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Abstract

The decay rates of stresses and displacements due to self-equilibrated loads acting on the end of
cross-ply-laminated hollow cylinders are found by using the theory of three-dimensional elasticity. The study
assumes that the periodic displacement and stresses fields used decay away exponentially from the end load
region. The use of a recursive and successive approximation method leads to an eigenmatrix whose
eigenvalues represent the decay rates of the problem. By this approach, the composite cylinders may be
composed of an arbitrary number of orthotropic layers, each of which may have different material properties
and thicknesses. The eigenvalue problem has always a dimension of 3 x 3, regardless of the number of the
layers. The decay rates for either symmetric or antisymmetric cross-ply-laminated cylinders are found and
presented. The effects of material properties on decay rates are investigated for a typical eight-layered
anti-symmetric cross-ply-laminated cylinder. The displacement and stress distributions across thickness of
cylinders for selected problems are also presented. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The edge effects of hollow cylinders subjected to self-equilibrated end loads have been the subject
of extensive investigations and the history of the analysis has been well documented in the
literature (see e.g. Refs. [1,2]). The majority of the worked reported in the area were based on
Toupin [3] and Knowle’s [4] theorem that provides upper bound estimates of the strain energy (E)
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Nomenclature

a inner radius of cylinder

b out radius of cylinder

C;; elastic constants of materials

E strain energy of elastic body

E,, E; elastic modulus in axial, or transverse direction
Gir,Grr shear modulus

h,hY thickness of cylinder or the jth sub-cylinder

k decay rate (characteristic decay length)

n circumferential wave number

r, R radius or mean radius of hollow cylinder

RV mean radius of the jth sub-cylinder or sub-layer
u,ov,w axial, circumferential, and radial displacements
X, S,z axial, circumferential, and radial co-ordinates
&ii direct strain component (i = X, s, z)

Vij shear strain component (i, j = x, s, z)

Ai eigenvalue of G

Oii direct stress component (i = x, s, z)

Tij shear stress component (i, j = X, s, z)

Vit VIT Poisson’s ratio

in a body as a function of the distance (z) away from the region of applied tractions, i.e.,
E(z) < E(0)exp( — kz), (1)

where k is the inverse of the characteristic decay length that represents the decay rate of strain
energy towards the interior zone of the body, E(0) is the total strain energy, and E(z) is the strain
energy in the part of the body beyond z. Because of the quadratic nature of strain energy in terms of
the mechanical variables, the estimates of displacements and stresses in the body can be sub-
sequently factored as follows:

(ua v, W) < Kl CXp(_ kZ), ..
(i,j = X,5,2), 2
0ij < K, exp(— kz),

where K| and K, are constants. On the basis of above theorem, most published work assumed that
any self-equilibrated edge stress decay away exponentially from the loaded end. For structures
made of isotropic linear elastic materials, extensive work has been done either analytically (see e.g.
Ref. [5]) or numerically (see e.g. Refs. [6,7]). For elastic hollow cylinders, Stephen and Wang [§]
presented an analytical solution by which exact decay rates can be found in the context of
three-dimensional consideration.
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It has been recognised that composite materials are considerably more sensitive in edge effects
than isotropic materials. Experimental results [9] have shown that edge effects may persist much
farther into composite materials than for isotropic ones. As a result of this, the edge effects in
composites cannot be simply neglected and also the experience gained in isotropic cases may not be
applied directly to anisotropic materials. Moreover, high-level transverse normal and shear stresses
acting in the region near the free edge of laminated composites are the major concern on the
material failure due to delamination. Hence, it is vitally important for composite manufacturers
and users to have a better understanding of the edge effects on such materials. This may help them
to tailor a material with specific properties so that edge stresses can decay at a desired rate. As
laminated composite materials have been increasingly used by various industries, considerable
attention in this respect has been received in the last two decades. Both numerical and analytical
approaches have been used to determine decay rates in composite materials. For instance, Finite
element method was used to find the decay rates of laminated plates [ 10]. Although this method is
probably one of the most universal methods which can be applied to problems involving any
cross-section, it is sometimes quite computationally expensive, especially for multi-layered lami-
nates. For laminates having regular cross-sections, analytic method is still a powerful tool to be
used for the purpose. However, due to the complex nature of anisotropy, many recently published
results were confined to examine edge effects on laminated materials having simple displacement
and stress fields [11-13].

