectories of the pitch control surface
deflection for Case 1

Fig. 14 Trajectories of the diffuser area ratio for Case 1

Fig. 15 Trajectories of the fuel mass flowrate for Case
1

Fig. 16 Trajectory of the altitude under the MRAC
scheme for Case 2

Fig. 17 Trajectory of the diffuser area ratio under the
MRAC scheme for Case 2
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Fig. 18 Trajectory of the altitude under the MRASC
scheme for Case 2

Fig. 19 Trajectory of the flight velocity under the
MRASC scheme for Case 2

Fig. 20 Trajectory of the angle of attack under the
MRASC scheme for Case 2

Fig. 21 Trajectory of the pitch attitude under the
MRASC scheme for Case 2

Fig. 22 Trajectory of the pitch rate under the MRASC
scheme for Case 2

Fig. 23 Trajectory of the generalized elastic coordi-
nate under the MRASC scheme for Case 2
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anti-windup approaches, the proposed scheme can

ensure globally asymptotical stability for uncertain

unstable plants. Moreover, compared with direct

approaches, less conservative results can be achieved.

Furthermore, the MRASC system is proved to be

globally asymptotically stable provided that a set of

LMIs holds. Simulation results show the effectiveness

of the proposed control scheme. Future work will

include the inclusion of a gradual expansion of the

flight envelope, and investigate the qualitative beha-

viour of the control scheme, especially the perfor-

mance when the system encounters large distur-

bances or possible frequent switching actions.
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