On the basis of three-dimensional elasticity consideration, this paper studies the decay rates of
cross-ply-laminated hollow cylinders subjected to self-equilibrated end loads. The analytic tech-
nique presented herein is based on the recursive and successive approximation method which has
been successfully used in connection with buckling and vibration analysis of cross-ply-laminated
cylinders [14,15]. Previous numerical experience has shown that buckling and vibration results
obtained from this method converge very fast to the corresponding three-dimensional solutions. In
this paper, this method is modified and used to deal with edge-effect problems by solving an (3 x 3)
eigensystem whose general eigenvalues (including complexes) give the decay rates of the problem.
The order of the final eigensystem is independent of the number of the orthotropic layers of
a laminate. Hence this method is particularly useful for either thick or thin laminates having a large
number of layers.

Parametric investigations are presented in the paper for eight-layered symmetric and antisym-
metric cylinders having various thickness ratios. The decay rates of these cylinders are shown for
selected circumferential modes. The effect of material anisotropy on the lowest decay rate of
a eight-layered antisymmetric cylinder is shown in graphic form. For selected decay modes, the
corresponding stress and displacement patterns are also presented to show a general picture of
their distribution near the end of the laminates.

2. Formulation of a exponential decay problem

Consider a hollow circular cylinder (Fig. 1) having a constant thickness h and middle-surface
radius R. The axial, circumferential and normal to the middle-surface co-ordinates are denoted by
x,s and z, respectively, while u, v and w represent the corresponding displacements. It is assumed
that the cylinder is made of a homogeneous, orthotropic, linearly elastic material. Accordingly, its
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z(w)

Middle Surface

Fig. 1. Nomenclature of a hollow cylinder.

elastic behaviour is described by the Hook’s law

Ox [Ci1 Cia Cys 0 0 0 7 fexx
Os Cia Gy Cas 0 0 0 Ess
0 Ciz Cy3 Cs; 0 0 0 €2z
Wl [0 0 0 Cu 0 0 ||
Txz 0 0 0 0 Css 0 Vxz
Ts L O 0 0 0 0 Ceed Vs

3)

In cylindrical co-ordinates the three-dimensional differential equations of equilibrium and the

strain—-displacement relations are, respectively, as follows:

00y 0Ty O0Ty; Ty,

Ox Os + 0z + r 0,

a’L-xs aO-ss a‘L-sz + 21, —0

O0x Os 0z ro

a’E.X:Z aTSZ ao—zz O-ZZ GSS

x Tas Tzt 7 Y @

XX axa A aS r’ zz — 82’ (5)
_ Lo e oo

s T e T T T Tz 7

where r = R + z. After eliminating the three membrane stresses from Egs. (3)-(5), the governing
equation of a three-dimensional elasticity problem in cylindrical co-ordinates can be represented as
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a set of linear differential equations with respect to z:

u_ o e
32 N 6X C55,

ov v ow [

E_V r09+C44’

ow ou ov w
i C1a - Cs@ - C57 + C60..,
00.. ou ov Ciw (1 +Cs) 0Ty, 0Ty,
oz C3r8x + C4r260 + r? r 7T 00 ox
07Ty, 0? 0? 0% ow 00,, Ty
2z <_ Cagaz — Cos r2502>“ G+ Coo) T T Crax T T
01, 0% 02 02 ow 0o,, 2t
3~ TGt Cedgm (‘ Coogn? ™ CW) Gt e O
In Eq. (6) the constants C; (i =1, 2,...,5) are as follows:
C1 = - C13/C339 Cz = C11 - C%s/C339 C3 = C12 - C13C23/C33:
Cs = — C33/C33, Cy=Cy —C33/Cs3, Co=1/Css. (7)

According to the theorems of Toupin and Knowles [3] and the estimated displacements and
stresses of (2), for the decay problem of a cylinder, the following exponential decay and periodic
displacements and the associated transverse stress fields can be used:

u=U(z)e"e ",

v = V(z)e"e ™",

w= W(z)e" e+, @®)
0.. = Z(z)e" e+,
Tyw = X(Z)ein9 e~ kx,

T = S(z)e"e ", ©)

where n is the circumferential wave number and i = ./ — 1, k is the decay rate of edge stresses and
displacements of the cylinder. Substitution of Egs. (8) and (9) into Eq. (6) gives the following matrix
form of a first-order differential equation system in terms of displacements and three transverse
stresses:

0
5 Fl = [GI{F}, {F} =[W() Ul iV(2) Z(2) X(2) iSE)T", (10)
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where i is used to indicate the ©t/2 phase difference between v and its counterparts u and w and also
between transverse stress 7, and two other transverse stresses g,, and t,,. The 6 x 6 matrix [G] in
Eq. (10) has the following form:

e nC |
?5 — Ck 75 Ce 0 0
k 0 0 0 ! 0
CSS
n 1 1
— 0 — 0 0 —
G- R R Cas
BE2 Cak nC (14Cy) _n
R? R R? R R
Cin n*C nk(Cs; + Cee) —1
R—32 — C,k* + Rjé 3R ik —Cik — 0
Cun nk(Cs + Ceg) , n*Cy nCs 2
= R2 R Cock™ + R2 R 0 R =

It is noticed that the term 1/R has been used in the matrix to replace the term 1/r, where
r = R(1 + z/R). For cylinders having small thickness (h/R < 1), such a replacement is reasonable
[14]. As a result, matrix [G] is a constant complex matrix in general since k can be a complex.

To find the decay rates, the cylinder is assumed to be free of external tractions on the surface
generators and, therefore, the following stress boundary conditions are imposed on the lateral
cylindrical surfaces z = + h/2:

(£ h2) =0, ou(+h2)=0 and o.(+h/?2)=0. (11)
The general solution of Eq. (10) can be explicitly expressed as
(F()} = [B@I(F(—h2) (—h2<z<h. (12)

In Eq. (12) [B(z)] = [Q]  'diag[e* T M? erE+h2) | etHW20Q] where the 4; (i = 1,2, ....6) are
the distinctive eigenvalues of [G] and are in general complex. [Q] is a (6 x 6) matrix consisting of
six independent eigenvectors corresponding to the eigenvalues. In the cases of repeated eigenvalues
of [G], existing methods, e.g. Cayley-Hamilton method [16], can be used to evaluate [B(z)]
analytically (see the appendix). However, numerical experience showed that for cylindrical layers
the eigenvalues of [G] are likely to be distinctive while repeated eigenvalues occur only when
isotropic flat layers are considered.

When z = h/2, Eq. (12) becomes

{F(h/2)} = [B(h/2)]{F( — h/2); (13.1)
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or

W(h/z) -Bll B12 B13 Bl3 Bl4 BlS- W( - h/2)
U(h/z) B21 B22 B23 B24 BZS BZ6 U( - h/z)
lV(h/z) B31 BSZ BSS BS4 B35 B36 lV( - h/z)

= (13.2)
0 Bsy Bas B4z Bys Bus Bue 0
0 Bsy Bs, Bs; Bss Bss Bse 0
0 LBs1 Bsz Bez Bes Bes  Beesd 0

after introducing boundary conditions (11). Here {F(— h/2)} and {F(h/2)} denote the values of the
vector {F} at the bottom (z = — h/2) and top (z = h/2) surfaces of the cylinder, respectively. In
Eq. (13.2), the B;; are in general functions of the decay rate k.

The bottom half of above equation gives

B4y Baz Bus | (W(—h/2) 0
Bsi  Bsy  Bss [(U(—h/2) ) =(0). (14)
Bs1  Bex Bes | |iV(—h/2) 0

To ensure that there is a non-zero displacement field at the edge of the cylinder, the decay rate
k must be of the values at which the following 3 x 3 complex determinant is nullified:

Byy Bi; Bys
det BSl BSZ 353 :0 (15)
B61 B62 B63

Hence the zeros of above equation give the decay rates of the composite cylinder subjected to
self-equilibrated end forces. For a thin cylinder the above calculations can provide decay rates
which are very close to the corresponding three-dimensional ones. As a matter of fact, the
calculated decay rates approaches to the three-dimensional solutions as h/R approaches zero.

To calculate the decay rates of a thick or laminated cylinder, the solution of Eq. (10) is based on
the division of the hollow cylinder into N coaxial and successive fictitious sub-cylinders. Different
layers may have different thicknesses and material properties. However, it is assumed that the
thickness of each layer approaches zero uniformly as N approaches infinity. Assuming, in addition,
that each sub-layer is homogeneous and made of an orthotropic elastic material, two types of
material interfaces are distinguished in such a cross-ply laminate: the fictitious interfaces that
separate layers with same material properties and the real ones that separate layers of different
materials. For each of these sub-cylinders the approximate solution (12) or (13.1) is initially formed.
Upon choosing a suitably large value of N, each individual layer becomes thin, ie., h'¥)/RY < 1,
where hY) and RY are, respectively, the thickness and middle surface radius of the jth sublayer. As
a result, an approximate solution of the form described in the preceding sections is considered
adequate. All solutions obtained are then connected through imposing continuity conditions on
the fictitious and real interfaces to form a solution that provide with an approximate decay rates of
the thick or/and laminated cylinder which again are very close to the corresponding three-
dimensional solutions as long as N is sufficiently large.
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Dealing in particular with the interface of the (j — 1)th and jth of the afore-mentioned fictitious
layers, having thicknesses hY~1 and h“), respectively, the continunity of displacements and
transverse stresses at the interfaces leads to following relation (j = 2,..., N):

(FO(— h9)2)} = {[FU~ (R~ )2)), (16)

Hence, upon recursively using Egs. (13.1) and (16), the following equation can be found for the
N-layered composite cylinder:

(FOR/2)} = (B 21 {FO(— h)/2)
= [BO(A/2)]([B D 2] {F D )

= [HM{FO(— hV)2)}, (17)
where
[HY] = ﬁ [BY(h"/2)] (18)
i=N

which is an equivalent matrix to [B] in Eq. (13.1). By considering boundary conditions (11), Eq. (17)
also yields an eigenvalue problem, the solutions of which are the decay rates of the laminated
cylinder. It is worth mentioning that, since [H] has the same dimension as that of [B], the decay
rates can still be found as the roots of a 3 x 3 eigen-determinant, independently of the number of
real and/or fictitious layers involved. After the eigenvalues have been found, the associated
eigenvectors, i.e., the displacement modes at z = — h/2, can be found from Eq. (17). The modes
showing displacement and transverse stress ditributions across the thickness can then be obtained
below by following Eq. (12):

{F9(z)} = [HP)H{F(—hY/2)} (k=1,2,...,N,— h%/2 <z < h®)2), (19)
where
[HY] = [B"‘)(Z)]_ ﬁ [B(h?/2)]. (20)

3. Numerical results and discussion

As has been shown in previous publications dealing with stability and dynamic analyses of
cross-ply-laminated cylinders [14,15] numerical results obtained on the basis of the recursive and
successive approximation approach converge very rapidly to the corresponding results based on
alternative three-dimensional solutions. Using relatively thin sub-cylinders (h?/RY < 0.02, j =
1,2,...,N)in such comparisons, it was found that the results obtained normally had an accuracy at
least up to four significant figures. Following this observation, the number of fictitious layers
employed for the derivation of all of the results shown in this section was chosen such that
hY/RY < 0.02 is always satisfied. Dealing with complex eigenvalues and related problems of
complex matrices, NAG library was used in the calculations.
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In this section, the decay rates of an eight-layered cross-ply-laminated cylinder with either
symmetric or antisymmetric lay-ups are presented through a parametric study. For the purpose of
comparisons, the decay rates were calculated first for isotropic cylinders for which exact three-
dimensional solutions are available in the literature [8]. The results presented in Table 1 are the
non-dimensional decay rate parameter (kb) of an isotropic cylinder having a/b = 0.5 or 0.8, where
a and b are the inner and outer radius of the cylinder, respectively. The first four decay rate
parameters for the first three circumferential modes (n = 0, 1, 2) are given in the table, in which the
real values are associated with exponential decay while the complex ones are corresponding to
damped sinusoidal decay. The results in Table 1 have been compared with the graphic solution
presented by Stephen and Wang [8] and a good agreement has been observed.

After the successful comparisons, the method was then used to find the decay rates of an
eight-layered cross-ply-laminated cylinder with either symmetric or antisymmetric lay-ups. Each
material layer has the same thickness. The results were obtained for a thick cylinder (a/b = 0.5) and
a moderately thick one with a/b = 0.8. Three circumferential modes were considered, i.e., n =0,
1 and 2 and the first five decay rate parameters were calculated for each case. In the calculations,
the following fibre reinforced material properties were used:

EL/ET = 10, GLT/ET = 06, GTT/ET = 05, Ve = Vrr = 025, (21)

where subscripts L and T indicate longitudinal and transverse directions of the fibres.

Tables 2 and 3, respectively, show the decay rate parameter of the eight-layered antisymmetri-
cally laminated cylinder with a/b = 0.5 and 0.8, while Tables 4 and 5 give the parameters for the
corresponding symmetrically laminated ones.

For antisymmetric cylinders, the results presented in Tables 2 and 3 show that for thicker
cylinder (a/b = 0.5) the lowest decay rate parameters (lowest real or real part of a complex) for the
three cases (n = 0, 1, 2) are always real while for thinner cylinder (a/b = 0.8) they are all complexes.
For lower circumferential wave numbers (n = 0, 1) the lowest decay rate parameter increases as the
thickness decreases. For higher circumferential modes (n = 2), however, the lowest decay rate
parameter decreases as the thickness decreases. This is coincident with the observation made for
isotropic cases [8]. Similar conclusions can also be made for symmetric cases (see Tables 4 and 5).

Table 1
Decay rates (kb) of an isotropic cylinder

n=0 n=1 n=2
2.4058 4+ 11.9082 2.7741 +i1.4421 1.3341 +10.7477
a/b=0.5 6.8139 7.0142 3.9995 4+ 10.8189
8.6072 + i4.4975 8.6918 +14.4295 7.5933
12.8556 12.9432 8.9410 4+ i4.2312
3.1737 +12.9448 3.3692 +i2.7357 0.7510 +10.5364
a/b=0.8 158554 15.8964 4.0299 +1i2.2909

21.1071 £+ i11.2539 21.1301 +1i11.2411 16.0189
31.4903 31.5104 21.1989 +1i11.2029
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Table 2
Decay rate parameter (kb) for antisymmetrically laminated cylinder
(a/b =0.5,[0/90]4)

n=0 n=1 n=2
2.2785 1.7111 1.0709
4.3313 +10.0883 4.2857 1.5076 +10.5593
5.4222 5.4635 +10.1742 4.3917
6.4963 8.2472 5.7226
10.5848 +13.0212 10.6967 + 12.7489 74216
Table 3

Decay rate parameter (kb) for antisymmetrically laminated cylinder
(a/b =0.8, [0/90],)

n=0 n=1 n=2
3.6986 +12.4196 4.0710 +11.7154 0.8205 +10.3429
10.7459 1.7525 2.8725
14.0695 14.0876 7.2847
15.1166 15.4896 10.7642
25.1971 +1i2.4196 25.2295 +16.9419 14.1125
Table 4

Decay rate parameter (kb) for symmetrically laminated cylinder
(a/b = 0.5, [0/90/0/90];)

n=0 n=1 n=2
1.9929 1.5610 1.1257
4.4216 +10.5608 4.4503 1.3447 +i0.4216
4.6135 5.0483 +10.4194 4.5664
6.5754 7.7061 5.1037
11.0456 +11.6251 11.5679 +1i1.2826 6.7911
Table 5

Decay rate parameter (kb) for symmetrically laminated cylinder
(a/b = 0.8, [0/90/0/90];)

n=0 n=1 n=2
3.4805 +12.2028 3.8608 +11.4247 0.7340 +10.3582
10.2833 11.2942 2.5564
12.4326 12.4399 7.2444
15.3002 15.5989 11.3209

24.0842 24.1785 12.4524
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Fig. 2 shows the minimum decay rate parameters for the first three circumferential modes of an
eight-layered antisymmetric cylinder with a/b = 0.8. The material properties described in Eq. (20)
are used for the cylinder except that the ratio between E;, and Er is now allowed to vary. The decay
rate parameters are calculated and plotted against the ratio. For complex decay rates, only real
parts of them are plotted and shown by dotted lines. The solid lines in the figure represent real
decay rates.

Itis clear from Fig. 2 that the decay rates for all the cases are in general decreasing as the cylinder
becomes more anisotropic although some increases of them have been observed when the ratio,
E;/Ey is small. It is also clear from the figure that for small values of E; /E;, damped sinusoidal
modes dominate the decay while for higher values of E;/Er, the lowest decay modes are always
associated with exponential decay. These observations can also be found from Fig. 3 which shows
the lowest decay rate parameters of a laminated cylinder with various section profiles. In Fig. 3 the
decay rate parameter associated with n =1 are presented for cylinders having 0°, 90°, and

0 ! ! ! L I L ELIET
5 10 15 20 25 30 35 40

Fig. 2. Decay rate parameter of an eight-layered antisymmetrically laminated cylinder.

14

kb

m (0901, (k=23 4)

[0/90]

10 20 30 40 50 60 70 80 90 100 E/E:

Fig. 3. Decay rate parameter of antisymmetrically laminated cylinders against layer numbers.
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[0°/90°], (k =1, 2, 3, 4) profile, respectively. Comparing the decay rate parameters of these cylin-
ders, it can be seen that the 0° cylinder always gives lowest rates while the 90° cylinder always gives
the highest ones, which can be used as upper or lower bound estimate in design. The decay rates for
cylinders having more than four antisymmetric layers are essentially the same and decrease as the
ratio, E; /Er, increases. For the 90° and 0°/90° cylinders, the decay rates decrease following some
increases when the materials are less anisotropic. Comparing with corresponding isotropic case
(see Table 1), except the 90° cylinder, the decay rate parameters of the laminated cylinders become
about three times smaller than those of corresponding isotropic case when E; /E; approaches 100.
Hence, it is evident that for laminated materials, especially highly anisotropic materials the edge
effects are significant and the characteristic decay length may be several times longer than the
corresponding length for isotropic cases.

To find stress and displacement distributions across the thickness of a composite cylinder, the
applied self-equilibrium end stress has to be represented as an complete eigenvector expansion
associated with the complete set of eigenvalues, i.c., the decay rates, obtained. This will involve
orthogonalisation of eigenvectors and treatment of singularities for concentrated loads. Future
research is needed in the respect. To illustrate stress and displacement field associated with given

z/h z/h
0.4} 04
02}
02}
W
N . 0o
1.0 05 "ol 05 10 10 05 ope s 1o
02}
02
.04}
04}
z/h

0.2

05 1.0

oo
1.0 05 0| 05 10
02
0.4
z/h z/h
04} 0.4
ozl 02
cX)( GSS 06
. . o6 . , -
45 G 88y o5 To 10 05 olo 05 1.0
02
02
04
/——.m H

Fig. 4. Displacement and stress distributions for n = 0.
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decay rates, the relative displacement and stress distributions across the thickness for selected
modes are found and presented in Figs. 4-6 for the eight-layered symmetric cylinder having
a/b = 0.5. The displacements, transverse and membrane stresses are scaled separately so that the
maximum values of each of them are unit. Three cases are considered. They are for the three lowest
decay parameters, i.e., kb = 1.9929, 1.5610 and 1.1257, corresponding to, respectively, decay modes
n=20,1and 2.

In Fig. 4, the results for n = 0 are presented where there are no circumferential displacement,
shear stresses 7, and 7,,. Obviously, these are associated with a torsionless axisymmetric mode.
From Fig. 4, it is observed that the displacement u, transverse shear stress 7,. and membrane stress
0. are more significant than their counterparts. It can also be observed that the decay mode is
associated with the end loading characterised by distributed bending moments about the mid-line
of the section and shear forces in radial direction (see the distribution of o, and 7, and 7).

In Fig. 5, the results for n = 1 are presented. Once again, the displacement u, transverse shear
stress 7., and membrane stress o, are predominant. There are also quite significant circumferen-
tial and transverse displacements across the thickness. The mode is associated with the end loading
characterised by distributed bending moments about the mid-line of the section, shear forces in
radial direction and applied torques on the section (see the distribution of o, and 7., and t.).

zh zh zh
04t 04r 04}
02t 0.2f 02}
U / W
40 05 “olo 05 10 1.0 05 ojo 05 10 1.0 05 “olo 05 10
02} -02r 02t
04} -04r 04}
z/h zh z/h
0.4 04 0.4
0.2 02 02 >
(¢ T T
z L s sz
. o6 . , . . o0 .
1.0 05 "0 05 1.0 -10 -05 1.0 05 oo 05 1.0
-0.2, 02}
-04 04}
2 z/h
0.4
02] 02 |
G T
L 1 O n 4 xs
a L 1 0.0 I
1.0 05 oo 05 1.0 S o5 5 G 70

Fig. 5. Displacement and stress distributions n = 1.

02

-04




468

z/h

04}

02F

86

J.Q. Ye / International Journal of Mechanical Sciences 43 (2001) 455-470
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Fig. 6. Displacement and stress distributions for n = 2.

For n =2, Fig. 6 shows significant circumferential displacement, longitudinal bending and
tension. Comparing with Fig. 5, 1., gives maximum transverse stress in this case. It is also
interesting to notice that the transverse normal stress becomes quite significant and may not be
ignored in edge-effects analysis. The mode is associated with the end loading characterised by axial
tension, bending and torsion (see the distribution of ¢, and 7., and 7).

4. Concluding remarks

The decay rates of multi-laminated hollow cylinders composed of either symmetric or antisym-
metric cross-ply layers have been studied under the consideration of three-dimensional elasticity.
The method is effective and can provide accurate decay rates as eigenvalues of a 3 x 3 matrix. The
associated eigenvectors, i.e., the normalised displacement and stress distributions across the
thickness of the cylinders, can also be found to show the corresponding load patterns applied at the
end of the cylinders. The eigenvectors can be further used as the bases on which any self-
equilibrated end loads may be expanded.

Apart from the special case concerning isotropic cylinders, the decay rates of certain moderately
thick and thick cylinders with cross-ply lay-ups have been found and presented. For antisymmetric
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cylinders, parametric study has been performed in terms of material properties and laminate
profile. It has been observed that the decay rates for laminated cylinders are in general lower than
corresponding isotropic ones and the rates decrease as the cylinders become more anisotropic. It
has been observed that in some cases, the characteristic decay length of anisotropic cylinders may
be several times longer than the corresponding length of isotropic ones. In the cases studied in the
paper, the decay rates are in general decrease as the ply number of an antisymmetric cross-ply
laminate increases. However, for cross-ply laminates having more than four layers, the increase of
ply number has negligible effect on the decay rates.

Along with the decay rates, the associated displacement and stress distributions were also found
for some problems. From the results presented for some selected decay modes, it has been observed
that any of the interlaminar stresses, including transverse normal stress, could become quite
significant and therefore the edge effect of these stresses may not be simply ignored.

Appendix. Calculation of B(Z) when G has coincident eigenvalues

The Cayley—Hamilton theorem states that every square matrix satisfies its characteristic equa-
tion. As a result of the theorem, the exponential function of G can be represented as

B(z) = exp(Gz) = nil ;(2)G. (A.1)

i=0

If A; is a r-times repeated eigenvalue of G and the rest n — r eigenvalues, 4,11, A 42, ... ,4,, are
distinctive, the «;(z) in Eq. (A.1) can be solved from the following linear algebra equation system:

oo(z) + a1 (2)A1 + o2(2)AT + -+ + o— 1 (2)A] 1 = M7,

d L d .
E[%(Z) + 01 (24 + 02 (2)A7 + - + o 1(2)A7 1] :d_llemz’
Y 00(0) o (D + 0D+ e ()] = - e
42 Yo 1(2)44 2(2)A1 n-1@ = )
d 2 n—1 d ;.
Wl_l[ao(z) + o1 (2)Ar + 0a(2)AT + - o1 (2)A] ] = i e,
ao(2) + 01 (2) A 41 + 0 (2)A 1 + 0 oy (2)A0 ] = ehE
%0(2) + 01(2) 42 + 02(2) 712 + -+ + U1 (252 = M7,
%0(2) + 01 (2 + 02 (2t + o+ oy ()0 =M (A2)
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